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Abstract: In this study, partial mutual information at the source level was used to construct brain
functional networks in order to examine differences in brain functions between lying and honest
responses. The study used independent component analysis and clustering methods to compu-
tationally generate source signals from EEG signals recorded from subjects who were lying and
those who were being honest. Partial mutual information was calculated between regions of interest
(ROIs), and used to construct a functional brain network with ROIs as nodes and partial mutual
information values as connections between them. The partial mutual information connections that
showed significant differences between the two groups of people were selected as the feature set and
classified using a functional connectivity network (FCN) classifier, resulting in an accuracy of 88.5%.
Analysis of the brain networks of the lying and honest groups showed that, in the lying state, there
was increased informational exchange between the frontal lobe and temporal lobe, and the language
motor center of the frontal lobe exchanged more information with other brain regions, suggesting
increased working and episodic memory load and the mobilization of more cognitive resources.

Keywords: source reconstruction; partial mutual information; brain network; lie detection

1. Introduction

Deception, also known as lying, involves the deliberate dissemination of false informa-
tion with the intention of influencing the perceptions of others [1]. In the past, much of the
research related to this topic has focused on detecting lies, with various physiological indi-
cators such as heart rate, electrodermal response, and respiratory pattern being identified
as potential indicators of deception [2]. However, these traditional polygraph techniques
have been criticized for their lack of a strong theoretical basis and accuracy concerns [3,4].
In recent years, advances in neuroimaging technology and cognitive neuroscience have
allowed for the use of electroencephalography (EEG) [5], functional magnetic resonance
imaging (fMRI) [6], and functional near-infrared spectroscopy (fNIRS) [7] to study the brain
mechanisms underlying deception. Among these methods, EEG has a higher temporal
resolution, making it particularly useful for investigating the neural dynamics of lying.
Many researchers have attempted to extract time-frequency domain and phase attributes
from EEG signals for analysis. However, these studies often focus on comparing features
between single channels and do not take into account the connections between different
brain areas [8–10], which may be important for understanding the complex neural processes
involved in deception.

Over the past two decades, advances in brain neurodynamics and cognitive neu-
roscience have led to increased investigation into the neural mechanisms underlying
deception. Researchers have utilized functional brain networks to examine the neural
basis of lying, and to develop lie detection systems using brain network characteristics [11].
Non-linear analysis techniques, such as graph theory and coherence, have been used to con-
struct functional connection matrices of EEG signals, providing insight into the functional
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networks involved in the cognitive processes of deception [12–15]. In addition, mutual
information has been utilized to analyze the non-linear synchronization of EEG signals
and effectively quantify the transfer of non-linear information between them. These efforts
have contributed to a deeper understanding of the neural basis of deception [16,17]. Peng
and colleagues developed a lie detection system using brain networks based on mutual
information [18]. Their work has shed light on the neural activity and information com-
munication mechanisms in brain areas involved in lying. However, mutual information
has been known to produce incorrect lead edges for brain network construction [18]. In
an effort to address this issue, Frenzel introduced the use of partial mutual information
(PMI) to detect direct coupling between multivariate time series [19]. PMI eliminates
indirect coupling, thereby accurately revealing the true coupling structure between the
signals [20–22]. Previous research has demonstrated the superiority of PMI in precisely
quantifying non-linear direct correlations within networks [23]. Despite these advances,
there have been no reported studies on the construction of brain networks using PMI to
investigate the cognitive processes of lying.

Many functional connectivity studies using EEG have been conducted using sensor
signals, but these signals may be affected by volume conduction, which can hinder the
interpretation of connectivity [24,25]. Additionally, the analysis of sensor-based connec-
tions does not permit the identification of the specific brain areas involved in functional
interactions [26]. These limitations have been noted in previous research. To address the
limitations of sensor signals in functional connectivity studies, two types of EEG source
reconstruction approaches have been applied to infer the directional connections between
brain sources [27–29]. The first method uses a biophysical generative model to infer func-
tional connectivity between sources directly from the sensor data. The second method,
which exploits a two-step procedure, is model-free and does not require any network
structure assumptions. The first step of the second EEG source reconstruction approach
involves the determination of the source signal from sensor-space data using distributed or
dipolar source models [30,31], such as minimum norm estimates (MNE), low-resolution
electromagnetic tomography (LORETA), and standard low-resolution brain electromagnetic
tomography (sLORETA). sLORETA is a variant of the LORETA approach that accounts
for both noise variance during EEG measurement and biological variance in the entire
brain [32]. Once the source signal has been determined, a functional connection metric is
applied to it. This approach has been widely used to infer brain network connections [33].
To study brain connectivity, it is often necessary to divide the brain into ROIs prior to
the source estimation process [31,34]. These ROIs can be determined using a pre-defined
atlas [35] or a data-driven approach [36,37], such as K-means clustering. This allows for a
more detailed analysis of functional connections within the brain.

Phase Lag Index (PLI) [38] and Phase Locking Value (PLV) [39] are both metrics
used to measure the phase synchronization properties between two signals. They have
been widely used to estimate large-scale neural interactions. In previous research on lie
detection using EEG, researchers have utilized phase synchronization to develop a lie
detection system [40,41]. This involves constructing a feature vector by applying functional
connectivity indicators such as PLV and PLI. The feature vector is then sent to a machine-
learning model for classification to build a polygraph system. However, no research is
currently available on developing a deception classification system using PMI. This study
aims to establish an effective machine learning system based on the PMI method for
classification and compare it with two traditional lie detection methods currently in use.

Deception is essentially a complex neuropsychological activity that requires coordina-
tion across multiple parts of the brain and involves several cognitive executive skills and
control processes [42,43]. In this work, we aim to explore the connectivity and difference
analysis of the functional network of lying and construct a high-accuracy lie detection
system. To achieve the appeal goal, this research selects the ROI by the K-means clustering
method and then employs source reconstruction methods to convert the EEG signal into
the source signal. Finally, for the first time, the part mutual information index is used to
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build a brain network and lie detection system. In the context of EEG data, PMI can be used
to identify pairs of brain regions that show a significant degree of statistical dependence
during deception, compared to a control condition (e.g., truth-telling). This can provide
insight into the neural mechanisms underlying deception and how it differs from other
cognitive processes. The study’s novelty can be summed up in three ways:

• To the best of the authors’ knowledge, this is the first study to apply partial mutual
information to construct a cortical connectivity network from EEG data;

• The PMI adjacency matrix and the brain connectivity graph were used to reveal the
interaction between various brain regions’ underlying and honest responses;

• This paper explores the performance of different EEG functional connectivity indices
in classification steps.

2. Materials and Methods

As shown in Figure 1, the proposed framework consists of seven major steps: EEG
recording, data preprocessing, ROI selection, source reconstruction, PMI matrix, PMI
connection network, and FCN classification. In this study, the first step involved recording
the raw EEG data from the subjects. After thorough preprocessing and analysis, the next
step was to use K-means clustering to identify the ROIs. The ROIs was used for the
subsequent step of source reconstruction. The motivation behind source reconstruction is
to construct a PMI matrix and a PMI functional connectivity network at the level of the
cortical based on the source signals. This will enable a clearer exploration of the cognitive
differences between deception and honesty. Finally, this study builds a lie detection system
based on the FCN classification algorithm. Each step is described in detail below:

Figure 1. Flowchart of the proposed framework. The pipeline contains seven major steps: EEG
recording, data preprocessing, ROI selection, source reconstruction, PMI matrix, PMI connection
network, and FCN classification.
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2.1. Participants

The present study received ethical approval from the Psychology Research Ethical
Committee at South-Central MINZU University. A total of 36 right-handed, healthy
college students were recruited as participants and provided informed consent prior to the
experiment. The subjects were randomly assigned to either the lying group (9 males and
9 females, average age: 21.2 ± 1.2) or the innocent group (9 males and 9 females, average
age: 21.3 ± 1.5). There were no significant differences in gender or age between the two
groups. Participants were compensated for their participation following the experiment.

2.2. Experimental Protocol

This study utilized the standard Guilty Knowledge Test (GKT) paradigm, which
involved presenting six items of jewelry along with their corresponding images as experi-
mental stimuli. The set of jewelry images was presented to both the lying and innocent
groups, the former group was instructed to “steal” one of the items from the set, while
the latter one was not required to do so. The purpose of this was to simulate a real crime
scenario. The specific experimental procedure is as follows:

Each participant in the lying group was instructed to open two safes, each containing
a piece of jewelry. They were required to memorize the details of both pieces of jewelry
and were instructed to randomly steal one of the jewels from the box. The stolen jewelry
was designated as the probe stimulus (P), while the jewelry in the unselected safe was
designated as the target stimulus (T). The remaining four stimuli were designated as
irrelevant stimuli (I). In the innocent group, participants were required to randomly selected
one of the two safes and observed the jewelry inside before returning it to its original safe.
The jewelry in this safe was designated as the target stimulus (T), while the jewelry within
the other safe was designated as the probe stimulus (P). The remaining four stimuli were
labeled as irrelevant stimuli (I). After completing the preparations, each participant entered
a quiet laboratory room with a constant temperature of 27 ◦C and sat in a chair to begin the
experiment. The participants used a mouse with two buttons to respond. The left button
indicated “No”, indicating that the participant had seen the stimulus before the recording
phase, while the right button indicated “Yes”, indicating that they had not seen the stimulus
before. During the experiment, the participants were asked to avoid any actions that could
cause motion artifacts, such as chewing, swallowing, or blinking.

Figure 2 shows the schematic diagram of the experimental protocol. At the beginning
of the experiment, a prompt marked with a “+” symbol was displayed on the screen for a
duration ranging from 0.4 s to 0.6 s, after which the experimental stimuli were presented for
0.5 s. The participants were required to respond correctly and promptly to the experimental
stimuli based on the task requirements. After the participants responded to the stimuli,
the stimuli disappeared automatically and the reaction time was recorded. Subsequently,
a post-rest period followed. The inter-stimulus interval was randomly varied between
1.6 s and 1.8 s. During the response period, guilty participants were required to press the
left button when presented with the P stimulus, thereby deliberately hiding the fact that
they stole the jewel. However, they honestly responded to the T and I stimuli. In contrast,
innocent participants truthfully responded to all three types of stimuli.

The experiment consisted of three sessions, with each session comprising 180 trials
(30 P, 30 T, and 120 I trials) lasting approximately 5 min. After each session, there was a
2 min rest period.

2.3. EEG Data Recording and Preprocessing

In this study, the EEG data were collected using the NeuroScan recording system
(Compumedics Neuroscan, Charlotte, NC, USA) and a 64-channel cap arranged according
to the 10-10 system. Horizontal and vertical electrooculography (EOG) electrodes were
placed at the outer corner of the eye and under the left eye, respectively, approximately 2 cm
below the eye. The EEG data were sampled at a frequency of 500 Hz, and the impedance of
each electrode was kept below 5 KΩ. The data were preprocessed using MATLAB R2012b
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(Mathworks Inc., Natick, MA, USA) and the EEGLAB toolbox. The data were first corrected
for eye movement, using an autoregressive model provided by the NeuroScan system.
Segments with severe saccades and electromyography (EMG) artifacts were then identified
and removed from the data through visual inspection. The data were then downsampled
to a frequency of 200 Hz and filtered using a 0.01–40 Hz bandpass filter. In this study, we
focused on analyzing the signal of P stimuli, so the data were divided into epochs ranging
from 300 milliseconds before to 1300 milliseconds after the onset of the P stimulus (−300 ms
to 1300 ms, with a total duration of 1600 ms). The period from −300 ms to 0 ms served as
the baseline for signal correction. To improve the signal-to-noise ratio of each participant’s
data, cross-trial averaging was used, with five trials per participant being averaged into a
single epoch [44]. After preprocessing, 315 P stimulus trials were available for analysis in
both the innocent and lying groups. The reduction in the number of P stimuli was due to
the removal of artifactual segments in order to maintain consistency in the number of trials
for both groups.

Figure 2. Schematic diagram of stimulus presentation in the experiment.

2.4. ROI Selection

To identify connectivity networks in the source space more accurately, we employed
preprocessed data based on the lying group and utilized independent component anal-
ysis and K-means clustering to estimate regions of interest (ROIs). The specific method
procedure was as follows: First, use the InfomaxICA algorithm in the EEGLAB toolbox
to calculate the independent components (ICs) of the preprocessed EEG data of the lying
group. The equivalent dipole positions of all ICs were then calculated using EEGLAB’s
DIPFIT2 plugin. Dipole positions, power spectra, and scalp maps of ICs with residual
variance < 15% were concatenated as feature vectors and fed into the K-means algorithm
for cluster analysis. Finally, the cluster centroids, defined by the results of K-means, were
mapped to the corresponding Brodmann areas (BAs) using their Talairach coordinates. The
BAs and corresponding Talairach coordinates are reported in the results. Additionally,
these related BAs will be used as ROIs in the subsequent source reconstruction analysis.

2.5. Source Reconstruction

The aim of this section was to reconstruct the cortex source signal on the selected ROI
in response to P stimulation in both groups of subjects. Various methods are developed
for the solution of source reconstruction, including the minimum norm method (MN),
low-resolution brain electromagnetic tomography (LORETA), and standardized LORETA,
among others. In contrast to MN and LORETA, sLORETA performed source estimation
based on the current density, which was parsed by the minimum norm solution and stan-
dardized by its variance. Therefore, the sLORETA method offers higher-quality results in
terms of precise localization and zero-positioning error [42,43]. The details about sLORETA
can be expressed as follows:

Sφ = KJKT + SNoise
ϕ = KKT + αH (1)
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Sφ is the electrical potential variance. K is the lead field matrix. J is the variance of the
source current density and SNoise

ϕ is the variance of noise. The matrix H means the average
reference operator and α ≥ 0 is the regularization parameter.

The variance of the estimated current density can be expressed as:

S∧
J
= TSφTT = T(KKT + αH)TT = KT [KKT + αH]

+
K (2)

T is the inverse operator. Finally, the sLORETA method gives the estimate of standard-
ized current density power, as follows:

σv =
[
S∧

j

]− 1
2

v
ĵv (3)

σT
v σv = jT

v

[
S∧

J

]−1

v
ĵv (4)

where
[
S∧

J

]
v
∈ R3×3 is the estimated current density value at the vth voxel obtained by the

minimum norm estimation method, and
[
S∧

J

]
v
∈ R3×3 is the vth diagonal matrix in S∧

j
. In

this paper, according to the data-driven approach in the previous step, the seven BAs were
determined as ROIs before conducting the sLORETA analysis. We used the P stimulation
trials from two groups of subjects as the input data for sLORETA analysis to estimate the
current source density and, in turn, determine the cortex source signal in individual ROIs.

2.6. Partial Mutual Information

In order to solve the problem of pseudo-connected edges caused by the MI method,
Frenzel introduced a new concept of partial independence and proposed a new mea-
surement method, partial mutual information (PMI), to measure the non-linear direct
correlation between two sequences. Consider two random variables: X and Y. If X and Y
are independent random variables under the condition Z and the correlation between X
and Y is zero, then it can be shown that:

p(x|z)p(y|z) = p(x, y|z) (5)

The partial independence of random variables X and Y under the given condition Z is
defined as:

p ∗ (x|z)p ∗ (y|z) = p(x, y|z) (6)

where p ∗ (x|z) and p ∗ (y|z) are defined as:

p ∗ (x|z) = ∑
y

p(x|z, y)p(y) (7)

p ∗ (y|z) = ∑
x

p(y|z, x)p(x) (8)

According to the partial independence formula and Kullback–Leibler Divergence, PMI
is defined as:

PMI(X, Y|Z) = ∑
x,y,z

p(x, y, z) log p(x,y|z)
p∗(x|z)p∗(y|z)

PMI(X, Y, Z) ≥ 0
(9)

This formula expresses the direct correlation between signal variables X and Y. The
larger the value, the stronger the correlation between the two. The PMI value is zero when
X and Y are partially independent. When applied to the construction of the functional
connection network of the brain regions, X and Y represent the neuroelectric signals of
the two brain regions and the PMI directly reflects the intensity of the information flow
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between the two brain regions. In this study, X and Y represent the selected ROIs used to
compute the PMI values, while Z represents the set of other ROIs that were not chosen.

Based on the source data of the above two types of subjects, the PMI value between
each ROI was calculated, and finally 630 PMI matrices (7 × 7) were generated. In this way,
a brain network with ROI as the node and partial mutual information as the connecting
edge was constructed. This work is focused on the analysis of the difference between each
activated brain area when lying compared to the same brain area in the innocent group,
which also provides the basic work for the next step of feature extraction.

2.7. Feature Extraction and Classification

The t-test was used to perform statistical analysis on the network connection edges of
the two groups. Edges with significant differences were selected as classification features.
To distinguish the features, the three-layer fully connected network (FCN) was designed
as the classifier. FCN includes an input layer, an output layer, and multiple hidden layers
connecting the input layer and the output layer. Here, the number of hidden layers is 1.
K-fold cross-validation is used to evaluate the model. The data set was separated into k
subsets, with k-1 subsets serving as the training set and the remaining k subset serving as
the test set. The technique was performed k times to calculate the accuracy for each test
set. The accuracy of our model was evaluated using a statistical 6-fold cross-validation
technique in this work.

In previous research on lie detection using EEG, researchers have utilized the method
of phase synchronization to develop a lie detection system. This involves applying func-
tional connectivity indicators such as Phase Locking Value (PLV) and Phase Lag Index (PLI)
to construct a feature vector. This feature vector is then sent to a machine-learning model
for classification, which is used to build a polygraph system. At the same time, the Phase
Lag Index (PLI) and Phase Locking Value (PLV) were used for comparative analysis.

3. Results
3.1. ROI Result

By applying independent component analysis and K-means clustering to the EEG data
of the lying group, we were able to map the Talairach coordinates of each cluster’s centroids
to specific regions of the cerebral cortex. During the GKT task, we identified several brain
areas of the lying group that were consistently activated, including the aPFC (BA10R), dACC
(BA32R), IFG (BA44R), Broca’s area (BA45R), FG (BA37R), IT (BA20L), and DLPFC (BA9R). A
total of seven Brodmann areas were identified as regions of interest (ROI). The results of the
clustering and corresponding brain area information are presented in Table 1.

Table 1. The size of the clusters and their corresponding brain regions and Talairach coordinates.

Component
Clusters Brain Regions

Talairach Coordinates
Cluster Size

x y z

1 Anterior prefrontal cortex
(BA10R) 8 59 −11 18

2
Dorsal anterior cingulate

cortex
(BA32R)

4 −2 37 17

3 Inferior frontal gyrus
(BA44R) 43 4 9 28

4 Broca-Triang
(BA45R) −56 17 2 28

5 Fusiform gyrus
(BA37R) 62 −50 8 26

6 Inferior temporal gyrus
(BA20L) −58 −28 −17 33

7 Dorsolateral prefrontal cortex
(BA9R) 21 45 34 25
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3.2. Functional Connection Matrix and Statistical Analysis

The PMI adjacency matrix was built using the source signal. Figure 3 depicts the
entire average PMI matrix of the lying and innocent groups. Each group received a total
of 315 samples. The data were standardized and then graphed to visualize them clearly.
It can be clearly observed that there are differences in some values of the two sets of PMI
matrix values. The average PMI of the lying group is higher than that of the innocent
group on some specific connection edges. The t-test were carried out separately for the
PMI adjacency matrix’s off-diagonal elements. The two data sets have been tested for
normality and homogeneity of variances before the t-test, and met the normal distribution
and homogeneity of variance. The difference was considered significant at p < 0.05. Figure 4
shows the six PMI connection pairs with significant differences after the one-sided t-test
(lying > innocent), and the corresponding probability density function, mean ± SD. For
visualization purposes, only partial scatter points are plotted and the distribution of scatter
points that have been plotted is consistent with the corresponding probability density
distribution.

Figure 3. (A) The average PMI adjacency matrix of the lying group. (B) The average PMI adjacency
matrix of the innocent group. The diagonal is conventionally set to 0 for all nodes. Only the lower
half of the adjacency matrix is shown, which is due to PMI’s symmetry.

3.3. Functional Connection Network Analysis

Considering the statistical results of connection edges, the topography of the PMI
matrix for the innocent group (Figure 5A) and the lying group (Figure 5B) are shown
below, respectively. For better visualization, only connection edges with PMI values greater
than 0.4 have been drawn. Concerning the topography shown in Figure 5, the blue nodes
represent the center points of each brain region obtained by the K-means algorithm, and the
connection lines of different colors and thickness represent the connection strength of each
brain area, which means the intensity of information exchange. Specifically, compared to
the lying group, the distribution of strong connectivity values between ROIs in the innocent
group is more sparse. The innocent group had six edges, and the lying group had ten
edges. Moreover, in the lying group, there was a greater degree of information transfer
between the left and right hemispheres of the brain. This was demonstrated by a higher
distribution of functional connection values between hemispheres, including connections
such as 20L-44R and 45L-44R, among others. In addition, Figure 5B depicts the topography
of the difference matrix for comparison. Only connection edges with significant differences
have been drawn. There are three functional connections from the frontal region to the
frontal region (10R-44R, 45L-9R, 45L-44R), and three functional connections from the frontal
region to the central region (45l-20L,9R-20L,44R-20L).
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Figure 4. Six PMI connection pairs with significant differences between the lying and honest groups.
A violin plot is utilized to depict the probability density distribution of PMI values for each connection
pair among the two groups of subjects. Black dots and error bars indicate the means ± SD in each
group, whereas colored dots indicate trial-level estimates (n = 100/315 trial). p values are indicated
by stars: * p < 0.05, ** p < 0.01, and *** p < 0.001.

3.4. Classification Results

The six PMI connection edges with significant differences were used as features
and sent to the FCN classifier for classification by six-fold cross-validation. We ended
up with an average test accuracy of 88.5%. Based on the experimental data, this paper
also used the phase-synchronization-based analytical methods PLI and PLV to calculate
functional connectivity. Before computation, we performed the same feature extraction
and classification process and compared it with the PMI classification accuracy results.
The above results, shown in Table 2, indicate that the PMI method achieved the best
performance and was extremely effective for differentiating lying from truth telling.

Figure 5. The topography of the PMI matrix results. (A) show the PMI topography in the innocent
group and lying group. (B) represents the difference topography between the innocent group and the
lying group (lying–innocent).
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Table 2. Classification accuracy under different connectivity metrics.

Connectivity Metrics
Classification Accuracy (%)

Sensitivity Specificity Balanced Accuracy

PLV 65.2 ± 4.61 72.1 ± 3.83 70.7 ± 4.37
PLI 79.0 ± 5.54 68.3 ± 4.23 74.3 ± 3.91
PMI 92.4 ± 2.52 81.5 ± 4.26 88.5 ± 3.66

4. Discussion

In this study, EEG signals were collected and carefully preprocessed using the GKT
paradigm. To analyze changes in the brain network during lying, the researchers employed
a data-driven approach to identify the cortex source and used sLORETA to set regions of
interest (ROIs). A PMI network was then constructed from the source signal and used as
a feature for classification. A feature extraction step was performed, and a lie detection
system was developed using a fully convolutional network (FCN) classifier. The results of
this analysis are presented in the following findings:

This study found that brain regions activated during lying are primarily located in the
frontal, parietal, and temporal lobes, as shown in Table 1, which are critical for the successful
execution of deception. Previous research has consistently identified the involvement of the
frontoparietal network in deception, and the medial temporal lobe (MTL) has been found to
contribute to both working memory and long-term memory encoding [45]. The activation of
the dorsolateral frontal cortex (DLPFC, including BA9) has also been commonly reported in
deception studies [46–48] due to its roles in higher-level cognitive control, decision making,
memory [49], and motor control [50]. The DLPFC has been shown to play a significant
role in inhibiting honest responses and generating dishonest responses [51]. The parietal
cortex has been linked to retrieving episodic memories [13], connecting new information
with prior knowledge [15], and a range of integrated functions including episodic memory
retrieval [52–54]. The precuneus, a part of the parietal cortex, has also been found to be
involved in these processes [55].

The analysis presented in Figures 3–5 demonstrates that the intensity of information
exchange between certain brain regions is higher in the lying group compared to the honest
group, with the frontal and temporal lobes showing the most pronounced differences.
There is a strong functional connection strength between the visual ventral pathway of
the frontal lobe and the temporal lobe in the lying group (44R-20L, 45L-20L), which may
indicate that the observation of crime-related picture stimuli leads to an impaired episodic
memory of crime details and an increase in cognitive load. Previous research has suggested
that telling the truth requires less conscious control and cognitive resources than lying,
as the act of deception involves increased task complexity and cognitive demands such
as attention, memory, and inhibition [56]. Jung’s research suggests that individuals who
are guilty may require a higher cognitive load to respond to stimuli due to increased
attention and allocation of cognitive resources [57]. Other studies have found that enhanced
communication between the 44R and 45L brain regions is associated with an increased
working memory load during the act of lying [14,58]. The 44R region has been identified
as a key “hub” in connectivity networks, potentially reflecting brain activity related to
episodic memory and new information encoding [59]. The BA 9R/10R regions have been
linked to strategic processes in memory recall, recognition, and various executive functions,
and the BA44 region has been implicated in selective response suppression in go/no-go
tasks [60]. The communication between the frontal association area and the motor language
center (10R-44R, 9R-45L) observed in this study suggests that the lying group experiences a
higher cognitive load during the process of information processing, decision-making, and
judgment compared to the honest group.

In general, when people start to lie, they need to compete with and suppress honest re-
sponses in their brains. This process of competition and inhibition can cause liars to engage
in more thinking and information exchanges in response to stimuli, potentially leading to
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increased communication between various brain regions in liars. At the same time, because
liars must switch between the two responses of lying and honesty, and ensure consistency
and coherence in different expressions, maintaining this facade requires a higher cognitive
load and increased psychological pressure, which can result in increased activation of
certain brain areas that are associated with deception. Overall, understanding the neu-
ral mechanisms underlying lying can provide insights into the complex cognitive and
emotional processes involved in deception, and help us identify potential markers of de-
ception that can be used in various contexts, such as criminal investigations, psychological
assessments, and lie detection.

5. Conclusions

Although there have been many studies on EEG polygraph technology at home and
abroad, there are still many details of the cognitive process of lying that need to be explored.
Additionally, the relationship between brain activity and behavior is complex, and it is not
always possible to infer specific cognitive processes from changes in brain activity. In this
paper, on the basis of tracing the source of EEG signals, a cortical brain function network
was constructed through PMI and the synergistic effect of various brain regions in the
process of lying was studied. Detecting its direction loses causal information about the
flow of information. Therefore, in the later stage, we will further characterize the activity
of brain regions by constructing directional effect connections, so as to further study the
cognitive activity mechanisms in the process of lying.
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