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Abstract: As in-vehicle information systems (IVIS) grow increasingly complex, the demand for
innovative artificial intelligence-based interaction methods that enhance cybersecurity becomes
more crucial. In-air gestures offer a promising solution due to their intuitiveness and individual
uniqueness, potentially improving security in human–computer interactions. However, the impact of
in-air gestures on driver distraction during in-vehicle tasks and the scarcity of skeleton-based in-air
gesture recognition methods in IVIS remain largely unexplored. To address these challenges, we
developed a skeleton-based framework specifically tailored for IVIS that recognizes in-air gestures,
classifying them as static or dynamic. Our gesture model, tested on the large-scale AUTSL dataset,
demonstrates accuracy comparable to state-of-the-art methods and increased efficiency on mobile
devices. In comparative experiments between in-air gestures and touch interactions within a driving
simulation environment, we established an evaluation system to assess the driver’s attention level
during driving. Our findings indicate that in-air gestures provide a more efficient and less distracting
interaction solution for IVIS in multi-goal driving environments, significantly improving driving
performance by 65%. The proposed framework can serve as a valuable tool for designing future in-air
gesture-based interfaces for IVIS, contributing to enhanced cybersecurity.

Keywords: artificial intelligence technology; cyber security; interaction; gesture recognition; driving
simulator

1. Introduction

In recent years, the complexity of in-vehicle information systems (IVIS) has increased,
and cybersecurity in the interaction has become a hot topic [1]. The challenge in designing
such a system is to balance the need for a pleasant and personalized interface with the need
to ensure drivers’ security and reduce driver distraction [2,3].

The use of IVIS while driving creates a multi-goal environment, where the primary
objective is to drive safely while the secondary objective is to use the IVIS [2]. However,
if the driver’s cognitive resources are primarily occupied by the IVIS screen, it can pose
risks to personal security. Therefore, an effective IVIS should help users allocate cognitive
resources properly, address usage problems in a multi-goal environment, and ultimately
improve both driving safety and interaction security [1].

While touch, click, and other interaction methods are widely used on IVIS [3,4],
recent advancements in artificial intelligence technology have led to the emergence of
new interaction methods, such as voice input and in-air gesture recognition [5]. These
methods that use biometric information can greatly improve cybersecurity in interaction.
In particular, in-air gesture recognition allows drivers to perform customized gestures
within the recognition area of a sensor, such as a camera or a sensor, which can then provide
personalized feedback through the IVIS system [4]. As users do not need to look at the
screen when making gestures, we believe that in-air gesture recognition has the potential
to reduce driver distraction and improve driving safety compared to touch interactions.
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Additionally, here are some influencing factors for gesture recognition, which mainly
include the following aspects:

1. Lighting conditions: Gesture recognition systems are highly sensitive to lighting,
and strong light or shadows may interfere with gesture recognition [6].

2. Background noise: Noise or interfering objects in the background may also cause
disruptions to gesture recognition [7,8].

3. Camera position and viewing angle: The position and angle of the camera can affect
the visual features of gestures, thereby influencing the accuracy of gesture recogni-
tion [6,9].

4. Gesture diversity and variations: Different shapes and motions of gestures may lead
to changes in visual features, thus affecting the accuracy of gesture recognition [7].

5. Quality and diversity of datasets: The performance of gesture recognition systems
largely depends on the quality and diversity of training data. If the training dataset
is insufficient or not representative, the accuracy of gesture recognition may be af-
fected [7]. It is also mentioned that there are currently few effective datasets available
for training gesture recognition models, and even fewer datasets with accurate anno-
tations for hand actions [7,10].

However, at present, there is limited research on the recognition accuracy of gesture
recognition methods based on visual input (using only RGB images) in an in-vehicle envi-
ronment. Moreover, there is little research on whether such interaction methods can reduce
driver distraction during interactions with in-vehicle IVIS systems. Additionally, there is a
lack of research on classification methods suitable for use with the Mediapipe framework.

To address these gaps, our paper makes the following contributions:

• We develop an evaluation system to measure the level of driver distraction caused
by two different interaction methods: gesture and touch. Specifically, in the as-
sessment of the driver’s primary task, calculate the driving scores under different
interaction methods.

• We proposed a gesture recognition framework based on Mediapipe suitable for An-
droid mobile devices and tested it on the AUSTL dataset alongside two state-of-the-art
gesture recognition methods.

• We design a custom IVIS system interface and build a simulation environment to
mimic driving scenarios. At the same time, use user experiments to select the most
suitable gestures for the system’s gesture interaction.

By improving our understanding of the potential benefits of in-air gesture recognition
in the in-vehicle environment, this research can help inform the development of more
effective and safer IVIS interfaces for drivers.

2. Related Work

This section discusses three aspects related to this paper: the design of IVIS interaction
interfaces, the in-air gesture recognition methods, and factors causing driver distraction.

2.1. Design of IVIS Interaction Interfaces

As the number of IVIS functions increases, the design requirements for the interface
have become more challenging. The common method is to use user studies to ensure that
the interface is easy to use and welcomed by drivers, while also ensuring driving safety [1,2].
For an interface that uses in-air gestures, the design should ensure that all gestures are
commonly used and easy to operate for most people. Researchers have used user studies
to determine the most easy-to-use flip gestures in dual-screen mobile phones [11]. User
experiments are also used to determine the best design of interaction interfaces [1,4,12,13].

Additionally, when gesture interaction is impaired due to noise or environmental
interference, audiovisual speech recognition can be employed for interaction [14–16]. One
approach for sentence-based speech recognition in IVIS systems is discussed in [15]. Tests
on the famous LRW lip reading dataset have demonstrated that high-performance models
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for recognizing drivers’ lip movements can be obtained even when only using the video
modality for training. Moreover, a systematic study on improving word classification
accuracy has been conducted in another paper [14]. The authors found that temporal
masking (TM) is the most crucial enhancement method, followed by mix-up, and that
densely connected temporal convolutional networks (DC-TCN) are the best temporal mod-
els for isolated word lip reading. By combining these methods, the resulting classification
accuracy reaches 0.934. With further training, the recognition accuracy can be improved to
0.941. Lastly, multi-head visual-auditory memory (MVM) can address two challenges in
lip reading [16]. MVM consists of a multi-head key memory and a value memory, which
distinguishes homophones. It extracts audio representations solely from visual inputs,
thereby supplementing the lip reading model’s visual information. The final experimental
results validate the effectiveness of this method in differentiating homophones.

2.2. In-Air Gesture Recognition Methods

Firstly, with the growing interest in the field of gesture recognition and sign language
recognition, there are now many excellent datasets available for use. Based on their time
and composition, we summarize the commonly used datasets as Table 1.

Table 1. Collection of datasets.

Datasets Time Components

InterHand2.6M [17] 2020
2.6 million frames of hand keypoint an-
notations, including a total of 1068 hand
models.

AUTSL [18] 2020 A Turkish sign language dataset with 226
signs, comprising 38,336 videos.

WLASL [19] 2019
An American sign language dataset with
over 2000 gestures, containing around
47,000 videos.

ChaLearn Pose [20] 2013 An Italian gesture collection with informa-
tion on 20 gestures and other body parts.

LSA64 [21] 2016 An Argentine sign language collection with
64 gestures, containing 3200 videos.

MS-ASL [22] 2018 A collection of more than 25,000 real-life
American sign language videos.

Cambridge Hand Gesture datasets [23,24] 2007 A dataset with 9 gestures, containing 900
videos of both static and dynamic gestures.

Northwestern University Hand Gesture
datasets [23,25] 2009

A dataset with 10 gestures, containing
1050 videos under different background
conditions.

What is more, in-air gesture recognition methods can be hardware-based or image
processing-based [26,27]. Hardware-based devices, such as Leap Motion sensors and Mi-
crosoft Kinect sensors, capture more features than images, making them more resistant to
interference. However, the cost of these devices is high, making large-scale deployment
challenging. Image processing-based methods are more accessible and have lower im-
plementation costs. The most common method is to segment different parts of the palm
using color block marks or a skeleton-based approach, as demonstrated in Google’s Medi-
apipe framework [27–29]. Skeleton-based recognition methods have a higher recognition
accuracy and can be used with only an RGB camera, making them suitable for large-scale
deployment in life scenarios.

Meanwhile, with the development of LSTM and Attention mechanisms, some state-of-
the-art gesture recognition methods have also adopted these techniques. The LSTF+LSTM
recognition method consists of two main modules for gesture recognition [8]. Firstly,
the feature extraction module uses a 64-dimensional BiLSTM layer to obtain various hand
features. Secondly, the feature recognition and classification module inputs the STF features
extracted in the previous step into the Attention layer, followed by a 32-dimensional
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BiLSTM layer and an FCNN layer to output classification results. The final recognition
accuracy reached 0.9856. The SSTCN method for recognizing gesture skeleton features [7]
involves using a GCN to establish the whole-body keypoint SL-GCN module and obtain
the pose network for the entire body. The Skeleton Aware Multi-modal SLR framework is
then proposed to improve recognition accuracy in multi-modal settings (RGB and RGB-D).
The final recognition accuracy reached 0.9853. The issue of insufficiently large datasets
for gesture recognition has also been addressed [30]. The authors use a large-scale model
trained on general datasets and fine-tune it for specific downstream tasks. Using the
SAM-SLR framework and fine-tuning, the authors achieved a recognition accuracy of
0.9572 on the WLASL and AUTSL validation subsets. The Video Transformer Network
(VTN) is used for gesture recognition [31]. The authors use a transformer to recognize
gestures with only RGB input data. Deep CNNs are used for spatial information modeling,
while self-attention is employed for temporal information modeling. The final recognition
accuracy reached 0.9292.

In the gesture recognition methods used above, a common issue is the recovery of
corrupted image frames. There are several main approaches to image restoration currently
available. One approach involves the use of a novel rank minimization problem method,
referred to as the Rank Residual Constraint (RRC) model [32]. This method gradually
approximates the underlying low-rank matrix by minimizing the rank residual, and the
experimental results outperform many state-of-the-art schemes. Another approach involves
considering both internal and external non-local self-similarity (SNSS) priors simultane-
ously to provide complementary information [33]. Based on this, the authors propose
an alternating minimization method with an adaptive parameter adjustment strategy to
address the SNSS-based image restoration problem. The final experiments demonstrate
that the proposed SNSS produces superior results in terms of objective and quality mea-
surements compared to many popular or state-of-the-art methods. Lastly, there is a new
sparse representation model called Joint Block-Group-Based Sparse Representation (JPG-
SR) [34]. This model is based on the Alternating Direction Method of Multipliers (ADMM)
framework and utilizes an iterative algorithm.

2.3. Factors Causing Driver Distraction

Research on driver distraction in multi-goal environments focuses on various factors.
The effect of IVIS screen size on interaction efficiency and driver interference was studied
in [35], where subtasks had a significant effect on driving attention. The design of the
IVIS system should divide tasks into smaller ones to reduce the time drivers spend on the
interface during each operation, thus improving driving concentration. IVIS operation
during driving is a multi-goal environment, where the primary mission is to drive, and the
secondary mission is to use IVIS [36]. Research has also focused on how the auditory
interface affects drivers and how to improve it [35,37,38].

Comparative experiments have been conducted on the auditory and visual inter-
faces, where the former had less driver interference. However, the accuracy of speech
recognition in noisy environments, such as the sound of the engine during driving, is a
challenge. Moreover, the current speech recognition technology cannot cope with long text
instructions [35].

3. Methodology
3.1. In-Air Gesture Recognition Framework

Based on the related work, we decided to utilize a skeleton-based approach for in-air
gesture recognition. To achieve real-time acquisition of the palm skeleton, we utilized a
framework consisting of the BlazePalm Detector and HandLandmark Model, as described
in [27,29].

When a video stream is input for the first time or the palm appears in the input video
stream for the first time, the BlazePalm Detector model is called to determine the palm’s
position in the video frame. The framework then transmits the cut palm image to the
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Hand Landmark Model to determine the 21 key points of the palm in 3D coordinates. This
approach allows us to obtain the necessary key point information of the palm.

Next, we extract relevant features of the in-air gesture from the key point coordinates
to realize recognition and classification of the gesture. Based on their characteristics, we
classify in-air gestures into two types: static and dynamic. This is because dynamic gestures
and static gestures have three distinct features [8]: 1. preparatory gesture, 2. context-
independent gesture motion, and 3. retraction action. The preparatory gesture represents
the initial action state of the dynamic gesture, while the context-independent gesture
motion serves as the core feature that distinguishes each gesture from others. The retraction
action indicates the preparation for the next gesture. Moreover, the retraction action for
some dynamic gestures is very similar to the preparatory gesture, which causes difficulties
in recognizing dynamic gestures [9,10].

For static gestures, we rely on the finger extension of the palm and geometric informa-
tion to make judgments. We use Equation (1) to judge finger extension. To determine the
orientation of the palm, we divided it into four directions: up, down, left, and right. Using
key point 0 as the coordinate origin, we calculate the angle between the palm direction vec-
tor and the horizontal direction vector to determine the orientation of the palm. In Figure 1,
the vector from the origin pointing to the 18th coordinate point is used as the direction
vector of the palm. As shown in Figure 2, the orientation of the palm is determined based
on the rotation angle of the palm.{

(yi − yi+1)(yi+1 − yi+2)(yi+2 − yi+3) > 0
(xi − xi+1)(xi+1 − xi+2)(xi+2 − xi+3) > 0

(1)

Figure 1. Vectors and angles on the palm. The orientation of the palm is determined based on two
vectors and the rotation angle. V1 represents the direction vector of the palm, and V2 represents the
horizontal vector of the palm. α is the rotation angle of the palm.
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Figure 2. Determining the palm orientation. The contents marked with V1, V2, and α have the same
meaning as in Figure 1.

For dynamic gestures, the data recorded include not only the extension and geometric
information of the palm, but also the timing information of the action, which forms a time
series of key point coordinates.

To extract the start and end states of a dynamic gesture sequence, we can use the
static gesture recognition method for recognition. When the gesture recognition framework
recognizes that a gesture is the start state of a dynamic gesture, it automatically records the
sequence of gesture actions until the framework recognizes the end state of the dynamic
gesture. The system then stops the recording of gesture key points and starts the calculation.
Therefore, we can determine the type of dynamic gesture by collecting the key point series of
dynamic gestures, and then use related methods to calculate the similarity for classification.

We studied three common classification methods suitable for the MediaPipe frame-
work [18,23,24]: (1) the BP neural network approach, with the structure of the neural
network model shown in Table 2; (2) the LSTM network, with the structure of the LSTM
network model shown in Table 3; and (3) by calculating the distance between the sampling
sequence and the template sequence. The commonly used method for calculating the
time series distance is dynamic time warping (DTW). DTW finds the matching points
corresponding to each key point of the sampling sequence and the template sequence
through the dynamic programming algorithm, and then obtains the distance between the
two time series by accumulating the distance between these key points.

Table 2. Architecture of BP network.

Layers Input Output

Input Array 1 × 40
Hidden 1 × 40 1 × 24
Hidden 1 × 24 1 × 10
Output 1 × 10 1 × 2
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Table 3. Architecture of LSTM network.

Layers Input Output

Input Array 1 × 40
Reshape 1 × 40 (20, 2)

LSTM 1 × 20 1 × 20
Hidden 1 × 20 1 × 10
Output 1 × 10 1 × 4

To determine the appropriate classification method for the Mediapipe framework,
we first select small-scale datasets, such as the Cambridge [23] and the Northwestern
University Hand Gesture dataset [39] for testing. The recognition performance of different
classification methods is shown in Table 4.

Table 4. Comparison between three different classification methods.

Data Set BP LSTM DTW

Cambridge 92.37 ± 1.67% 90.33 ± 2.78% 89.33 ± 2.88%
Northwestern 80.13 ± 1.89% 80.25 ± 1.86% 81.23 ± 1.49%

Based on the results of testing with small-scale datasets, we found that the DTW
and BP neural network classification methods, combined with the MediaPipe framework,
achieve higher recognition accuracy. In related work, we introduced many state-of-the-art
recognition methods, among which SAM-SLR [7] and VTN-PF [31] achieve relatively high
recognition accuracy. To analyze the gap between the recognition method we proposed
based on the MediaPipe framework and the state-of-the-art methods, we validate using the
large-scale AUTSL dataset [18].

Considering that the core of the paper is to analyze the distraction of gesture recog-
nition methods on drivers, when selecting a gesture recognition method, in addition to
using recognition accuracy as a measurement, we also need to consider the performance of
the recognition method on resource-limited mobile devices. A recognition method, even
with high recognition accuracy, if it is too computationally complex or consumes too many
resources, may result in long recognition times or device lag and program crashes on mobile
devices. This would significantly affect the interaction between the driver and the IVIS
system in the in-car environment, distracting the driver’s attention when using gesture
interaction and affecting the effectiveness of the subsequent comparative experiments
conducted in the paper.

Therefore, we refer to the evaluation method for neural networks on edge devices
in [40], and while testing the accuracy of different recognition methods, we also pay
attention to the GPU occupancy rate of the recognition methods. The GPU occupancy
rate can be calculated through the Profiler in Android Studio. Finally, with recognition
accuracy as the horizontal axis and GPU occupancy rate as the vertical axis, the positions
of several different recognition methods on evaluation indicators are shown in the Figure 3
and Table 5.

Table 5. Testing results of different gesture recognition methods on the AUTSL dataset.

Recognition Method Accuracy GPU Occupancy Rate

SAM-SLR 97.31% 89%
VTN-PF 91.37% 83%

Mediapipe+CNN 92.68% 55%
Mediapipe+BP 88.37% 51%

Mediapipe+DTW 80.65% 49.5%
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Figure 3. AUTSL large-scale dataset test results on Android mobile devices. Each point in the figure
represents a recognition method. Coordinate values are percentages.

In the figure, we divide the area into four parts according to a GPU occupancy rate
of 70% and a recognition accuracy rate of 85%. The recognition methods in Zone IV are
the closest to the ideal situation, with relatively high recognition accuracy and low GPU
occupancy rates. In contrast, the recognition methods in Zones I and II are not suitable for
use in in-vehicle IVIS systems. These methods have high GPU occupancy rates (above 70%),
which can easily cause unnecessary device lag and crashes. We find that the recognition
accuracy of the two state-of-the-art methods being compared is very high, which may be
because both methods simultaneously recognize the movements of other body parts (such
as lips) in coordination with the hands during sign language. However, the Mediapipe
framework using CNN as a classifier also has a close recognition efficiency. In terms of
GPU occupancy rate, the two state-of-the-art methods consume too much GPU resources,
occupying nearly 30% more than the methods using the Mediapipe framework. One reason
for this result is that the Mediapipe framework optimizes data packet communication and
transmission for the Android system [27], while the two state-of-the-art methods currently
being compared do not have optimizations for mobile devices. Therefore, we choose the
Mediapipe framework in Zone IV.

Moreover, the test results using the AUTSL large-scale dataset are significantly differ-
ent from the previous test results using small-scale datasets. CNN’s classification perfor-
mance on large-scale datasets is significantly better than that of BP and DTW methods. This
is because the input data dimensions of BP and DTW classification methods are limited,
and the complexity of the calculations increases with the number of classifications. Espe-
cially as a traditional classification method, the recognition accuracy of the DTW method
heavily depends on the template sequence, and it has a low tolerance for input noise.

However, considering that in the following comparative experiments in the paper,
the number of gestures is limited and predetermined, we still refer to the test results of
the first small-scale dataset in choosing the classification method. In summary, taking into
account the recognition accuracy and resource occupancy of the recognition methods, we
choose the Mediapipe-based recognition framework and establish a gesture recognition
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framework represented by the results obtained in Table 4, which will serve as the gesture
recognition method for the IVIS system we will build next.

In conclusion, we have developed a skeleton-based method for classifying in-air
gestures and presented a comprehensive framework for the gesture recognition system,
as shown in Figure 4. Our framework combines the BlazePalm Detector and HandLand-
mark Model for real-time acquisition of palm skeleton, and the static and dynamic gesture
recognition methods for feature extraction and classification.

Figure 4. Gesture recognition framework. The Palm Detection module is only used when the first
frame of the input camera image and the first palm appears in the image frame.

3.2. User Study

Our research aims to identify the most appropriate gestures for in-vehicle interaction
and investigate whether the in-air gesture interaction method can minimize driver distrac-
tions compared to the traditional touch interaction method. To achieve this, we designed
a simulation environment that mimics the driving environment and conducted two user
studies. The following sections detail the process of creating the simulation environment
and conducting the user studies.

3.3. System Design
3.3.1. System Function

Before designing the system interaction interface, we conducted user research to
select commonly used driver operations in the IVIS system as task content. We collected
opinions from research participants with driving qualifications through group discussions
and questionnaires. The final set of functions that our IVIS system includes are shown in
Figure 5 and can be grouped into three main sections:

1. Music control: This section includes music playback, pausing, volume adjustment,
and song switching.

2. Map control: This section includes map movement, zooming, and positioning.
3. Call answering: This section includes answering and hanging up mobile phone calls.
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Figure 5. System function.

3.3.2. Interface Design

In [36], it is suggested that the touch interface designed for the driver must have eye-
catching functions. Since our system’s functions can be categorized into three main parts,
we opted to use a multi-level menu design for the touch interface. However, we found
that the incoming call control only has two functions, so including too many branches
in the menu could lead to operating errors and reduced efficiency. Thus, our final touch
interface design consists of three main interfaces: the main menu, music control interface,
and map control interface. In the main menu (refer to Figure 6), the menu bar options lead
to two secondary menus. In the music control interface (refer to Figure 7), we added a
module to display music and volume information. This shows the song information and
volume status that the system is currently playing. For the map control interface (refer to
Figure 8), we added a feature to display the current location on the map. The map and
location information services use the API interface provided by Gaode Maps. To enhance
the interface’s intuitiveness, we chose icons for each manipulation task that will appear
in a pop-up window when the system executes the task. The location of the pop-up is
illustrated in Figure 7.
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Figure 6. Main menu. The location of the Camera Image and Buttons is shown in the picture. Each
button adds a gesture photo and function name.

Figure 7. Music control interface. No. 1 indicates the detailed information and cover of the music
being played. No. 2 represents the volume display. No. 3 indicates the pop-up window when the
operation is completed. Currently displayed is the pop-up window for the completion of the Music
Pause task.
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Figure 8. Map control interface. No.1 represents the position displayed on the map.

To enable the driver to perform in-vehicle tasks without looking at the interface, we
designed an in-air gesture interaction interface that assumes the driver is familiar with
the gestures of various system operations, and the system’s gesture recognition accuracy
is high. However, during our research, we found that even if the driver is familiar with
our IVIS and the gestures, they still need to check the screen, especially to view the image
display of the smartphone’s front camera to ensure their gestures are recognized within the
camera’s recognition area. Therefore, we added the image display part of the front camera
to all three interfaces of the touch interface we designed previously.

To further reduce the system’s interference with the driver, we included a visual
feedback method that displays the task icon in a pop-up window upon completion of
the operation. Additionally, we incorporated acoustic feedback for each operation task
in the form of recorded prompts, which are played after the correct performance of the
operation task, to minimize the number of times the driver needs to look at the screen.
Acoustic feedback has been demonstrated to be an effective method in reducing the driver’s
distraction in previous work [41].

3.4. Experiment Design

In this section, we will describe the various variables that were set corresponding to
the environment in the two user studies. For the study focused on determining the most
suitable in-air gesture for system interaction, the variables included the position of the
gesture recognition camera and the gestures used in our IVIS. In the study comparing in-air
gesture and traditional touch interaction, the experimental variable was mainly the mode
of interaction. Therefore, in these two user studies, cameras were installed in the center
panel and the rear console for comparative experiments, and the interface was designed for
the two interaction methods.
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3.4.1. Experimental Environment Preparation
Participants

We recruited 20 participants for this study, all of whom were eligible drivers with an
average age of 23 and an average driving experience of 4 years. Among the participants, 4
were left-handed (20%) and 8 were female (40%). We also recruited an additional control
group of 4 participants (2 males and 2 females) to evaluate their driving performance in the
simulated environment.

Driving Simulation Environment

To simulate the driving environment, we constructed a driving simulation environ-
ment in the laboratory using hardware devices and displays [37,42]. Our driving simulator
included a steering wheel, gears, brakes, accelerator, and clutch. A 55-inch LCD screen was
used to display the simulated road environment (see Figure 9), which was obtained from a
driving simulator and featured an urban arterial road with less traffic and straight roads.
The speed was set to a constant 60 Km/h. We used a 6.5-inch Android smartphone as the
IVIS system in the simulated environment, placed on the right side of the steering wheel
and in front of the AT change lever to simulate the positions of the rear console and the
center panel in a car (see Figure 9).

Figure 9. Camera location. No. 1 represents the simulated center panel position in the simulation
environment; No. 2 represents the simulated rear console position in the simulation environment.

3.4.2. Experiment 1: Find the Most Appropriate Gesture
Experiment Design

In Experiment 1, we aimed to determine the most suitable gestures and camera posi-
tions for in-vehicle interaction, while also considering the potential influence of handedness
on interaction efficiency. Since the camera’s limited recognition range often requires the
driver to control the steering wheel with their left hand and make gestures with their
right hand, the dominant hand may affect interaction efficiency. We used a combination of
objective experimental data and subjective user feedback to address these issues.

Determination of gesture collection. One of the key tasks in Experiment 1 was
to identify the most appropriate in-air gestures for the driver to use. To be effective,
the selected gestures should be common in daily life and easy to execute within the limited
space of the car’s interior. By gathering input from our driver group and leveraging our
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personal experience, we identified a collection of 30 gestures that meet these requirements
and are well-suited for the IVIS system.

Camera positioning. Due to cost, car circuit design, and privacy concerns, cameras in
cars are typically installed on the center panel or rear console [12] (see Figure 9). Therefore,
this experiment will compare the interaction efficiency of these two positions to identify
the best camera positioning.

Interface design. Experiment 1 determined the most appropriate gesture for the
driver, so font and icon size were not a concern for the interface. Therefore, we designed
a new interface that solely displays the front camera view of the smartphone. When
the driver performs each gesture successfully, the program displays a pop-up window
and plays a sound. The app also records the time taken for each gesture from when
the experimenter issues the command until the test subject completes it, automatically
collecting experimental data.

Subjective evaluation. Since Experiment 1 is a user experiment, we collected subjec-
tive evaluations from each test subject for each gesture after the experiment. To effectively
measure subjective evaluations, we divided them into five levels ranging from dislike to
like, with each level further divided into 20 points, totaling 100 points. We designed these
evaluations in the form of questionnaires and asked test subjects to fill them out.

Procedure

We conducted a user experiment to determine the best gestures for our IVIS system.
The experiment was carried out in five steps:

1. The experimenter proposed a preliminary set of gestures based on driver suggestions
and personal experience.

2. The experimenter added all the gestures in the collection to the application designed
in the experiment preparation.

3. Each test subject was invited to complete experimental tasks on a driving simulator.
The tasks required the test subjects to make gestures corresponding to the number
given by the experimenter. However, prior to the experiment, each test subject under-
went a warm-up drive and familiarized themselves with the number corresponding
to each gesture and the action of the gesture. The application recorded the time taken
for each test subject to perform each gesture correctly during the experiment.

4. After completing the test, each test subject completed a questionnaire to indicate their
preference for different gestures.

5. The experimenters analyzed both objective and subjective indicators and selected the
gestures with the highest scores.

3.4.3. Experiment 2: Comparative Experiments
Experiment Design

In Experiment 2, in order to explore the influence of in-air gesture interaction and
traditional touch interaction on driver’s attention, we designed a comparative experiment.
In the comparative experiment, the previously designed visual interface and gesture
interface were used to complete the same operation tasks.

Updates to the gesture interface. In Experiment 2, we conducted a comparative study
to investigate the impact of in-air gesture interaction and traditional touch interaction on
driver attention. The study involved using the previously designed visual interface and
gesture interface to complete the same set of operation tasks.

Primary mission and indicators. In the multi-task scenario of driving a car, the pri-
mary mission is the driver’s focus on the driving situation. To measure the driver’s
concentration on driving, we use indicators that reflect primary task completion. These
indicators include driving penalty points for violations and metrics calculated by the simu-
lation software for the driving situation. Driving penalty points are assigned for various
violations, as shown in Table 6.
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The objective indicators for the driving situation include the Mean Deviation (MDEV)
of the lane change path and the Lane Change Initiation (LCI) detected by the simulation
software [43]. MDEV indicates the driver’s ability to maintain the vehicle on the desired
path and provides an objective measure of their perception, maneuvering quality, and lane-
keeping ability. LCI is a measure that instructs the driver to react to a sign and initiate a
lane change. By combining these evaluation indicators, we can evaluate driving violations
and safety.

Table 6. Penalty points for driving violations.

Violation Penalty

Speed violation −50
Below the speed limit −20

Car stalled −50
Pressure line −20

Crash −100
Changing lanes illegally −20

Below the speed limit −20

Secondary mission. The secondary mission in the multi-target scenario of driving a
car is to complete the driver’s tasks on the IVIS system. We evaluate the efficiency of the
interaction methods by measuring the time taken by the driver to complete an operation
task from receiving the experimenter’s instruction. A longer completion time indicates that
the current interaction method is less efficient, requiring more attention from the driver.

Subjective evaluation. In addition to the objective indicators, we also consider the
driver’s subjective evaluation of the gesture and touch interaction methods. We use
two evaluation criteria for the driver’s subjective evaluation. The first criterion is the
driver’s assessment of the workload of the interaction method, which we measure using
the NASA TLX stress load test [12,44]. The test assesses workload on a 21-point scale,
with higher scores indicating higher workload. We use the stress test questionnaire to
collect the driver’s subjective feelings about the attention required by the interaction
method. The second criterion is the driver’s preference for a certain interaction method.
We designed a questionnaire to evaluate the interface, in which the driver rates their
satisfaction on a 100-point scale divided into five levels, ranging from very dissatisfied
to very satisfied. We combined the driver’s stress load rating and preference to obtain a
subjective evaluation of the interaction modality.

Procedure

1. Incorporate the gesture set identified in Experiment 1 into the application to be used
in the experiment.

2. Warm-up driving: Prior to the actual experiment, participants must drive in the
simulation environment to familiarize themselves with the driving simulator, the soft-
ware’s simulated road conditions, and all system functions. They must also be able to
use touch and gestures to complete system tasks.

3. Participants begin the interface test, using both touch and gesture interaction methods
to manipulate all tasks in the IVIS system. The order in which each interaction method
is used is randomized, and a 15-minute break is required between experiments using
the two interaction methods to eliminate the potential influence of the interaction
method order on experimental results. To ensure driving safety, participants are
required to hold the steering wheel with their left hand and control the task with their
right hand when performing manipulation tasks.

4. Record the driving violations and task completion times for each participant during
the test.
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5. After completing the test, collect subjective evaluations from participants. Partici-
pants will complete a NASA TLX stress load test and a questionnaire on their interac-
tion preferences.

4. Result and Interpretation
4.1. Experiment 1
4.1.1. Camera Positioning

In Experiment 1, we evaluated the camera’s placement in two positions, namely
the center panel and the rear console. To select the optimal location for the camera, we
considered both objective data and subjective feedback from the drivers.

Based on the experiment results, we found that the average time for completing all
30 gestures, represented as ta, was 95.3 s when the camera was positioned in the rear
console, and 97.6 s when it was placed in the center panel. Additionally, 83% of drivers
preferred the rear console location, according to their responses in the Driver Gesture
Preference Questionnaire, represented as v. By combining these results, we calculated the
scores of the two positions using Equation (2).

Ultimately, the rear console placement scored 90, while the center panel location
scored 83. Therefore, we decided to position the camera in the rear console for the best
user experience.

score = 100 × (
ta − t̄a

σ2 × v) (2)

4.1.2. Selection of the Most Suitable Gesture

To select the most suitable gesture from the 30-gesture collection, we evaluated each
gesture based on both objective and subjective indicators. As we have determined the
camera positioning on the rear console in the previous step, we used the experimental data
of the camera on the rear console to screen the gestures.

First, we calculated the average completion time of each gesture by normalizing the
completion time data recorded in Experiment 1, represented as t. Then, we obtained the
average score of each gesture from the driver’s gesture preference questionnaire collected
in Experiment 1, represented as s. Finally, we assigned equal weights to the objective and
subjective indicators, and calculated the final score of each gesture using Equation (3).
The results are presented in Table 7.

gs = 100 × (0.5t + 0.5s) (3)

4.1.3. Effects of Handedness

As previously stated, 4 out of 20 test subjects in the experiment are left-handed, making
up 20% of the total sample. To investigate the effect of handedness on interaction efficiency,
we analyzed the experimental data of the left-handed subjects separately from the data of
the remaining 16 right-handed subjects. We used the Bonferroni test to compare the total
time for gesture completion and the time for completing the gestures with the dominant
hand for the two groups. The resulting probability value was p = 0.528, which exceeds
the confidence level of 0.05. This suggests that handedness has no significant effect on
interaction efficiency.
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Table 7. Final gestures for the system.

Gesture Function Score

Enter Music Control 98

Enter Map Control 98

Return 96

Play Music 95

Locate 94

Answer the Call 94

Pause Music 93

Drag Map 93

Previous Song 91

Next Song 90

Volume Change 85

Zoom Map 85

4.2. Experiment 2
4.2.1. Primary Mission

In Experiment 2, we measured the primary mission using three indicators: driving
penalty score, lane change path average deviation (MDEV), and lane change initiation
(LCI). To obtain the driving penalty points for each driver, we summed and calculated the
average of their penalties. The driving penalty points for the touch interaction method
were consistently higher than those for the gesture interaction method in all tasks, as shown
in Figure 10. The touch interaction method resulted in significantly higher driving penalty
points than the gesture interaction method for music switching, music playback pause,
and answering phone tasks, with only positioning and map zooming showing similar
penalty points for both methods. We performed an ANOVA test and obtained the follow-
ing results:
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F(Switch Music) = 9.67, p = 0.001
F(Volume Adjustment) = 4.65, p = 0.01
F(Play &Pause Music) = 6.76, p = 0.004
F (Locate) = 3.77, p = 0.02
F(Zoom Map) = 2.768, p = 0.074
F(Answer Call) = 6.53, p = 0.006

Figure 10. Driving penalty points. V stands for Visual Interface. G stands for Gesture Interface.

We used the Bonferroni test to establish a probability bound of 0.05, and found
a significant difference in driving penalties between the touch and gesture interaction
methods. The mean and standard deviation for all tasks are recorded in Table 8.

We also set up a control group of four drivers in the touch interaction mode, and the
average driving penalty score for the control group was 0.75. This indicates that the
difference in driving penalty score between the gesture interaction mode and normal
driving conditions is small, indicating that the gesture interaction in the air does not
significantly disturb the driver’s driving behavior.

To analyze the MDEV and LCI indicators, we used the Bonferroni test. The corre-
sponding data are shown in Tables 9 and 10. There were significant differences in the LCIs
corresponding to different interaction modes in the music switching, music playback pause,
and answering phone tasks. However, the differences in the MDEV metrics for these three
tasks were not significant enough. This may be related to the selected experimental road
conditions, which were mainly straight roads with fewer turning operations. Nevertheless,
the LCI indicator reflects the driver’s ability to respond to emergencies, which is critical for
safe driving.

We also calculated the degree of improvement of the gesture interaction method com-
pared with the touch interaction method. We used I to denote the degree of improvement,
which can be calculated using Equation (4). Here, DG and DT represent driving penalty
scores for in-air gestures and touch-based interactions, respectively. After calculations, we
found that the average improvement when using in-air gesture interaction is 65%. This
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demonstrates that employing in-air gestures as an interaction method can significantly
enhance driver performance in multi-goal scenarios, thereby increasing driver safety.

I =
DG − DT

DT
(4)

Table 8. Mean driving penalty points (M) and standard deviations (S.D.).

Interface MSS S.D.SS MVA S.D.VA MPM S.D.PM

V 15 7.13 55 3.58 18 6.57
G 9 3.04 53 1.32 10 2.53

Interface ML S.D.L MZM S.D.ZM MAC S.D.AC

V 15 3.8 47 3.67 18 5.22
G 14 1.13 44 1.07 9 0.62

V stands for Visual Interface. G stands for Gesture Interface.

Table 9. Mean MDEV (M) and standard deviations (S.D.).

Interface MSS S.D.SS MVA S.D.VA MPM S.D.PM

V 0.91 0.20 0.98 0.25 0.95 0.21
G 1.0 0.24 1.05 0.27 1.05 0.27

Interface ML S.D.L MZM S.D.ZM MAC S.D.AC

V 0.97 0.23 1.10 0.31 1.13 0.34
G 1.05 0.27 1.26 0.39 1.22 0.38

V stands for Visual Interface. G stands for Gesture Interface.

Table 10. Mean LCI (M) and standard deviations (S.D.).

Interface MSS S.D.SS MVA S.D.VA MPM S.D.PM

V −14.3 3.04 −14.1 3.45 −14.1 3.07
G −13.5 3.84 −12.8 4.15 −13.1 4.38

Interface ML S.D.L MZM S.D.ZM MAC S.D.AC

V −10.1 3.18 −10.5 4.41 −10.3 4.96
G −13.0 4.23 −8.27 6.22 −8.21 5.07

V stands for Visual Interface. G stands for Gesture Interface.

4.2.2. Secondary Mission

In Experiment 2, we used the task completion time as a measure of the driver’s
completion of the control task on the IVIS system. The task completion time was counted
from the time when the experimenter sent out an instruction to the time when the driver
completed the corresponding control task in an interactive way. The application’s prompt
sound and pop-up window were used to judge whether the driver completed the task.

The average completion time of all tasks in the two interaction modes is shown in
Figure 11. In most tasks, the completion time for the gesture interaction method was
slightly longer than that for the touch interaction method. The time required for using
the gesture interaction method was significantly longer than that for the touch interaction
method in the tasks of zooming and volume adjustment.

We used the Bonferroni test to obtain the significance of all manipulation tasks
as follows:

F(Song Switch) = 9.13, p = 0.002;
F(Volume Adjustment) = 7.95, p = 0.003;
F(Play &Pause Music) = 6.49, p = 0.004;
F (Locate) = 5.07, p = 0.03;
F(Zoom Map) = 4.39, p = 0.04;
F(Answer Call) = 9.86, p = 0.001.
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Although there is a difference in task completion time, the Bonferroni test did not yield
a significant difference between the task completion times of the two interaction modes.

The slightly longer task completion time observed in the in-air gesture interaction
method compared to touch interaction may be attributed to the imperfect recognition
accuracy of the in-air gesture interaction. Gesture recognition can also be affected by
lighting conditions and obstacles. As a result, drivers may need to repeat the gesture
multiple times to achieve the desired manipulation. Furthermore, the difference in task
completion time is more noticeable in tasks that involve subtle manipulations, such as map
positioning and volume adjustment, where the gesture interaction method may produce
larger errors, leading the driver to make repeated attempts.

Despite the differences in task completion time, the performance of the two interaction
modes in completing secondary missions is comparable. The observed differences are
minimal and do not significantly impact task completion time.

Figure 11. Task completion time. V stands for Visual Interface. G stands for Gesture Interface.

4.2.3. Subjective Evaluation

To evaluate the driver’s perception of the interaction modes, we collected data on their
workload and preference for each mode.

The results are presented in Figure 12, where we can see that the drivers rated the
in-air gesture interaction method more favorably than the touch interaction method in
terms of workload and preference.

To combine these two indicators, we normalized the data and calculated a percentile
score for each interaction mode. The score for the touch interaction method was 75, while
the score for the in-air gesture interaction method was 89. Therefore, according to the
drivers’ subjective evaluation, the in-air gesture interaction method is more preferred and
better evaluated than the touch interaction method.
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Figure 12. Subjective evaluations. V stands for Visual Interface. G stands for Gesture Interface. W
means workload. E means evaluation.

5. Discussion

In the two conducted experiments, we developed and implemented the IVIS system,
and evaluated the performance of the two interactive modes, touch and gesture.

5.1. Camera Positioning

In Experiment 1, we found that the time taken by the driver to make a gesture was
shorter when the camera was placed on the rear console. We attribute this to the camera’s
recognition range and our skeleton-based gesture recognition scheme. The camera captures
two-dimensional plane information, and when placed on the center panel, it recognizes
parallel vertical planes. On the other hand, when placed on the rear console, it recognizes
parallel horizontal planes, which aligns better with the driver’s natural hand orientation
in the car environment. Furthermore, our gesture recognition scheme calculates 2.5D
coordinates of the palm key points, where 0.5D refers to the vertical distance from the
camera. Since we use only an RGB camera and not additional sensors like in [45–47], we
cannot detect the depth of the palm. Placing the camera on the center panel thus hinders the
recognition of the palm’s horizontal movement, which makes correct gesture recognition
more challenging.

Therefore, we recommend placing the camera on the rear console for improved effi-
ciency of gesture interaction, considering the limitations of the camera’s recognition range
and the skeleton-based gesture recognition framework.

5.2. Determination of the Most Suitable Gesture

In Experiment 1, we screened the gestures based on the combination of completion
time and subjective evaluation. The scores of the last two gestures shown in Table 7 had a
large gap with the scores of the previous gestures, because they were dynamic gestures
that took longer to complete and were more susceptible to interference from light and
obstacles in the car. Our experimental statistics showed a negative correlation between
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gesture completion time and subjective evaluation score, indicating that more complex
gestures took longer to complete and received lower driver satisfaction ratings.

However, for tasks that require continuous control, dynamic gestures can improve
the success rate of the operation. For example, the last two dynamic gestures in Table 7
were used for volume adjustment and map zooming, which require continuous change.
If static gestures were used for these tasks, more operations would be required to complete
the task.

Therefore, we believe that using static gestures for most functions in the IVIS sys-
tem can ensure high interaction efficiency. For tasks that require continuous operation,
using dynamic gestures can improve the accuracy of the operation and ensure high
interaction efficiency.

5.3. Analysis of Interruption Caused by Gesture Interface
5.3.1. Primary Mission

In multi-target scenarios, the driver’s primary mission is to steer the vehicle. We
evaluated driving performance using three indicators: driving penalty points, MDEV,
and LCI. In Experiment 2, the difference in MDEV between the two interaction modes was
not significant, but for driving penalty points and LCI, there was a significant difference
between the two interaction modes when completing tasks, such as music switching,
music playback pause, and answering the phone. We believe that these tasks are relatively
simple and require fewer cognitive resources. Therefore, the in-air gesture interaction
allows drivers to quickly complete these tasks without looking at the screen and without
interfering with their driving performance, resulting in significant differences between
touch and in-air gesture interactions on the primary mission.

5.3.2. Secondary Mission

In multi-goal environments, the driver’s secondary mission is mainly to complete
in-vehicle tasks. We used task completion time for evaluation. In the analysis of the
results of the secondary mission in Experiment 2, we found that although the gesture
interaction method led to an increase in task completion time, this difference can be ignored.
The system needs a certain amount of processing time for recognition of in-air gestures,
but the processing time is acceptable and will not significantly increase the adjustment
times or complexity of driver operations, and therefore does not demand too much of the
driver’s attention.

5.3.3. Subjective Evaluation

In Experiment 2, we integrated the driver’s ratings of perceived workload and prefer-
ence for the two gesture interaction methods to obtain their subjective evaluation. In terms
of workload, the Mental Demands and Effort of the touch interaction method were signifi-
cantly higher than those of the gesture interaction method. We believe that this is because
when using the touch interface, drivers need to focus on the screen and determine the
position of the operation button while paying attention to the road conditions. This can
easily lead to increased psychological burden on the driver and make them more likely to
become fatigued [35,44], which can harm driving safety.

6. Conclusions

In this paper, we introduce our proposed skeleton-based in-air gesture recognition
framework and explore the application of in-air gesture interaction in the in-vehicle envi-
ronment. Our framework divides in-air gestures into two categories and employs different
methods to classify them. We conduct two experiments to study the performance of in-air
gestures compared to touch interaction, with the goal of identifying the gestures that are
most suitable for drivers and determining the optimal position for the camera.

Our gesture recognition model achieves an accuracy close to state-of-the-art and
is optimized for our IVIS system, reducing resource utilization during the recognition
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process. This enhancement in gesture recognition efficiency for our IVIS system minimizes
interference in subsequent experiments. We built a simulation environment and conducted
two user experiments, establishing an evaluation system that indicates a 65% improvement
in driver performance during in-car tasks when using gesture interaction compared to
traditional interaction methods. Moreover, drivers experience lower workload stress when
using gesture interactions.

In conclusion, our study confirms that in-air gesture interaction can improve the
driver’s driving performance and maintain the same interaction efficiency as touch inter-
action. We believe that the in-air gesture interaction method is well-suited for in-vehicle
multi-goal environments, and has the potential to enhance the driver’s experience and
promote driving safety.

In the future, we plan to build upon the current effective gesture recognition frame-
work in several ways. From a functional standpoint, we aim to increase the variety of
recognizable gestures the system can detect and even support user-defined gesture recogni-
tion. From a technical perspective, we plan to incorporate additional interaction methods,
such as lip reading and audio speech, as outlined in [8,15]. By using audio-speech recog-
nition technology, we aim to further enhance the interactivity of the IVIS system we
have designed.

Author Contributions: Conceptualization, C.C., G.S. and Y.W.; methodology, C.C., Y.X., H.D., W.Z.
and X.K.; software, C.C. and W.Z.; validation, W.Z.; formal analysis, C.C. and Y.W.; investigation,
C.C.; data curation, G.S.; writing—original draft preparation, C.C. and Y.W.; writing—review and
editing, G.S. and X.K.; funding acquisition, G.S. and X.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the Zhejiang Provincial Natural Science Foundation
under Grant LR21F020003, in part by the National Natural Science Foundation of China under Grant
62073295 and Grant 62072409, and in part by the “Pioneer” and “Leading Goose” R&D Program of
Zhejiang under Grant 2022C01050.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The author declare no conflict of interest.

References
1. Bilius, L.B.; Vatavu, R.D. A synopsis of input modalities for in-vehicle infotainment and consumption of interactive media.

In Proceedings of the ACM International Conference on Interactive Media Experiences, Barcelona, Spain, 17–19 June 2020;
pp. 195–199.

2. Ba h, K.M.; Jæger, M.G.; Skov, M.B.; Thomassen, N.G. You can touch, but you can’t look: Interacting with in-vehicle systems. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; pp. 1139–1148.

3. Oviedo-Trespalacios, O.; Nandavar, S.; Haworth, N. How do perceptions of risk and other psychological factors influence the use
of in-vehicle information systems (IVIS)? Transp. Res. Part F Traffic Psychol. Behav. 2019, 67, 113–122. [CrossRef]
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