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Abstract: The majority of object detection algorithms based on convolutional neural network are
focused on larger objects. In order to improve the accuracy and efficiency of small object detection,
a novel lightweight object detection algorithm with attention enhancement is proposed in this
paper. The network part of the proposed algorithm is based on a single-stage framework and takes
MobileNetV3-Large as a backbone. The representation of shallower scale features in the scale fusion
module is enhanced by introducing an additional injection path from the backbone and a detection
head specially responsible for detecting small objects is added. Instead of pooling operators, dilated
convolution with hierarchical aggregation is used to reduce the effect of background pixels on the
accuracy of small object locations. To improve the efficacy of merging, the spatial and channel
weights of scale features are modified adaptively. Last but not least, to improve the representation of
small objects in the training datasets, the Consistent Mixed Cropping method is also proposed. The
small labels of standard datasets are expanded with the self-collected samples for the training of the
algorithm network. According to the test results and visualization on the 64-Bit Extended (X86-64)
platform and embedded Advanced RISC Machine (ARM) platform, we find that the average accuracy
(mAP) of the proposed algorithm is 4.6% higher than YOLOv4 algorithm, which achieves better small
object detection performance than YOLOv4 algorithm, and the computational complexity is only 12%
of YOLOv4 algorithm.

Keywords: small object detection; attention mechanism; lightweight; embed inference test

1. Introduction

The detection of small objects has important implications for research and practical
applications. There will be modest obstacles on the airport runway’s road pavement, such
as cobblestones, screws, and nails. If these minute foreign objects on the runway can be
precisely detected, major accidents can be avoided. In the field of automatic driving, it is
vital that the vehicle’s vision sensor accurately detects small objects that could cause traffic
accidents. In the field of industrial automation, tiny defects (such as burrs and fractures)
visible on the surface of the material are detected using small object detection technology,
thereby preventing larger financial losses. Finding microscopic lesions in medical image
analysis is crucial for identifying early diseases and enhancing the effectiveness of therapy.
In conclusion, small target detection technology has a multitude of application possibilities,
application value, and significant implications for research across a wide spectrum of
disciplines [1–4].

Due to the small proportion of small objects within image pixels and the absence of
evident pixel characteristics, the detection of small objects remains a challenge in the field
of object detection. First, the outline of small objects in the image is not distinct, making it
challenging to train a neural network to differentiate between objects and backgrounds.
Second, in the actual world, small objects, such as pedestrians, vehicles, birds, etc., are
prone to congregate in the form of aggregations. Small objects of the same type are typically
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ignored by neural networks or confused with other objects, resulting in missed objects
or erroneous alarms. In addition, large objects in the datasets are typically designated
as positive samples, whereas the proportion of negative samples (small objects) is not
particularly high. The sample imbalance can readily hinder the ability of one single
threshold to differentiate between positive and negative samples, resulting in the loss of
small objects [4].

Since object detection is the starting point for more difficult tasks like semantic percep-
tion and object tracking, it is a major research area in the field of computer vision. In the
field of computer vision, there are two types of definitions for minuscule objects based on
the pixel size of the object in the image: relative scale and absolute scale definition. The
relative scale specification for small objects is the ratio of pixels covered by the object to the
total number of pixels in the image in the range of 0.08%∼0.58%. Objects with resolutions
smaller than 32 × 32 from the Microsoft Common Objects in Context [5] (MS-COCO)
datasets are the most prevalent example of absolute scale. In this paper, the definition of
absolute scale serves as the dividing line between minor objects.

Object detection algorithms based on deep learning typically consist of one or two
stages. The primary difference between the two was whether or not the location of objects
was inferred by a convolutional neural network branch operating alone. Region Convo-
lutional Neural Network [6](R-CNN) and its improved algorithms [7,8] are exemplary of
two-stage object detection techniques. This method generates a provisional prediction
of the object location by first constructing a suggestion box for the object using a region
proposal network. After modifying the boundary location of the region features derived by
clipping the suggestion box, the object category is regressed. Common one-stage algorithms
include You Only Look Once [9–11] (YOLO) and its derivative series, as well as Single
Shot MultiBox Detector [12,13] (SSD). The SSD employs the frame mechanism of Faster
Region Convolutional Neural Network (FasterRCNN) as a reference among them in order
to anticipate quickly and determine the object location with reasonable precision. After
SSD incorporates a multi-scale feature layer for object detection, the subsequent YOLO
derivative algorithm employs additional high-level properties of the backbone network to
improve the detection capability of small objects.

We propose a one-stage algorithm for the detection of small objects based on YOLOv4.
Through network structure and dataset augmentation, the proposed algorithm improves
the precision and efficiency of small object detection. First, in terms of the algorithm
network, we employ the MobileNetV3-Large [14] as the backbone and the depthwise
separable convolution and channel attention mechanisms to enhance the efficacy of feature
extraction. Due to the shallow features’ smaller receptive fields, small objects can be
detected more effectively. We have therefore increased the injection of shallow features
in the scale fusion module and the depth of the feature layer. At the end part of the scale
fusion module, a head for detecting small objects is also added. The spatial attention
mechanism is used to increase the shallow network’s tendency to fixate on objects and
to improve the efficiency of scale fusion. We use dilated convolution with hierarchical
aggregation to improve the spatial structure information of the feature layer and eliminate
the interference of background pixels on small objects.

In terms of datasets augmentation, in addition to introducing the Mixup [15] and
Mosaic [11] methods, we also proposed the Consistent Mixed Cropping (CMC) method to
improve the network’s ability to identify small objects and increase the diversity of small
labels. In addition, we have counted the distribution of sample labels in PASCAL VOC [16]
(PASCAL VOC represents Pattern Analysis, Statistical Modelling, and Computational
Learning Visual Object Classes. Subsequently referred to as VOC) datasets and discover
that the labels of a large object made up the majority in VOC datasets (small objects make
up 3.5%). Large objectives are straightforward to identify as positive samples [17]. In order
to reduce the disparity between positive and negative samples, we added self-collected
supplementary data to the training procedure to increase the number of small samples.
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The proposed algorithm is trained on 64-Bit Extended (x86-64) platform and evaluated
on embedded Advanced RISC Machine (ARM) platform. According to the test results,
the Mean Average Precision (mAP) of the proposed algorithm is 4.6% greater than that
of the original algorithm, YOLOv4. Among these, the Average Precision (AP) of the top
six categories with small objects has been improved. Then, we administer inference tests
using randomly selected test sets images. The visualization results reveal that the proposed
algorithm is still capable of accurate recognition despite the difficulty of judging dense
small object networks (the confidence level is close to 0.5). The algorithm has 76.4% fewer
multiplier accumulators and 32.5% fewer network parameters than YOLOv4, respectively.
It demonstrates that the proposed algorithm is less complex than the original algorithm.
The convolutional neural network of proposed algorithms, YOLOv4 and YOLOv4-tiny, are
then evaluated on the x86-64 and embedded ARM platform, respectively. The proposed
algorithm’s average frame rate is comparable to YOLOv4-tiny.

The contributions in this paper are listed as follows:

1. By introducing an attention mechanism, enriching shallow scale features, and boosting
context interaction, a novel lightweight small object detection algorithm based on
a one-stage framework is proposed, which improves the accuracy and efficiency of
small object detection;

2. We propose a new method for expanding the diversity of small samples in training
data in order to increase the network’s ability to learn from small samples. Simultane-
ously, we utilize self-collected sample data to increase the number of small identifiers
in the training data;

3. On the embedded ARM platform, the effectiveness of the proposed algorithm is evalu-
ated on Neural Compute Stick (NCS2), and it can serve as a reference for future work.

2. Related Work
2.1. Multi-Scale Semantic Fusion

Object detection was made easier with the use of multi-scale fusion [4,9–11,15]. Images
of various sizes were created by scaling the source image. Following that, feature maps
of various sizes were created based on images of those sizes. Scale-by-scale processing
and feature splicing were the last steps in processing the feature map. Features fusion
forces feature maps to consider both high-level semantics and shallow details. At the same
time, there was no tradeoff made in terms of expression capacity, speed, or resource usage.
Feature Pyramid Networks (FPN) [18] was a common multi-scale fusion model, as seen in
Figure 1. By stacking adjacent layer features, FPN improved the ability of feature maps
to express multi-scale semantic information. Inner Outside Net (ION) [19] separated ROI
(Region of Interest) from the feature map of various sizes and detected objects after fusing
features from multiple scales. Any size image could be processed using Spatial Pyramid
Pooling (SPP) [20], which used spatial pyramid pooling to fuse multi-scale information and
enhance object detection performance. In order to improve the ability to extract features,
the Atrus Spatial Pyramid Pooling (ASPP) [21] used in the DeepLabV3 algorithm swapped
out the three spatial pooling layers in the SPP for three dilated convolutions with different
expansion rates. By overcoming the conflict between picture resolution and receptive field,
ASPP enhanced object detection performance.
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Figure 1. The overview of FPN. The FPN architecture integrates both high-level semantics and
shallow details in the form of a feature graph pyramid.

2.2. Attention Mechanism

The network could achieve adaptive attention using the attention mechanism [22–24].
The emphasis of the network could change in accordance with the input image samples,
which enabled the neural network to identify useful patterns in challenging situations. By
dynamically altering the ‘relevant information’ of the input image, the attention mechanism
improves the deep neural network’s learning effectiveness. Convolutional Block Atten-
tion Module (CBAM [22], as shown in Figure 2), which combined the Spatial Attention
Module (SAM) and Channel Attention Module (CAM), was a common attention mech-
anism module. To increase the effectiveness of object recognition, the Efficient Channel
Attention (ECA) [23] module of the ECAnet employed the non-dimensional local attention
interaction technique and adaptive 1×1 convolution. The Split-Attention (SA) module
in Split-AttentionNetworks (ResNeSt) [25] divided the feature map into groups based
on the channel dimension and weights it based on the overall context. The aforemen-
tioned algorithms transformed the deep learning model into a particular pattern by adding
an attention strategy to the network, increasing the precision and effectiveness of object
recognition.

Figure 2. The overview of CAM and SAM. Whereas SAM focuses on spatial direction, CAM empha-
sizes the significance of channel direction.

2.3. Depthwise Separable Convolution and MobileNet

The main principle of deepwise separable convolution was to divide the conventional
convolution operation into depthwise and pointwise convolutions. Deep separable con-
volution had fewer parameters and lower operating costs than traditional convolution.
It also significantly reduced the number of network structure blocks and improves the
effect of feature extraction. The Inverted Residuals (IR, as depicted in Figure 3, a module
of MobilenetV2 [26] and the attention mechanism of Squeeze-and-Excitation Networks
(SENet) [24] channel were combined in MobilenetV3 [14]. To enhance the quality of the
representation produced by the network, SENet explicitly models the correlation between
network convolution feature channels. According to the relevance of each feature channel,
which was automatically determined through learning, relevant characteristics were then
promoted, while features that are not pertinent to the work at hand are suppressed [24].
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Figure 3. The overview of IR block. IR block implemented deepwise separable convolution and
drew on the idea of the SENetalgorithm. DeepWise S-Conv represents a deepwise separable convolu-
tion block.

3. Proposed Algorithm

Figure 4 illustrates the division of our algorithm into the training and prediction
operations. In order to increase the variety of samples in training datasets, we introduce
a series of data augmentation methods (including Mixup [15], Mosaic [11], and Random
Transformations (RT) of lighting and geometry) during the training phase. We also suggest
a data augmentation method Consistent Mixed Cropping, which uses the prior knowledge
of objects to strengthen the interaction between small sample labels and the background. In
order to remedy the imbalance between positive and negative samples, which is detrimental
to small object detection, we also increased the number of small labels in the sample image
by self-collected samples.

The anchor mechanism and single-level object detection framework YOLOv4 are used
as references by the algorithm network. Smaller receptive fields and higher resolution are
correlated with shallow features in the deep learning network, which is advantageous for
the detection of small objects. The shallow features also include a large number of parameter
correlations, which makes the network model relatively complex and slows down inference.
We make a trade-off between the proportion of shallow features and the speed of inference
to resolve this issue. We take MobileNetV3-Large, a compact and effective backbone
network. The decoding module’s task is to decode the characteristics produced by the
algorithm network’s detection head and apply Non-Maximum Suppression (NMS) [9–11]
to the prediction frame. We include a header for recognizing small objects in the decoding
module using the YOLOv4 approach as a model.

Figure 4. The pipeline of the proposed algorithm. The CMC represents Consistent Mixed Cropping.
NMS represents non-maximum suppression. The RT represents Random Transformation.

3.1. Overview of Algorithmic Convolutional Neural Network

Based on the one-stage framework, the algorithmic convolutional neural network is
shown in Figure 5. To enhance the capacity to detect small objects, we add a low-level
feature injection in the scale fusion part to improve the expression of shallow features in the
scale features. Additionally, a detection head made to look for small objects is also included.
Context-Enhanced Semantic Fusion (CESF) module and Attention-Enhanced Scale Fusion
(AESF) module are included in the neck portion. Blind coverage of small object features
may come from pooling deep semantic features. We also believe that keeping a wider
receiving field and more organized information about context features in the feature map
is helpful for lowering the noise floor around weak objects. As a result, we use hierarchical
aggregation instead of spatial pyramid pooling in the semantic context fusion section. In
the scale fusion part, we apply the attention enhancement mechanism at the spatial and
channel levels to the feature map of each scale. So that the network has the ability to
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adaptively adjust the weight for the small object response area and improve the recognition
accuracy of small objects.

Figure 5. The archiecture of proposed Algorithm CNN (in Figure 4). The primary contribution in this
paper is the section of the figure that is yellow and highlighted.

3.2. Efficient Context Enhanced Semantic Fusion

The SPP [20] module in the YOLOv4 algorithm used a pooling layer to distill feature
output, which might lead to the loss of fine-grained information, making semantic features
unable to fully express small objects. In order to solve this, we design the context semantic
fusion module Context Fusion Module (CFM) to replace the SPP network in the original
network, using the concept from reference [27]. In order to accomplish context semantic
fusion, CFM employs dilated convolutions with various expansion rates. This method
effectively mines spatial structure features by capturing more spatial location information
about the input feature layer while expanding its receptive field. The improved network
can better identify background pixels and improves the recognition ability of small objects.

The architecture of the CFM module is shown in Figure 6. For the input TB6 feature,
the channel is adjusted by convolution blocks, and then the receptive field is expanded by
three expansion convolutions with ratios of 1, 3, and 5. For the chessboard effect caused by
dilated convolution, we use Hierarchical Feature Fusion (HFF) [28] structure to suppress it
by hierarchical fusion. The expansion volume is then integrated into features DF1, DF3,
and DF5. The 3 × 3 convolution blocks are used to smooth the above features. The feature
maps of three levels are stacked by tensor splicing for fusion, and two convolution blocks
are used for feature concentration and channel adjustment to finally obtain the semantic
fusion feature TS0.

Figure 6. The archiecture of CFM.

3.3. Attention Enhanced Spatial Scales Fusion

The convolutional neural network contains less semantic information than the shallow
feature map, but the object location was still very accurate. The minute object features
progressively became unnoticeable despite the deep feature map’s semantic information
being relatively dense. Shallow features were commonly used for small object recognition,
which makes it necessary to incorporate the semantic information of deep features.

In order to boost semantic feature fusion’s effectiveness, we apply the spatial and
channel attention method [22] to the scale feature layer, on the basis of a multi-path
aggregation network, to enhance the recognition capability of small objects. We specifically
deepen the hierarchical structure of scale features by injecting a shallower feature map
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into the spatial scale fusion module. The effectiveness of the merging of shallow feature
maps and high-level semantic maps is simultaneously improved by the employment of the
attention mechanism. We proposed the Spatial Scale Attention Module (S2AM) to improve
the emphasis on shallow features and the capacity to recognize small objects by adaptively
adjusting the weight of space and channels in the process of scale fusion. Figure 7 displays
the entire spatial scale fusion module organization.

Figure 7. The layout of the AESF module.

The archiecture of Spatial Scale Attention Module is shown in Figure 8. The adaptive
guiding features are aggregated in key directions by the scale attention module in the
spatial scale fusion module, which cascades through the attention modules at the two levels
of space and channel. The global maximum pooling and the global average pooling are
executed, respectively, for the input feature Fi. Two × 1 convolutions are used to tweak
the resulting feature layer before sigmoid activation is used to create the channel attention
tensor. By aggregating with the feature layer Fi, the output feature layer Fmid is created.
The two output features are then tensor layered after Fmid is pooled globally to large
and globally to average along the spatial direction of each layer of channels. The spatial
attention tensor is obtained after the stacking features have been modified and turned
on by the channel, and the output feature Fo is obtained following the aggregation with
Fmid. In order to increase the effectiveness of fusion with underlying semantic features,
SAM modules have enhanced the features of each scale with spatial attention and channel
attention. After attention improvement, the feature picture is sampled using bilinear
interpolation and then combined with the top feature.

Figure 8. The archiecture of S2AM.

3.4. Data Augmentation

We introduce some effective data augmentation methods, such as Mixup [15], Mo-
saic [11], and random transformation, to increase the input datasets in order to increase
the learning effectiveness of the network. In order to improve training performance, the
network has to learn more features connected to samples. Figure 9 displays the sample case
after data augmentation. The amplified samples with category labels created after stacking
the first four samples using the Mixup method are shown in the figure’s first column.
The mixed image created by utilizing the Mosaic augmentation approach is displayed in
the second column. The sample produced after the affine transformation, illumination
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transformation, and scaling operation is represented by the third column. A popular data
augmentation technique in deep learning networks is Mixup. By proportionally combining
two pairs of sample data from the same category, it creates new samples. Another quick
and efficient form of data augmentation is Mosaic. To splice and synthesize a new sample,
it employs four genuine frames from different samples. Following normalization, it is the
same as learning four samples simultaneously while enhancing the variety of the sample
backdrop. To increase the diversity of the input samples, lighting, and geometric alteration
are also applied.

We also suggest the Consistent Mixed Cropping (CMC) method (Figure 9c) to increase
the effectiveness of learning minor goals. Consistent Mixed Cropping is inspired by
Mixup. But instead of haphazardly chopping and splicing samples, we attach the object
to its matching background in accordance with the object’s meaning. To enhance the
shape of small objects, we scale and geometrically transform the object once more. We
believe that using the incorrect hybrid splicing technique could cause misunderstanding
in online learning. For instance, finding small objects at sea has a much higher likelihood
than detecting a ship or a bird. These prior details will lower the likelihood of network
inference errors.

Figure 9. Visualization of multiple data augmentation methods. Mixup, Mosaic, and Consistent
Mixed Cropping are listed in each column from left to right represented by (a–c).

4. Experiments of Training

In this section, the model of the proposed algorithm convolutional neural network is
built and trained on a Linux server using PyTorch [29]. The training experiments are divided
into two sections. One component entails evaluating the performance enhancement of
the final model of the proposed algorithm for convolutional neural networks. The second
component is training for the ablation experiment, which will be used to evaluate the
contribution of the proposed enhanced modules CFM and S2AM.

4.1. Training Environment

Cuda11.8, Torch1.13.0, Cudnn8.6, and Python 3.10 are running on Intel i7-10700K at
Nvidia Geforce Rtx3090 hardware in the training environment for the proposed algorithm
neural networks. We use 10% of the datasets as the test sets during training and the
remaining serving as both the training sets and the verification sets. We employ the pre-
training weight of the backbone network to fine-tune the training process in an effort to
increase training efficiency. The model parameters are iterated using the Adaptive moment
estimation (Adam) [30] algorithm, and the learning rate is dynamically changed during
training using the cosine annealing approach. The model of algorithm convolutional neural
network has been trained for 200 epochs in total.

4.2. Training Datasets

VOC07+12 datasets [16] and self-built small object supplementary sample images are
used for training. The two datasets contain 21,925 images from 20 object categories. Among
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them, 21,505 images are from VOC2007 and VOC2012 datasets, and 420 images are from
self-built datasets. According to the label size of the object, we calculate the distribution of
small objects in each category in the VOC datasets part of the training data, as shown in
Figure 10a–d. The top six categories of small object labels in VOC datasets are person, car,
sheep, bottle, pottedplant and bird.

According to Figure 10a, we find that the percentage of small tags in the datasets is
generally low. Large objects are easy to be recognized as positive samples (samples with
a confidence level greater than 0.5) in the recognition process. The low number of small
labels would cause the ratio of positive samples to negative samples to be unbalanced,
which would cause the positive samples with a large intersection ratio to submerge small
objects in the process of non-maximum suppression [31]. In order to improve the imbalance
between positive and negative labels, we then collected 420 additional images containing
small objects. There are 8136 small object labels in total, including person (6316), car (1624),
boat (146), and bird (50). Among the supplementary small object labels, 4258 labels are
used in the sample image of the additional datasets by Consistent Mixed Cropping. In the
datasets finally used for training (Figure 10e), the number of small object labels in the top
six categories are car, person, sheep, boat, bird, bottle.

Figure 10. The distribution of the sample labels for VOC07+12. The number of small, medium, and
large object labels in VOC datasets for each category are displayed in (a–c). The percentage of small
object labels in each category is displayed in (d). The percentage of small object labels in training
datasets is displayed in (e).

4.3. Performance Evaluation

On the test sets, we evaluate the accuracy of the proposed algorithm and other clas-
sical target detection algorithms. The comparison accuracy results are shown in Table 1.
According to the results, the mAP of the proposed algorithm is 4.6% larger than the mAP of
the initial YOLOv4 framework. Compared to other single-level algorithms, the accuracy of
detection is enhanced. The detection accuracy is higher than SSD and FSSD algorithms by
13.0% and 8.5%, respectively. Compared to YOLOv3 [10], the proposed algorithm is 13.7%
higher. In addition, the accuracy is 14.0% (VGG16 [32]) and 6.7% (ResNet101 [33]) higher
than the two-stage detection method FasterR-CNN, and 19.0% higher than FastR-CNN.
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Table 1. The comparison results of mAP in the test sets.

Algorithm Backbone mAP (%)

FasterR-CNN [8] VGG16 [32] 76.5
FasterR-CNN [8] ResNet101 [33] 83.8
FastR-CNN [7] ResNet101 [33] 71.5

FSSD [13] VGG16 [32] 82.0
YOLOv3 [10] Darknet53 [10] 76.8
YOLOv4 [11] CSPDarknet53 [34] 85.9

SSD [12] VGG16 [32] 77.5
proposed MobilenetV3-Large [14] 90.5

We compare the performance of the proposed algorithm model and the YOLOv4
model in the first six training datasets categories with a significant proportion of small
objects (Table 2). The P50 and R50 in the table represent the predicted category accuracy and
recall at the threshold of 0.5 confidence. In the aforementioned categories, the detection
accuracy of the proposed algorithm has been enhanced. Each category’s average accuracy
increased by 4.1%, 4.8%, 3.9%, 5.1%, 1.2%, and 3.7%, respectively. In Figure 11, we visualize
the P-R curve of the proposed algorithm on the test sets. The P-R curve depicts the precision
and recall value at various confidence levels. The closer the P-R curve is to the upper right
corner, the better the performance of the algorithm. The area below the P-R curve represents
the average precision of the category (AP in Table 2). It can be seen from the figure that the
proposed algorithm has better performance in categories with a higher proportion of small
objects compared with YOLOv4.

Table 2. The top 6 categories in the test sets with the average accuracy of small objects.

Category Percentage
Proposed Algorithm YOLOv4

AP (%) P50 (%) R50 (%) AP (%) P50 (%) R50 (%)

car 32.5 92.69 95.55 80.40 88.57 94.51 75.77
person 29.1 92.13 93.83 77.67 87.34 93.82 73.25
sheep 17.9 90.35 87.93 82.93 86.44 86.67 70.73
boat 17.4 83.10 89.69 63.54 78.01 91.95 58.39
bird 10.8 88.61 95.29 76.78 87.36 91.43 75.83

bottle 10.6 81.49 90.10 66.54 77.77 93.33 59.92

The AP represents the average value of category; P50 represents the value of accuracy with the confidence level
at 0.5; R50 represents the value of recall with the confidence level at 0.5; Percentage represents the proportion of
small labels in corresponding categories.

We randomly pick nine images from the test sets that have the smallest object tags
for visualization in order to further validate the performance of the proposed algorithm
(Figure 12). The chosen sample images are typical image samples with a large number of
image samples or a high ratio of small objects to overall object labels. In order to visually
view the detection effect, the size of the object anchor in each sample image is counted and
marked on the right side of the image. We find that although the proposed algorithm makes
difficult judgments on some small objects (the confidence level was close to 0.5), the overall
judgment is accurate, and the proposed algorithm improves the detection performance of
small objects.
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Figure 11. The visualization of P-R curves. The blue curve represents the proposed algorithm and
the orange curve represents YOLOv4.

Figure 12. Visualization of small object detections. Each group’s right sub-image shows the left
image’s object box’s size dispersion. The threshold range of the small object box is represented by the
yellow area.

4.4. Ablation Experiment

To validate the contribution of the proposed algorithm module, we trained six distinct
models to compare their performance (Table 3). The results indicate that the CFM compo-
nent can enhance the model’s precision by 2.1% to 3.0%. The S2AM module can enhance
model precision by 0.6% to 4.3%. The proposed CMC method can increase the model’s
accuracy by 1.7% to 4.3%.
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Table 3. Performance evaluation of ablation experiments.

Method mAP (%)

MobileNetV3-Large + CFM 88.0 (2.1↑)
MobileNetV3-Large + S2AM 86.5 (0.6↑)
MobileNetV3-Large + CMC 87.6 (1.7↑)

MobileNetV3-Large + CFM+S2AM 88.9 (3.0↑)
MobileNetV3-Large + CFM+CMC 88.5 (2.6↑)

MobileNetV3-Large + S2AM+CMC 90.2 (4.3↑)

proposed algorithm 90.5

As shown from Figure 13, we can find the characteristics of the CFM module when
four different sets of input images are used to verify the effectiveness of CFM module
fusion semantics. Each set of images in the figure has three columns. The original input
image is in the first column, the feature map produced by the SPP module in the original
network in the second column, and the feature TS0 of the sampling CFM module for
context semantic fusion in the third column. The findings mentioned above show that the
CFM module further improves the object area’s response. It simultaneously increases the
distance between the object region and the background and reduces background noise
interference. The proposed CFM can increase the efficiency of small object detection when
compared to SPP.

Figure 13. The comparison of SPP output and CFM output using heatmaps. The left image in each
group represents the original sample, the middle image is the original frame’s SPP output, and the
right image is the CFM result. The object size in the photograph is indicated by the mark beneath it.

Figure 14 is the visualization of the network output following the addition of CFM and
S2AM. Typical small object samples are represented by the first column in the picture, the
enhancement algorithm results in the second column, and the original framework results
in the third column. The object size in both sample images is 24 × 35 and 23 × 40. As
compared to the second line, we find that the proposed module’s identification of dense
objects and detection of object stacking have both improved with the addition of CFM and
SAM modules. The influence range of the object area in the algorithm (middle figure) in
this work has been significantly increased, as can be observed from the third and first lines.
The effectiveness of feature extraction has been increased, and small object identification
has performed better because of the enhancement module.
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Figure 14. The comparison of the heat maps of CFM and S2AM with and without. The left image for
each line represents the original sample, the middle image displays the results of a heat map using a
few modules, and the right image does not.

5. Deployment Test and Discussion

In order to increase the precision and effectiveness of small object recognition, we
propose an attention-enhanced lightweight small object detection algorithm based on the
single-stage framework. In the training experiment section, the accuracy of the trained
model’s recognition of tiny objects is primarily evaluated. In light of the model’s accuracy
test results, the ablation experiment, and the visual small object prediction results, it is
evident that the proposed algorithm can enhance the accuracy of small object recognition.

In this section, we deploy the model on the x86-64 platform to evaluate the inference
efficiency of the proposed algorithm. As an extension test, we also deploy the model on
embedded ARM platform to evaluate the inference efficiency of the proposed algorithm.

5.1. Deployment Environment

The x86-64 platform hardware environment used in the deployment test is the lap-
top with Intel I7-8750H Central Processing Unit (CPU) and Nvidia Rtx1050Ti Graphics
Processing Unit (GPU). The embedded ARM platform(as shown in Figure 15) employs
Raspberry4B which has a 4-cores Cortex-A72 processor and the second generation of Neural
Network Stick (NCS2). The NCS2 is an artificial intelligence device that features a high-
performance, low-power AI processor. It is specifically designed for deep learning inference
and can be used to run neural networks on edge devices such as drones, smartphones,
and other compute nodes. The device is capable of running advanced models quickly and
efficiently, making it suitable for applications such as image classification, object detection,
face recognition, and more. Additionally, it provides an API for easy integration with
existing software solutions. We utilize OpenVINO [35] framework to create a deployment
environment for embedded platform that serves as a model. Simultaneously, the proposed
algorithm model is quantized and compressed in accordance with NCS2 usage require-
ments. To facilitate comparative testing, we select YOLOv4 and its lightweight model
YOLOv4-tiny as references. All of the reference models are from the Intel Open Model Zoo
depository [35].

Figure 15. The equipments overview of embedded ARM platform. The Raspberry4B with Cortex-A72
is in the red section, and the blue part is NCS2.
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5.2. Inference Efficiency

In the deployment tests, we gather a total of 50 sample images containing moderately
sized objects from the test sets in order to determine the time required for network inference.
According to the results in x86-64 platform in Table 4, we find that the average inference
time of the proposed algorithm network is 51.8% less than the original framework YOLOv4
and 12.3% more than YOLOv4-tiny. Using the Torchstat utility of Pytorch, we then analyzed
the computational complexity of algorithms and the quantity of the model parameters.
We find that the number of Multiply–Accumulate Operations (MAdds) in the proposed
algorithm’s model is 87.9% less than that of YOLOv4 and similar to YOLOv4-tiny (5.8%
higher than YOLOv4-tiny). The proposed algorithm model has 76% fewer parameters than
YOLOv4 and 1.6 times as many as YOLOv4-tiny. The proposed algorithm model has an
average single frame inference time of 29.2 ms, which is 51.8% less than YOLOv4 and 12.3%
more than YOLOv4-tiny. The comparison between computational complexity and average
frame rate demonstrates that the proposed algorithm has superior inference efficiency.

Table 4. The comparison of inference performance on x86-64 platform.

Algorithm Params (M) GMAdds GFLOPs Runtime (ms) FPS

YOLOv4 64.5 59.8 29.9 60.6 16.5
YOLOv4-tiny 5.9 6.8 3.4 26.0 38.4

proposed 15.4 7.2 3.6 29.2 34.2

The Params in the table represents the parameter quantity of the network in millions (1e6); The GMAdds represent
giga(1e9) multiply-adds operations; The GFLOPs represents billion(1e9) floating-point operations; The Runtime
represent the inference time which counted includes forward time and post-processing time; The FPS represents
the number of image frames inferenced by the network per second. The inference time count includes forward
time and post-processing time.

In order to evaluate the inference efficacy of the model on the embedded ARM plat-
form, we quantified and compressed the model of the proposed algorithm into FP16 format
according to the hardware requirements of NCS2. In addition, the inference efficacy of
the model on the GPU and CPU hardware has also been tested using the OpenVINO
framework as a point of comparison. The test results are shown in Table 5.

Comparing the FPS data in Tables 4 and 5, the quantized algorithm model inference
using VPU on the embedded ARM platform is 80.9% lower than that of using CPU on the
x86-64 platform. By contrasting the FPS results of the standard YOLOv4 and YOLOv4-
tiny models, we find a similar result. The FPS of the YOLOv4 and YOLOv4-tiny models
decreased by 96.9% and 85.4%, respectively, under the same comparison conditions. The
inference performance of the proposed algorithm model using the OpenVINO framework
is inferior to that of the Pytorch framework, and the model acceleration effect of NCS2
is insignificant. Subsequently, we meticulously analyzed the time consumption of each
component of Latency. Based on the qualitative analysis of the Latency results in Table 5,
we discover that the three models in the comparative test consumed the most time during
forward propagation of the network under various hardware environments. In three
hardware environments, the inference time of the proposed algorithm is comparable to the
YOLOv4-tiny model provided by the Open Model Zoo of Intel. The inference time of the
proposed algorithm model and lightweight model utilizing VPU for inference on the ARM
platform is 91.7% and 91.2% less than that of YOLOv4, respectively.

Based on previous analysis and test data in Table 5, we discovered that, for the same
model in the OpenVINO framework, the inference performance of NCS2 is typically slower
than that of CPU and GPU. The inference acceleration impact of VPU on neural network
models is not immediately apparent. We investigate the possibility that FP16-formatted
model data of NCS2 is irreconcilable with the 64-bit instruction set in the embedded ARM
environment. Next, we will attempt to replace the 32-bit instruction set and investigate the
effect of multiple NCS2s accelerating simultaneously. Additionally, the lightweight model



Electronics 2023, 12, 1607 15 of 17

provides more performance benefits on embedded ARM platform. The visualization of the
embedded ARM deployment experiments are as shown in Figure 16.

Table 5. The results of inference test based on OpenVINO.

Algorithm
Inference Latency (ms)

FPS
Engine Decoding Preprocessing Inference Postprocessing Rending

YOLOv4
VPU 8.8 5.2 1778.9 104.5 0.6 0.5
CPU 4.8 1.3 554.5 12.5 0.1 1.8
GPU 2.7 1.6 257.6 14.6 0.2 3.6

YOLOv4-tiny
VPU 5.6 5.6 155.6 17.1 <0.1 5.6
CPU 2.8 1.1 44.9 1.9 <0.1 20.7
GPU 2.7 1.3 17.4 1.5 <0.1 20.3

proposed *
VPU / / 146.1 / / 6.5
CPU / / 21.3 / / 28.5
GPU / / 35.8 / / 18.5

VPU represents using NCS2; CPU represents using I7-8750H; GPU represents using Nvidia1050Ti. * quantization
model of the proposed algorithm.

Figure 16. Visualization of inference results in ARM based on OpenVINO.

6. Conclusions

In this paper, a novel attention-enhanced lightweight small object detection method
based on a one-stage framework is proposed. By introducing an attention mechanism, the
proposed algorithm enhances the efficacy of scale feature extraction and fusion, expanding
the receptive field of semantic features by expanding convolution, and introducing context
to suppress the interference of background on small objects. The proposed algorithm also
increases the proportion of small labels in the training datasets and enhances the detection
ability of small objects. The results of the deployment on the x86-64 platform indicate
that the mean average precision of the proposed algorithm is 4.6% greater than that of the
YOLOv4 method prior to its enhancement, and that it performs better in the recognition of
small targets. The deployment test results on the embedded ARM platform indicate that
the acceleration effect of the quantized model employing a single NCS2 is inferior to those
of the GPU and CPU, and that the proposed algorithm is nearly as quick as YOLOv4-tiny
at inference.
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ARM Advanced RISC Machine
CBAM Convolutional Block Attention Module
CFM Context Fusion Module
CMC Consistent Mixed Cropping
CESF Context Enhanced Semantic Fusion
NCS2 the second generation of Neural Network Stick
NMS Non-Maximum Suppression
S2AM Spatial Scale Attention Module
VPU Video Processing Unit
CPU Central Processing Unit
GPU Graphics Processing Unit
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