
Citation: Li, Y.; Hu, H.; Liu, W.;

Yang, X. An Optimal Active

Defensive Security Framework for

the Container-Based Cloud with

Deep Reinforcement Learning.

Electronics 2023, 12, 1598. https://

doi.org/10.3390/electronics12071598

Academic Editor: Andrei Kelarev

Received: 28 February 2023

Revised: 24 March 2023

Accepted: 25 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Optimal Active Defensive Security Framework for the
Container-Based Cloud with Deep Reinforcement Learning
Yuanbo Li 1,2,*, Hongchao Hu 1, Wenyan Liu 1,3 and Xiaohan Yang 1

1 National Digital Switching System Engineering and Technological Research Center, PLA Strategic Support
Force Information Engineering University, Zhengzhou 450002, China

2 School of Computer and Information Engineering, Luoyang Institute of Science and Technology,
Luoyang 471023, China

3 Purple Mountain Laboratories, Nanjing 211111, China
* Correspondence: 200900501775@lit.edu.cn

Abstract: Due to the complexity of attack scenarios in the container-based cloud environment and
the continuous changes in the state of microservices, the effectiveness of active defense strategies
decreases with the cloud environment and microservice change. To tackle it, the main focus is how to
establish a comprehensive threat model and adaptive active defense deployment strategy. In this
study, we present an optimal active defensive security framework (OADSF) for a container-based
cloud with deep reinforcement learning. Firstly, based on the characteristics of container clouds and
microservices, the security threats and attack paths of attackers are analyzed from the application layer
and container layer. Then, we propose a Holistic System Attack Graph to quantitatively analyze the
security gain, quality of service (QOS) and defense efficiency in the container-based cloud scenarios.
Finally, the optimization of a moving target defense (MTD) strategy is modeled as a Markov decision
process. Deep reinforcement learning is proposed to handle the state space explosion under large-
scale cloud applications, thus solving the optimal defense configuration strategy for the orchestration
platform. We use Kubernetes to build container-based clusters. The algorithm is implemented in
Python 3.7 based on Tensorflow 1.14. Simulation results show that the proposed method can quickly
converge under large-scale cloud applications and increase defensive efficiency. Compared with
DSEOM and SmartSCR, the defense efficiency is increased by 35.19% and 12.09%, respectively.

Keywords: microservice; OADSF; MTD; Markov decision process; deep reinforcement learning

1. Introduction

In recent years, container technology has been widely used in the cloud environment.
As a lightweight alternative to virtual machines in traditional cloud infrastructure, con-
tainers have shorter startup time and lower virtualization overhead [1]. The lightweight
features brought by container technology provide an ideal running environment for mi-
croservices. In the microservice architecture, applications are decoupled into a group of
independent microservices, which can help service providers simplify the service update
and scheduling process. At the same time, the microservice architecture has better modu-
larity, enabling application developers to take advantage of services from other providers.
Microservice applications in the container-based cloud environment can make full use
of the characteristics of cloud computing, such as elasticity, agility and resource pooling,
accelerate the development and iteration process of applications and improve the scalability
of applications [2,3].

Container technology and microservice architecture have changed the deployment
and operation mode of cloud applications, but have also brought new security threats. The
splitting of microservices makes the interactive interfaces grow explosively, which makes
it difficult to control the attack surface of microservices. For example, the widely used

Electronics 2023, 12, 1598. https://doi.org/10.3390/electronics12071598 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071598
https://doi.org/10.3390/electronics12071598
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12071598
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071598?type=check_update&version=1

Electronics 2023, 12, 1598 2 of 18

logging framework log4j in Spring Cloud has a remote code execution vulnerability (CVE-
2021-44228), which has a significant impact on various industries. Virtualization technology
enables multiple containers on the same host to share the operating system kernel, which
provides convenience for attackers to carry out lateral attacks in clusters [4]. For example,
the CVE-2019-5736 vulnerability can be used to attack the run module in the container to
achieve container escape. In traditional network security strategies, protection schemes
based on boundary deployment are mainly used, such as firewall and intrusion detection [5].
However, in the container-based cloud environment, the boundary of traditional application
software is gradually blurred, and it is difficult to determine the deployment location of
protective equipment. Therefore, the traditional protection model cannot fully cope with
the security threats in the container-based cloud environment [6].

Moving target defense is a typical active defense mechanism, which constantly changes
the attack surface of IT systems to increase the uncertainty and complexity of attacks [7].
MTD technology includes the dynamic execution environment [8], dynamic software imple-
mentation [9], dynamic network topology [10], etc. Although MTD technology effectively
increases the difficulty of attackers to penetrate the system, it brings new problems. On the
one hand, in the MTD defense mechanism, defense effectiveness is particularly prominent
because it highly depends on the state of defense target. If the defense strategy does not
match the assumed conditions, the active defense mechanism will not work well. On
the other hand, although MTD technology can improve the security of cloud services,
its impact on service performance cannot be ignored. For example, network-level MTD
technology will directly lead to the decline of web service quality and affect the commu-
nication between services [11], which may indirectly lead to the performance decline of
cloud services. Therefore, the research contents focus on how to optimize the use of active
defensive capability, and how to determine the appropriate MTD strategy to balance the
performance cost and effectiveness to further improve the efficiency of MTD technology.

In view of the above problems, more and more researchers have begun to study the
MTD security strategy for the container-based cloud. In this research, Bardas et al. [6]
proposed a platform based on cloud computing, which can capture service dependency
in the cloud environment and find the best strategy for service instance replacement to
maximize the difficulty of attack. Connell et al. [12] introduced a quantitative analysis
model to evaluate the resource availability and MTD performance. However, the above
MTD strategies were only considered to solve the optimal defense configuration in a static
environment. In order to optimize the active defense capability under the dynamic envi-
ronment, Jin et al. [13] proposes an MTD strategy based on dynamic security assessment
and configuration optimization for the container-based cloud. By dynamically evaluating
the critical nodes in the container-based cloud, the strategy can dynamically adjust the
protected target. Because the strategy only protects critical nodes, it is difficult to defend
against the attack scenario where attackers bypass critical nodes in the microservice ar-
chitecture. To solve this problem, Zhang et al. [14] proposed the SmartSCR framework to
realize the dynamic protection of nodes. However, these strategies only considered the
security after MTD deployment, and ignore how to quantify the security gain.

Based on the above analysis, the optimal defense efficiency of the container-based
cloud should consider both the comprehensive threat model of the target environment
and the adaptive active defense configuration. Unfortunately, the existing optimal active
defense security framework cannot solve both problems jointly. For threat models, existing
research mainly uses intranet attack graphs to illustrate attack behavior. For the deployment
of active defense strategies, existing research mainly focuses on dynamic deployment of
important nodes. The limitations of existing methods are as follows: (1) they describe
the risks and vulnerabilities of the intranet, while ignoring the specific threats and attack
difficulties brought by virtualization technology, and (2) existing methods do not address
the constant updating of threats in the container-based cloud. Therefore, we propose
an optimal active defensive security framework (OADSF) for a container-based cloud
with deep reinforcement learning to solve this problem. Deep reinforcement learning is

Electronics 2023, 12, 1598 3 of 18

a learning paradigm that solves the problem of maximizing rewards through learning
strategies during the interaction between agents and the environment.

The main contributions of this paper are summarized as follows.

(1) In order to comprehensively analyze the complex attack scenarios in microservices, a
Holistic System Attack Graph (HSAG) model is established, and the security gain and
defensive efficiency of MTD strategies are described based on the HSAG model.

(2) In order to optimize the defense efficiency, we propose an OADSF. It can dynamically
adjust defense configurations by sensing the changes in the microservice state.

(3) We propose an adaptive security configuration algorithm based on Prioritized Dueling
Double DQN (P3DQN). It can optimize the defense configuration in real time with the
state of the microservice application changes, thereby improving the defense efficiency
of the system.

The rest of this paper is presented as follows. Section 2 gives the related work. Section 3
introduces the threat model of microservice in container-based cloud. The problem and
related definitions are described in Section 4. Section 5 shows the details of OADSF.
Section 6 is the experimental section. Section 7 summarises of the work.

2. Related Work

According to the different defense objects and technology, we introduce the related
work from four aspects: container security, microservice security, active defense technology
and deep reinforcement learning.

2.1. Container Security

Container security has always been an important research field because container
technology has been widely used by mainstream cloud platforms. Belair et al. [15] reviewed
the research on using Linux kernel features to improve container security performance.
Lopes et al. [16] proposed an automatic generation mechanism for container configuration
to solve the complex configuration using the Linux process mechanism. Lin et al. [17]
analyzed 11 attacks that can realize container escape, and abstracted a general attack model
for container escape. Flora et al. [18] proposed a method of deploying the IDS system for
anomaly detection to model abnormal behavior of containers. Lim et al. [19] performed
an anomaly detection by collecting container logs. Considering that the short container
life cycle leads to fewer training samples, Lin et al. [20] proposed an anomaly detection
algorithm that does not rely on a large number of samples. Jin et al. [13] proposed a
dynamic defense strategy for key nodes to solve the high dynamics of a container-based
cloud that may introduce new security threats and lead to the failure of the defense strategy.
This strategy computes the critical nodes through betweenness centrality and only protects
the critical nodes.

2.2. Microservice Security

According to the problem that microservice splitting leads to the expansion of the
attack surface, encryption, authentication and access control mechanisms are widely used
in microservices. Almeida et al. [21,22] investigated microservice security and built a
security defense model. The paper divides microservice security into four levels: physical
environment security, cloud infrastructure security, network security and application layer
security. By comparison, Pereira et al. [23] found that most of the literature focuses on the
threat disposal of microservices, including the prevention and mitigation of attacks, but
there are few studies on the modeling and analysis of microservices. Xu et al. [24] imple-
mented an API gateway based on the project Kong. The gateway uses a web authentication
mechanism to authenticate the user’s identity and improve the security of the microservice.
Sankaran et al. [25] introduced a permission control mechanism suitable for serverless
workflow, and verified the effectiveness and performance in a real workflow scenario.
Torkura et al. [26] proposed the concept of security control based on the vulnerability to
solve the problem of insufficient security testing caused by frequent updates and iterations

Electronics 2023, 12, 1598 4 of 18

of microservices, and ensured the security of the microservice by integrating continuous
security assessment. Bardas et al. [6] proposed a dynamic cleaning strategy mechanism
based on the attack window model for microservice application systems. Their strategy
assumes that the dynamic cycle of all microservices is the same, which greatly reduces the
computation, and the dynamic cycle can be obtained through traversal.

2.3. Active Defense Technology

Ahmed et al. [27] designed a Byzantine fault-tolerant system of cloud computing
based on the idea of redundancy. The system makes use of the characteristics of virtualiza-
tion and multiple replicas to provide services, which makes sure the system can meet the
Byzantine fault-tolerant conditions. Li et al. [28] proposed a traffic distortion mechanism
using redundancy in the information physical systems. Yu et al. [29] introduced Mimic
Defense Technology in distributed storage architecture, and added data heterogeneous en-
coding and storage verification technology based on redundant data backup, which greatly
improved the security and availability. Wu et al. built a 5G core network with endogenous
security characteristics by using the mimic defense technology [30] and network functions
virtualization. By making use of the dynamic and redundancy of NFV technology, they
achieved the combination of mimic defense and a 5G core network, and effectively reduced
the costs caused by mimic defense. Wang et al. [31,32] introduced mimic defense into
the scientific workflow, and built a scientific workflow intrusion tolerance system. In this
system, the scientific workflow sub-tasks are distributed to multiple virtual machines to im-
prove the reliability. Then, the lag decision mechanism can effectively reduce the execution
time of the scientific workflow while ensuring the security of the intermediate data.

2.4. Deep Reinforcement Learning

The complexity and dynamics of network attacks require the adaptability and scalabil-
ity of protection mechanisms. The emergence of deep reinforcement learning has brought a
new perspective for network security. It has a strong ability to solve complex and dynamic
network defense, and is very promising in network security [33,34]. Xiao et al. [35] studied
attack models in edge cloud computing systems. In this paper, reinforcement learning
technology is used to provide a security solution for edge nodes to uninstall safely and
resist interference attacks. Lopez et al. [36] studied the application of deep reinforcement
learning in intrusion detection systems. The DRL algorithm can be used as a supervised
method to classify marked intrusion data. SmartFCT [37] takes advantage of DRL to gener-
ate optimal traffic integration policies while ensuring the completion time of streams. It
effectively reduces power consumption, but does not significantly reduce the QoS of the
network. Zhang et al. [14] depicts the attack difficulty with the attack graph model. They
propose the SmartSCR framework to realize the dynamic protection of microservices. The
framework is implemented based on the MTD dynamic cleaning strategy.

3. Threat Model

In the container cloud environment, the single application is divided into multiple
microservices and runs in the cloud computing cluster. Multiple microservices coordinate
and cooperate with each other to achieve specific functions through a call chain. For each
microservice, its running environment uses the lightweight virtualization technology to
realize the isolation requirements. At the same time, each microservice will adjust its
number of replicas to cope with its dynamic concurrent requests. However, splitting the
application into the microservice mode also leads to an explosive growth of the attack
surface. In Figure 1, we describe security threats from three aspects: attack targets, strategies
and capabilities.

Electronics 2023, 12, 1598 5 of 18

Electronics 2023, 12, x FOR PEER REVIEW 5 of 19

realize the isolation requirements. At the same time, each microservice will adjust its num-

ber of replicas to cope with its dynamic concurrent requests. However, splitting the appli-

cation into the microservice mode also leads to an explosive growth of the attack surface.

In Figure 1, we describe security threats from three aspects: attack targets, strategies and

capabilities.

Entry-Point

Container

C

Container

B
Container

A
Container

D

Computing

Nodes

Virtualization

Layer

Application

Layer Service B

Service A

Service D
Service C

Attacker

Figure 1. The architecture of a container-based cloud.

(1) Attack targets: In the container cloud environment, all microservices may become the

target of attackers. For the i service, its attack surface can be composed of an appli-

cation layer attack surface and a container layer attack surface, which can be ex-

pressed as  =i i iST S ,C . The application layer attack surface is composed of service

code and dependent libraries, and the container layer attack surface refers to the con-

tainer operation environment of the i service. As shown in Figure 1, the attack sur-

faces of microservices lies in the application layer and virtualization layer, respec-

tively. In addition, we assume that some vulnerabilities in these targets can be ex-

ploited by attackers.

(2) Attack strategies: We assume that attackers adopt the cyber killing chain (CKC)

model to carry out attacks. In this model, the attacker first performs various recon-

naissance actions to identify the target’s vulnerabilities. Then, the attacker selects an

appropriate vulnerability and prepares the corresponding network attack tool

against it. Next, attackers can use these tools to execute malicious code to compro-

mise the target.

(3) Attackers’ capabilities: We assume that the attacker is outside the cloud platform and

attacks the microservices through the Internet. In general, microservice applications

open specific service access portals. Therefore, attackers can attack only the applica-

tion layer attack surface, such as service A. When attackers successfully hijack service

A through the application layer vulnerability, attackers have the following two attack

modes to expand their foothold in the container-based cloud.

• Application layer: After escaping from the application layer, attackers continue to

search for network-reachable microservices and attack the application layer attack

surface. It is assumed that the network configuration in the container-based cloud is

subject to the network isolation policy on the management node [13]. Only when

there is a dependency relationship between microservices, the networks are reacha-

ble. As Figure 1 shows, after hijacking service A, attackers can continue to attack ser-

vices B and C.

• Virtualization layer: After escaping from the application layer, attackers can also at-

tack the container hosting them. If container escape is successful, attackers can escape

Figure 1. The architecture of a container-based cloud.

(1) Attack targets: In the container cloud environment, all microservices may become
the target of attackers. For the i service, its attack surface can be composed of an
application layer attack surface and a container layer attack surface, which can be
expressed as STi = {Si, Ci}.The application layer attack surface is composed of
service code and dependent libraries, and the container layer attack surface refers
to the container operation environment of the i service. As shown in Figure 1, the
attack surfaces of microservices lies in the application layer and virtualization layer,
respectively. In addition, we assume that some vulnerabilities in these targets can be
exploited by attackers.

(2) Attack strategies: We assume that attackers adopt the cyber killing chain (CKC) model
to carry out attacks. In this model, the attacker first performs various reconnaissance
actions to identify the target’s vulnerabilities. Then, the attacker selects an appropriate
vulnerability and prepares the corresponding network attack tool against it. Next,
attackers can use these tools to execute malicious code to compromise the target.

(3) Attackers’ capabilities: We assume that the attacker is outside the cloud platform and
attacks the microservices through the Internet. In general, microservice applications
open specific service access portals. Therefore, attackers can attack only the application
layer attack surface, such as service A. When attackers successfully hijack service A
through the application layer vulnerability, attackers have the following two attack
modes to expand their foothold in the container-based cloud.

• Application layer: After escaping from the application layer, attackers continue to
search for network-reachable microservices and attack the application layer attack
surface. It is assumed that the network configuration in the container-based cloud
is subject to the network isolation policy on the management node [13]. Only when
there is a dependency relationship between microservices, the networks are reachable.
As Figure 1 shows, after hijacking service A, attackers can continue to attack services
B and C.

• Virtualization layer: After escaping from the application layer, attackers can also attack
the container hosting them. If container escape is successful, attackers can escape from
the virtual environment to the worker node. Then, they can obtain the permission
of the worker node where the container directly hijacks the services running in the
container environment. As Figure 1 shows, attackers can directly enter container A
after hijacking service A. If attackers successfully escape from container A, they can
enter container D and hijack service D.

On the basis of the analysis, it can be seen that microservices and containers in the
container-based cloud lead to the explosive growth of attack paths, and security manage-
ment and control are very difficult. On the basis of MTD, we adopt the method of dynamic

Electronics 2023, 12, 1598 6 of 18

cleaning to actively defend against all microservices and increase the difficulty of attackers
to escape. However, this strategy will also affect QOS. In order to balance the security gain
and service performance and maximize the defense efficiency, it is necessary to dynamically
optimize the cleaning cycle of different microservices. The main difficulty is how to quanti-
tatively describe the security gain, the cost and defense efficiency under different cleaning
cycles. At the same time, an application may contain a large number of microservices, and
the state of microservices changes at any time, so the dynamic optimization method needs
to have strong dynamics and scalability.

4. Problem Modeling

In this section, firstly, according to the characteristics of microservice penetration, we
propose the HSAG model to describe the attacker’s diversified attack paths and the attack
difficulty of nodes. Then, based on the HSAG model, the security gain and QOS overhead
are defined. Finally, the configuration optimization is transformed into a Markov Decision
Process (MDP). MDP is a mathematical model of sequential decision, which is used to
simulate the stochastic strategies and rewards that agents can achieve.

4.1. HSAG Model

On the basis of the analysis of the attacker’s attack path in the cloud environment, we
define HSAG as follows.

Definition 1. HSAG is a directed graph G = (N, E), where N is a set of nodes in the graph,
including all attack surfaces of attackers (I) and microservices. Assuming that the application
consists of M microservices, then N = {I, S1, S2, . . . , SM, C1, C2, . . . , CM}·{S1, S2, . . . , SM}
represent the application layer attack surface and {C1, C2, . . . , CM} represent the virtualization
layer attack surface. E ⊆ N × N is the set of all edges in the graph, and each edge represents the
attacker’s attack path.

Definition 2. Given nodes Na, Nb ∈ N, a 6= b, Ei = (Na, Nb) indicate that attackers can use
the vulnerability of node Nb to expand its foothold to Nb , based on the hijacked node Na . We
define D(Ei) as the weight of edge Ei , and D(Ei) represents the difficulty of successfully attacking
node Nb .

In order to evaluate the difficulty of vulnerability exploitation, we first use the indica-
tors defined in the Common Vulnerability Scoring System (CVSS) to quantify the attack
difficulty of the target node. In the CVSS 3.1 specification, the defined metric consists
of three parts: base metric, temporal metric and environmental metric. In the CVSS 3.1
specification and literature [14], the exploiting difficulty ED in the node is also estimated
through Equation (1):

ED = (8.22× AV × AC× PR×UI)−1, (1)

where 8.22 is a constant value and AV, AC, PR and UI respectively represent the attack
vector, attack complexity, privilege requirement and user interaction. For the attack surface
of each node, there may be multiple exploitable vulnerabilities. However, due to the
unknown ability of the attacker, every vulnerability in the node may be attacked. To solve
this problem, we use temporary metrics to evaluate the weight w of each vulnerability being
attacked. Further, by the weighted average of the difficulty of vulnerability exploitation on
all nodes, the attack difficulty D(Ei) of the node can be expressed as Equation (2).

D(Ei) =

∑
v∈V

(w× ED)

∑
v∈V

w
(2)

Electronics 2023, 12, 1598 7 of 18

Here, V represents a set of all vulnerabilities of the node and w represents the weight
value of exploitable vulnerabilities.

After the dynamic cleaning strategy is deployed on the node, the attack process on the
node may be interrupted due to the change of the attack surface. This makes attackers need
to spend more money to compromise these nodes. In this case, the node attack difficulty
D′(Ei) can be expressed as Equation (3) after the MTD is deployed.

D′(Ei) =
Ts

Ti
× D(Ei) =

f (D(Ei))

Ti
× D(Ei) (3)

Here, Ts = f (D(Ei)) represents the maximum time required for the node to be
successfully attacked in a static environment, and function f (.) represents the mapping
of vulnerability exploitability from D(Ei) to Ts. Ti indicates the dynamic cleaning cycle of
the node, and Ts/Ti represents the cleaning times of nodes when dynamic cycle is Ti.We
assume that the attacker has to restart the attack process after each MTD implementation.
Therefore, the difficulty of the attacker is Ts/Ti times more than the original.

Definition 3. Assuming that the attacker is rational, when attacking the target node, he will choose
the easiest attack path to attack the target. Therefore, the shortest path from the attacker to the target
node in the HSAG model can be used to characterize the holistic attack difficulty of the target node.

Assuming that the target of the attacker is Na, the holistic attack difficulty of node Na
can be expressed as Equation (4).

AF(Na) = σ(I, Na) (4)

Here, I indicates the attacker outside the cloud, and he can access the service instance
at the entrance. σ(I, Na) indicates the shortest path between two nodes. After deploying
the MTD strategy, the total attack difficulty on this path is calculated by Equation (5).

AF′(Na) = σ′(I, Na) (5)

Here, σ′(I, Na) indicates the shortest path between two nodes after deploying the
MTD strategy. We use ∆S(I, Na) to calculate the security gain of node Na by deploying the
MTD strategy. The formula is shown in Equation (6).

∆S(I, Na) = AF′(Na)− AF(Na) = σ′(I, Na)− σ(I, Na) (6)

Based on the analysis, the security gain is related to two factors: (1) the weight of edge
D(Ei) ; (2) dynamic cleaning cycle Ti .

4.2. Problem Description

For the application S = {S1, S2, . . . , SM} with M microservices, it is assumed that
each microservice has its dynamic cleaning cycle, and the holistic security configuration
can be expressed as H = {T1, T2, . . . , TM}.When the number of microservices and the
worker nodes are determined, G = (N, E) can be generated based on the HSAG model.
Assumption PN = {N1, N2, . . . , Nw}, PN ⊂ N is a set of nodes that need to be protected
in the cloud environment. Since all service instances may be the targets of attackers, the
defender cannot perceive the target of attackers in advance. Therefore, we adopt the
average security gain of all services to evaluate the system security. The calculation formula
is shown in Equation (7).

S =
1

W ∑
Na∈PN

∆S(I, Na) (7)

Here, W represents the number of nodes that need to be protected. ∆S(I, Na) repre-
sents the security gain of node Na. It should be pointed out that the literature [13] also

Electronics 2023, 12, 1598 8 of 18

adopts the average idea to measure the system security when the attack target is unknown.
In order to improve the system security, it is obvious that the smaller the dynamic cleaning
cycle, the more difficult it is for attackers to complete the attack, and the higher the system
security is. However, the dynamic cleaning strategy also affects the QOS of applications.
Hence, we adopt dynamic cleaning times per unit time as the defense cost (DC). The
calculation formula is shown in Equation (8).

DC =
w

∑
i=1

1
Ti

(8)

Here, Ti indicates the dynamic cleaning cycle of the node. To optimize the system
defense configuration, we define defense efficiency DE as the ratio of system security
to defense cost. At the same time, we take DE as the optimization goal to optimize the
defense configuration, which can realize the key defense against the attack surface, and
the precise configuration of defense resources. The optimization problem can be expressed
as Equation (9).

maxDE = S
DC = 1

W

∑
Na∈PN

∆S(I,Na)

w
∑

i=1

1
Ti

s.t.Ti ∈ H, Tmin ≤ Ti ≤ Tmax ≤ Ts

(9)

Here, Tmax and Tmin represent the upper and lower limits of the dynamic cleaning
cycle, respectively.

The security configuration optimization in this paper can be transformed into an MDP
problem. It is represented by a 5-tuple M = 〈S, A, P, R, γ〉 [38]. Among them, S represents
a set of states, A represents a set of actions and P(St+1|St, a) represents the probability that
the agent performs the action a ∈ A to change state from St to St+1. R(St, a) is the reward
from performing action a in state St. γ ∈ [0, 1] is the discount factor, which controls the
compromise between future returns and current returns. The purpose of reinforcement
learning is to solve the strategy function π∗(a|St) , which maps from state St to action
a, so as to maximize the cumulative return value. The cumulative return value is given
by the Behrman equation, which has two forms: state value function and state-action
value function, which are equivalent to each other. The calculation formula is shown in
Equations (10) and (11).

νπ∗(St) = Eπ∗

[
∞

∑
k=0

γkRt+k+1|St = s

]
(10)

qπ∗(St, a) = Eπ∗

[
∞

∑
k=0

γkRt+k+1|St = s, A = a

]
(11)

In this paper, we sample at a fixed time, ∆T.At t time, the agent needs to obtain the
current application state Rs and security configuration Ht as the current state inputs, that
is, St = {RSt, Ht}. When an agent performs actions, it selects a microservice and then
increases or decreases its cleaning cycle by ∆T or keeps it unchanged. Therefore, assuming
that the application has M microservices, there are 2M + 1 optional actions in the action
set. After each action, the agent needs to update the current security configuration. For
the current benefit, the defense efficiency DE in the optimization problem can be used to
measure it.

5. Detailed Design of the Framework

This section mainly discusses the design of OADSF, including its overall framework
design and security configuration optimization algorithm based on P3DQN.

Electronics 2023, 12, 1598 9 of 18

5.1. Design of OADSF

In this paper, we propose OADSF in a container-based cloud, which includes a moni-
toring module, a security decision module and a control module. The framework is shown
in Figure 2.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 19

In this paper, we sample at a fixed time, T . At t time, the agent needs to obtain the

current application state
sR and security configuration

tH as the current state inputs,

that is,  ,t t tS RS H= . When an agent performs actions, it selects a microservice and then

increases or decreases its cleaning cycle by T or keeps it unchanged. Therefore, assum-

ing that the application has M microservices, there are 2M + 1 optional actions in the action

set. After each action, the agent needs to update the current security configuration. For

the current benefit, the defense efficiency DE in the optimization problem can be used to

measure it.

5. Detailed Design of the Framework

This section mainly discusses the design of OADSF, including its overall framework

design and security configuration optimization algorithm based on P3DQN.

5.1. Design of OADSF

In this paper, we propose OADSF in a container-based cloud, which includes a mon-

itoring module, a security decision module and a control module. The framework is

shown in Figure 2.

Security Decision Module

Computing

Nodes

...

...

...

...
Stats St

V(S)

A(S,a) C
o

n
tr

o
l

M
o

du
le

M
o

ni
to

ri
ng

M
o

du
le

P3DQN algorithm

Orchestration Platform

Figure 2. The workflow of the proposed OADSF.

In the container-based cloud cluster, the platform Kubernetes extracts real-time de-

tails and sends them to the monitoring module. Kubernetes is used to manage container-

based applications in cloud platforms. Its goal is to make deploying container-based ap-

plications simple and efficient. When the monitoring module detects that the application

state changes, it sends the latest state to the security decision module. The security deci-

sion module generates the optimal security configuration according to the running state.

The process is as follows: the security decision module preprocesses the running state and

current security configuration, and then transmits the data to the input layer of its neural

network. After iteratively optimizing the security configuration and achieving conver-

gence, the P3DQN algorithm sends the optimized security configuration to the control

module. The control module interacts with Kubernetes to manage microservices accord-

ing to the current security configuration. When the running time of the microservice rep-

licas reaches the cleaning time, the control module puts the cleaning event for each replica

into an independent queue. The cleaning event is to release the microservice container-

running environment and regenerate a new container running environment based on Ku-

bernetes. Only after the execution of the cleaning event is complete, the control module

Figure 2. The workflow of the proposed OADSF.

In the container-based cloud cluster, the platform Kubernetes extracts real-time details
and sends them to the monitoring module. Kubernetes is used to manage container-based
applications in cloud platforms. Its goal is to make deploying container-based applications
simple and efficient. When the monitoring module detects that the application state
changes, it sends the latest state to the security decision module. The security decision
module generates the optimal security configuration according to the running state. The
process is as follows: the security decision module preprocesses the running state and
current security configuration, and then transmits the data to the input layer of its neural
network. After iteratively optimizing the security configuration and achieving convergence,
the P3DQN algorithm sends the optimized security configuration to the control module.
The control module interacts with Kubernetes to manage microservices according to the
current security configuration. When the running time of the microservice replicas reaches
the cleaning time, the control module puts the cleaning event for each replica into an
independent queue. The cleaning event is to release the microservice container-running
environment and regenerate a new container running environment based on Kubernetes.
Only after the execution of the cleaning event is complete, the control module takes the
cleaning event from the queue and executes the next cleaning event. This mechanism
ensures that the dynamic cleaning strategy does not affect the availability of services.
The core of OADSF is that the decision module based on P3DQN can quickly optimize
the security configuration according to the state of the input. This adaptive security
configuration algorithm based on P3DQN will be introduced in detail in Section 5.2.

5.2. Adaptive Security Configuration Algorithm Based on P3DQN

In order to solve the MDP problem, most commonly the DQN algorithm is used. The
DQN algorithm combines deep learning and reinforcement learning, taking states as the
input of the neural network and actions as the output of the neural network. It interacts
with the environment and trains the neural network to make it continuously approach the
state-action value function of the current environment. However, the DQN algorithm has
overestimation. Instead of using the real action, it selects the largest value action in the
target network when calculating the loss function. In this way, the calculated error is not
accurate. Based on the analysis, we combined Double DQN, Dueling DQN and priority

Electronics 2023, 12, 1598 10 of 18

experience replay to alleviate the overestimation problem, and constructed the P3DQN
algorithm. The algorithm process is shown in Figure 3.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 19

takes the cleaning event from the queue and executes the next cleaning event. This mech-

anism ensures that the dynamic cleaning strategy does not affect the availability of ser-

vices. The core of OADSF is that the decision module based on P3DQN can quickly opti-

mize the security configuration according to the state of the input. This adaptive security

configuration algorithm based on P3DQN will be introduced in detail in Section 5.2.

5.2. Adaptive Security Configuration Algorithm Based on P3DQN

In order to solve the MDP problem, most commonly the DQN algorithm is used. The

DQN algorithm combines deep learning and reinforcement learning, taking states as the

input of the neural network and actions as the output of the neural network. It interacts

with the environment and trains the neural network to make it continuously approach the

state-action value function of the current environment. However, the DQN algorithm has

overestimation. Instead of using the real action, it selects the largest value action in the

target network when calculating the loss function. In this way, the calculated error is not

accurate. Based on the analysis, we combined Double DQN, Dueling DQN and priority

experience replay to alleviate the overestimation problem, and constructed the P3DQN

algorithm. The algorithm process is shown in Figure 3.

Eval Network

NN

Layers

V(s)

A(s,a)

maxQ(St+1,at;q)

Target Network

NN

Layers

V(s)

A(s,a)

Experience Replay D

St, at, rt, St+1

Q(St, at) Q(St+1, amax;q
−
)rt +

Loss

Figure 3. The process of P3DQN algorithm.

P3DQN has two independent neural networks: the evaluation network and target
network. The parameters are represented by q and q − , respectively. At t time, the agent

executes action
ta in state

tS , observes that the reward is
tr , and the next state is

1+tS .

The 4-tuple
1, , ,t t t tS a r S +

 is the experience P3DQN acquires from the environment. The

parameters of the evaluation network will be updated iteratively based on the acquired

experience. At t time, its loss function can be expressed as Equation (12):

()
2

, ;q=  −  t tLoss y Q S a , (12)

where (), ;qtQ S a is the output value of action a corresponding to input
tS when the

neural network parameter is q . The output layer of the neural network consists of two

outputs, namely, the current state value V and the action advantage function A, which are

combined into the Q value. The advantage function shows how good the action value is

relative to the average value of the state. (), ;qtQ S a is calculated as shown in Equation

(13):

() () () (), ; ; , ; , ;t t t t
a

Q S a V S A S a mean A S aq q q q= + − , (13)

Figure 3. The process of P3DQN algorithm.

P3DQN has two independent neural networks: the evaluation network and target
network. The parameters are represented by θ and θ− , respectively. At t time, the agent
executes action at in state St , observes that the reward is rt , and the next state is St+1.The
4-tuple 〈St, at, rt, St+1〉 is the experience P3DQN acquires from the environment. The
parameters of the evaluation network will be updated iteratively based on the acquired
experience. At t time, its loss function can be expressed as Equation (12):

Loss = E[yt −Q(St, a; θ)]2, (12)

where Q(St, a; θ) is the output value of action a corresponding to input St when the neural
network parameter is θ. The output layer of the neural network consists of two outputs,
namely, the current state value V and the action advantage function A, which are combined
into the Q value. The advantage function shows how good the action value is relative to
the average value of the state. Q(St, a; θ) is calculated as shown in Equation (13):

Q(St, a; θ) = V(St; θ) + A(St, a; θ)−mean
a

A(St, a; θ), (13)

where mean represents the average value in the n-dimensional space and yt is the learning
target of the evaluation network. The P3DQN algorithm alleviates the overestimation
by decoupling action and Q value. When calculating the actual Q value, the evaluation
network provides the action in the next state, and the target network provides the Q value
of this action, which can be expressed as Equation (14).

yt = rt + γQ
(

St+1, max
a

Q(St+1, a; θ); θ−
)

(14)

The updating process of the neural network is shown in Equation (15).

Q(St, a; θ) = Q(St, a; θ) +
[
α
[
rt + γQ

(
St+1, max

a
Q(St+1, a; θ); θ−

)
−Q(St, a; θ)

]]
(15)

In the DQN training stage, in order to improve the stability and convergence of the
algorithm, the samples are randomly selected from the experience replay pool, without
considering the priority relationship and ignoring the importance of the samples. In our
study, P3DQN stores experience in the priority queue. The difference of experience is δt.
The larger the absolute value of δt is, the larger the gap between the estimated Q value
and the target Q value. At this time, the more valuable the experience is, the greater
the probability that the experience should be extracted for training, which speeds up the

Electronics 2023, 12, 1598 11 of 18

training process. The calculation formula is as shown in (16) and (17), where ϑ is a small
value close to 0, which ensures that samples when δt is 0 can also be selected.

δt = yt −Q(St, a; θ) (16)

P(t) =
pt

∑ pt
, pt = |δt + ϑ| (17)

The solution process of the optimal MTD strategy for P3DQN is shown in algorithm 1.
In OADSF, the state is used as the input of the neural network, and the MTD strategy
parameters are used as the output of the neural network. In algorithm 1, the first line
initializes the neural network parameters; the second line indicates that the output value
of the neural network consists of the current state value V and the action advantage
function A; lines 4–5 represent randomly generated microservice defense configurations,
replica numbers, and scheduling policies; line 6 generates the system input St based on the
previous defense configuration and state; lines 7–9 generate the next state based on the
action, calculate the reward value and store the sample experience in the replay pool D;
line 11 calculates the action corresponding to the maximum state value in state St+1; lines
12–18 determine whether St+1 is the termination state based on the set target value, and
update the evaluation network parameters θ and weight of samples; line 19 updates the
target network parameters θ− every C step; and line 21 obtains the optimal microservice
defense configuration. The algorithm mainly involves interface, state, action and reward.
The specific design is as follows.

Algorithm 1: Security configuration optimization algorithm based on P3DQN.
Input: Call relationship between microservices
Output: P3DQN neural network parametersInitialization: neural network parameters

(1) θ, θ− , experience replay pool D, samples L, step C, greedy coefficient ε, discount factor γ

and learning rate α.
(2) Set Q(St, a; π) = V(St; π) + A(St, a; π)−mean

a
A(St, a; π) , π ∈

{
θ, θ−

}
(3) For episode in range (STEPS)
(4) Randomly generate microservice defense configuration Ht
(5) Randomly generate the replicas of each microservice, simulate the scheduling of replicas

and obtain the running state RSt
(6) Based on Ht and RSt , generate the input St = {RSt, Ht}
(7) Randomly select an action at with ε probability, otherwise select at = max

a
Q(St, a; θ)

(8) Modify Ht based on action at , reach the next state St+1 , and calculate the reward rt
based on the HSAG model

(9) Store sample 〈St, at, rt, St+1〉 in experience replay pool D
(10) Select L samples from D with P(j) = pj

∑ pi
probability

(11) Calculate at = max
a

Q(St+1, a; θ) corresponding to the maximum state value in state St+1

(12) If St+1 is the termination state,
(13) let yt = rt
(14) else

(15) let yt = rt + γQ
(

St+1, max
a

Q(St+1, a; θ); θ−
)

(16) End if
(17) Use Equations (12) and (14) to perform gradient descent and update network

parameters θ

(18) Update the weight of each sample in D using Equation (16)
(19) Update target network parameters θ− ← θ every C step
(20) End for
(21) Obtain the optimal microservice defense configuration

Electronics 2023, 12, 1598 12 of 18

(1) State: the state consists of running the state and security configurations. In order to
facilitate neural network processing, it is assumed that there are UN computing nodes
and M microservices in the cluster. The upper limit of the i-th service replica is URi,
and the running state of the i-th service is RMSi =

[
ind1, ind2, . . . , indURi

]
, where

ind ∈ [1, UN] is the compute node serial number. The running state can be composed
of the running state of all the microservices, namely RS = [RMS1, RMS2, . . . , RMSM].
The input state St = {RSt, Ht} can be obtained by combining the current running
state and security configuration. In order to generate a large number of training data,
we randomly generated the replicas and performed simulation scheduling according
to the cloud platform strategy, with the results as the current running state. At the
same time, the security configuration can also be randomly generated.

(2) Action: in the P3DQN algorithm, the action depends on the output layer. In each
iteration, we selected ∆T as the basic unit to increase or decrease the cleaning period,
or keep the security configuration unchanged.

(3) Reward: when calculating the current reward, we generated the HSAG model based
on the input running state, and calculated the defense efficiency DE as a reward by
combining the security configuration.

In algorithm 1, when the number of microservices is M and the number of nodes is N,
given a fixed defense configuration, the time complexity of using the Dijkstra algorithm to
solve the shortest path is O

(
N2).We assume that there are F options for defense configura-

tion for each microservice. Therefore, for Figure G, the optimal computational complexity
is O

(
FM · N2) .
In order to reduce the training time and improve the training accuracy, we proposed a

two-stage training strategy for the microservice scenario. In the first stage, we randomly
generated the microservice running state and security configuration, and trained the model
offline with the P3DQN algorithm until the model converged. We obtained the basic model
parameters. In the second stage, when the running state changes, the security configuration
is further updated. We used the basic model parameters for online training to find the
optimal security configuration. Because online training is based on offline training, it can
achieve convergence quickly.

6. Simulation and Evaluation

This section introduces the simulation setup, and then introduces the strategy to
compare with OADSF. Finally, we analyze the simulation results to verify its effectiveness
and scalability.

6.1. Simulation Setup

In the experiment, we used Kubernetes to build container clustering. The cluster
consisted of 11 servers with 40 cores, 64 GB memory, and 2 T disks, where 10 servers
were computing nodes, 1 server was the management node, and OADSF ran on the
management node. Meanwhile, we deployed a Web application, which was composed of
four microservices, with the same call relationship as Figure 1. The specific information
and vulnerabilities are shown in Table 1.

Electronics 2023, 12, 1598 13 of 18

Table 1. Vulnerabilities used in the HSAG model.

Microservice Name CVE ID ED W D (Ei)

A Tomcat

CVE-2019-14768 2.8 7.4

3.1497
CVE-2019-10104 3.9 8.6
CVE-2019-0232 2.2 7.9

CVE-2020-26510 3.9 8.3
CVE-2020-17388 2.8 7.4

B Memcached
CVE-2016-8704 3.9 8.3

3.406CVE-2016-8705 3.9 8.3
CVE-2016-8706 2.2 6.8

C ImageMagick
CVE-2017-14650 2.2 6.8

2.2561CVE-2017-14224 2.8 8.3
CVE-2019-11832 1.6 6.3

D Mysql
CVE-2020-11974 3.9 8.3

3.1192CVE-2016-6663 1 6.3
CVE-2016-6662 3.9 8.8

- Container
CVE-2020-7606 0.5 5.4

2.5599CVE-2020-35197 3.9 8.3

Based on D(Ei) , we can obtain the attack difficulty and security gain under different
cleaning cycles. In the P3DQN algorithm, the hidden layer of the neural network adopts a
three-layer fully connective structure, in which the last layer is divided into two outputs.
The learning rate of the neural network is α = 0.0005, the discount factor is γ = 0.9, the
greedy coefficient is ε = 0.1 and ϑ = 0.001, the minimum batch data extracted for each
training is L = 32 and the update step of the target network is C = 500.

The performance parameters of the P3DQN algorithm include the neural network
learning rate, experience replay pool, step size, greedy coefficient and discount factor. From
Formula (15), it can be seen that the learning rate affects the update speed of the neural
network. The discount factor indicates the degree to which previous experience is valued.
The greed coefficient represents the ability of the agent to explore the unknown motion
space. Q

(
St+1, max

a
Q(St+1, a; θ); θ−

)
indicates that the evaluation network generates the

maximum action at the next moment, and the target network generates the Q value. This
method reduces training errors. The smaller the experience replay pool and step size, the
faster the convergence is, but it is easy to fall into a local optimal solution.

Hence, the selected parameters can ensure the fast convergence of the algorithm and
obtain higher rewards. Fast convergence indicates a short time to calculate the optimal
defense configuration, and higher rewards indicate a high defense efficiency. This can
quickly generate optimal defense configurations for each microservice in a dynamic and
complex cloud environment, further improving the security of cloud computing.

6.2. Comparison Strategy

In the experiment, we compared OADSF with the unified configuration strategy [6],
DSEOM [13], SmartSCR [14] and optimal strategy, respectively. The details of the compari-
son strategies are as follows.

(1) The unified configuration strategy simplifies dynamic cycle configuration. It is as-
sumed that the dynamic cycle of all microservices is the same, which greatly reduces
the computation, and the dynamic cycle can be obtained through traversal. In the
reference [6], this strategy is used to simplify the problem of implementing dynamic
cleaning strategy.

(2) The optimal strategy is to find out the optimal defense configuration by brute-force
search, which provides a reference for each algorithm.

(3) DSEOM depicts the attack difficulty by the attack graph model. The strategy computes
the critical nodes through betweenness centrality and only protects the critical nodes.

Electronics 2023, 12, 1598 14 of 18

The betweenness centrality calculates by the ratio of the number of shortest paths
passing through node N to the total number of shortest paths.

(4) SmartSCR also depicts the attack difficulty with the attack graph model and protects
all nodes. However, this strategy uses the S-function to calculate the probability to de-
termine the attack difficulty of nodes. It only takes the security after MTD deployment
into consideration, and the optimization algorithm overestimates defense efficiency.

6.3. Simulation Results

To verify the performance and effectiveness of OADSF, we first randomly generated the
replicas of each microservice, and created the application in the experimental environment.
Based on the replicas and Kubernetes scheduling results, DQN and P3DQN were used for
training, respectively.

In Figure 4, we compare the convergence speed and average rewards of DQN and
P3DQN algorithms. Among them, SmartSCR uses the DQN algorithm, while OADSF
uses the P3DQN algorithm. Figure 4 shows the change of the average reward with the
training steps. With the increase of training steps, the average reward shows a gradual
upward trend and reaches a stable trend after certain steps. However, in terms of the
convergence and stability, P3DQN algorithm can obtain a higher average reward with
the same training steps. Because it decouples the calculation of the target Q value, which
avoids overestimation. When the system updates the weight parameters of the neural
network every time, it will preferentially select the experience samples with larger time
difference to ensure the learning effect. Compared with DQN, P3DQN has higher learning
efficiency and can achieve better results.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 19

Figure 4. Reward with the training steps.

Figure 5 illustrates the average loss with the variation of training steps during offline

and online training. As the figure shows, when its offline training and the experience re-

play pool is not filled, the P3DQN algorithm will adopt a random strategy to modify the

defense configuration. Thus, the average loss also fluctuates all the time. Thanks to the

offline training process, the neural network model can converge quickly in online training.

Therefore, we can find the optimal security configuration in time after the microservice

state changes, and realize the adaptive security optimization configuration.

Figure 5. Loss with the training steps.

Figure 6 shows the comparison of defense efficiency between DSEOM, unified strat-

egy, SmartSCR, OFF-OADSF and ON-OADSF. The abscissa represents different algo-

rithms and the ordinate represents the normalized value of defense efficiency.

SmartSCR and OADSF select the defense efficiency after the algorithm converges. It

can be seen from the figure that the defense efficiency of DSEOM is the lowest. The main

reason is that DSEOM uses betweenness centrality to calculate key targets. Once the at-

tacker finds a path to bypass the key target, he can easily realize the attack target. At the

same time, after DSEOM selects the key target, the defender needs to configure the pa-

rameters of the MTD strategy independently, which makes the defense efficiency unsta-

ble. The unified strategy sets the cleaning cycle of each target to be the same. In this way,

Figure 4. Reward with the training steps.

Figure 5 illustrates the average loss with the variation of training steps during offline
and online training. As the figure shows, when its offline training and the experience
replay pool is not filled, the P3DQN algorithm will adopt a random strategy to modify the
defense configuration. Thus, the average loss also fluctuates all the time. Thanks to the
offline training process, the neural network model can converge quickly in online training.
Therefore, we can find the optimal security configuration in time after the microservice
state changes, and realize the adaptive security optimization configuration.

Electronics 2023, 12, 1598 15 of 18

Electronics 2023, 12, x FOR PEER REVIEW 15 of 19

Figure 4. Reward with the training steps.

Figure 5 illustrates the average loss with the variation of training steps during offline

and online training. As the figure shows, when its offline training and the experience re-

play pool is not filled, the P3DQN algorithm will adopt a random strategy to modify the

defense configuration. Thus, the average loss also fluctuates all the time. Thanks to the

offline training process, the neural network model can converge quickly in online training.

Therefore, we can find the optimal security configuration in time after the microservice

state changes, and realize the adaptive security optimization configuration.

Figure 5. Loss with the training steps.

Figure 6 shows the comparison of defense efficiency between DSEOM, unified strat-

egy, SmartSCR, OFF-OADSF and ON-OADSF. The abscissa represents different algo-

rithms and the ordinate represents the normalized value of defense efficiency.

SmartSCR and OADSF select the defense efficiency after the algorithm converges. It

can be seen from the figure that the defense efficiency of DSEOM is the lowest. The main

reason is that DSEOM uses betweenness centrality to calculate key targets. Once the at-

tacker finds a path to bypass the key target, he can easily realize the attack target. At the

same time, after DSEOM selects the key target, the defender needs to configure the pa-

rameters of the MTD strategy independently, which makes the defense efficiency unsta-

ble. The unified strategy sets the cleaning cycle of each target to be the same. In this way,

Figure 5. Loss with the training steps.

Figure 6 shows the comparison of defense efficiency between DSEOM, unified strategy,
SmartSCR, OFF-OADSF and ON-OADSF. The abscissa represents different algorithms and
the ordinate represents the normalized value of defense efficiency.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 19

the optimal configuration can be selected through traversal. Compared with DSEOM, it

can improve the defense efficiency and stability. SmartSCR provides a dynamic defense

for all nodes to improve the holistic defense efficiency. However, this strategy uses the S-

function to calculate the probability to determine the attack difficulty of target. It only

takes the security after MTD deployment into consideration, and the DQN optimization

algorithm overestimates defense efficiency. In this study, OADSF describes the holistic

security by using the security gain, and further optimizes defense efficiency using the

P3DQN algorithm. After convergence, the average defense efficiency is very close to the

optimal strategy, whichh can achieve a stable security defense effect. Through offline and

online training, the algorithm can converge quickly and efficiently. Compared with

DSEOM and SmartSCR, the defense efficiency of OADSF was improved by 35.19% and

12.09%, respectively.

Figure 6. Defense Efficiency of different algorithms.

Figure 7 shows the time consumption of different algorithms at different scales,

which is used to measure the scalability of the strategy. The abscissa represents the num-

ber of replicas in the application, and the ordinate represents the time consumption to

solve the active defense configuration. In this experiment, we changed the scale of the

entire application by increasing the replicas of the microservice. At the same time, it was

assumed that the upper limit of each replica was 200, to train the model. As the figure

shows, the time consumption increases greatly with the growth of the application scale

through the unified configuration strategy, which is suitable for small-scale application

scenarios. For DSEOM, the time consumption is the shortest, and it does not show expo-

nential growth with the increase of the application scale. The reason is that DSEOM re-

quires less computation and optimizes the solution of the shortest path. SmartSCR ac-

tively defends all nodes. Thus, as the scale increases, the time consumption will increase

compared with DSEOM. For OADFS, it can train the model in advance offline, so it takes

less time to configure the active defense strategy online, which can cope with large-scale

application scenarios.

Figure 6. Defense Efficiency of different algorithms.

SmartSCR and OADSF select the defense efficiency after the algorithm converges.
It can be seen from the figure that the defense efficiency of DSEOM is the lowest. The
main reason is that DSEOM uses betweenness centrality to calculate key targets. Once
the attacker finds a path to bypass the key target, he can easily realize the attack target.
At the same time, after DSEOM selects the key target, the defender needs to configure
the parameters of the MTD strategy independently, which makes the defense efficiency
unstable. The unified strategy sets the cleaning cycle of each target to be the same. In this
way, the optimal configuration can be selected through traversal. Compared with DSEOM,
it can improve the defense efficiency and stability. SmartSCR provides a dynamic defense
for all nodes to improve the holistic defense efficiency. However, this strategy uses the
S-function to calculate the probability to determine the attack difficulty of target. It only
takes the security after MTD deployment into consideration, and the DQN optimization
algorithm overestimates defense efficiency. In this study, OADSF describes the holistic
security by using the security gain, and further optimizes defense efficiency using the
P3DQN algorithm. After convergence, the average defense efficiency is very close to the
optimal strategy, whichh can achieve a stable security defense effect. Through offline
and online training, the algorithm can converge quickly and efficiently. Compared with

Electronics 2023, 12, 1598 16 of 18

DSEOM and SmartSCR, the defense efficiency of OADSF was improved by 35.19% and
12.09%, respectively.

Figure 7 shows the time consumption of different algorithms at different scales, which
is used to measure the scalability of the strategy. The abscissa represents the number of
replicas in the application, and the ordinate represents the time consumption to solve
the active defense configuration. In this experiment, we changed the scale of the entire
application by increasing the replicas of the microservice. At the same time, it was assumed
that the upper limit of each replica was 200, to train the model. As the figure shows, the time
consumption increases greatly with the growth of the application scale through the unified
configuration strategy, which is suitable for small-scale application scenarios. For DSEOM,
the time consumption is the shortest, and it does not show exponential growth with the
increase of the application scale. The reason is that DSEOM requires less computation and
optimizes the solution of the shortest path. SmartSCR actively defends all nodes. Thus,
as the scale increases, the time consumption will increase compared with DSEOM. For
OADFS, it can train the model in advance offline, so it takes less time to configure the active
defense strategy online, which can cope with large-scale application scenarios.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 19

Figure 7. Time consumption under different scales.

Through the analysis of the experimental results in Section 6.3, it can be concluded

that the HSAG model we proposed includes threats from the application layer and the

container layer, improving the previous attack graph model. The OADSF can extract sys-

tem threats and the running state of microservices in real time. The P3DQN algorithm can

solve the optimal defense configuration in a short time and dynamically improve the se-

curity defense capability of cloud computing.

7. Conclusions

This paper studied the optimal configuration of the MTD strategy in the container

cloud environment. First, we analyzed the security threats under the container cloud and

formalized various complex attack scenarios. Then, we proposed the HSAG model to ex-

tract specific risks and threats in the cloud, including application layer and virtualization

layer vulnerabilities. The HSAG model was updated according to the system running sta-

tus. On the basis of this model, the security gain and QOS were quantitatively analyzed

in complex attack scenarios. Due to the scale and high dynamics of cloud applications, it

is very difficult to directly solve the optimal configuration. To solve this problem, we

modeled the optimization of the MTD strategy as a Markov decision process, and used

deep reinforcement learning to generate the optimal defense configuration for the orches-

tration platform. In this method, we described the defense efficiency based on the HSAG

model, and proposed the P3DQN algorithm to cope with the scale and high dynamic of

cloud applications. Combining offline training and online training, we solved the optimal

defense configuration and realized adaptive optimization. The simulation results show

that the proposed method can improve the defense efficiency. Compared with DSEOM

and SmartSCR, the defense efficiency was increased by 35.19% and 12.09%, respectively.

However, the framework still has the following problems: (1) considering the secu-

rity configuration under different cleaning cycles, it will inevitably introduce time over-

head; (2) the randomly generated scheduling policies of microservices may aggravate the

security threats of the system, then affect the defense efficiency. For future work, we con-

sider the following: (1) for different microservice types, different MTD policies will be

used for the security configuration to further improve security and reduce time overhead;

(2) based on the HSAG model, we will analyze the dependency between microservices

and consider the security factor during scheduling; (3) the visualization HSAG model.

Author Contributions: Conceptualization, Y.L. and H.H.; methodology, Y.L. and W.L.; software,

Y.L. and X.Y.; validation, Y.L. and X.Y.; formal analysis, Y.L. and H.H.; investigation, Y.L. and W.L;

Figure 7. Time consumption under different scales.

Through the analysis of the experimental results in Section 6.3, it can be concluded
that the HSAG model we proposed includes threats from the application layer and the
container layer, improving the previous attack graph model. The OADSF can extract system
threats and the running state of microservices in real time. The P3DQN algorithm can solve
the optimal defense configuration in a short time and dynamically improve the security
defense capability of cloud computing.

7. Conclusions

This paper studied the optimal configuration of the MTD strategy in the container
cloud environment. First, we analyzed the security threats under the container cloud and
formalized various complex attack scenarios. Then, we proposed the HSAG model to
extract specific risks and threats in the cloud, including application layer and virtualization
layer vulnerabilities. The HSAG model was updated according to the system running
status. On the basis of this model, the security gain and QOS were quantitatively analyzed
in complex attack scenarios. Due to the scale and high dynamics of cloud applications,
it is very difficult to directly solve the optimal configuration. To solve this problem, we
modeled the optimization of the MTD strategy as a Markov decision process, and used
deep reinforcement learning to generate the optimal defense configuration for the orches-
tration platform. In this method, we described the defense efficiency based on the HSAG
model, and proposed the P3DQN algorithm to cope with the scale and high dynamic of
cloud applications. Combining offline training and online training, we solved the optimal

Electronics 2023, 12, 1598 17 of 18

defense configuration and realized adaptive optimization. The simulation results show
that the proposed method can improve the defense efficiency. Compared with DSEOM and
SmartSCR, the defense efficiency was increased by 35.19% and 12.09%, respectively.

However, the framework still has the following problems: (1) considering the security
configuration under different cleaning cycles, it will inevitably introduce time overhead;
(2) the randomly generated scheduling policies of microservices may aggravate the security
threats of the system, then affect the defense efficiency. For future work, we consider the
following: (1) for different microservice types, different MTD policies will be used for the
security configuration to further improve security and reduce time overhead; (2) based on
the HSAG model, we will analyze the dependency between microservices and consider the
security factor during scheduling; (3) the visualization HSAG model.

Author Contributions: Conceptualization, Y.L. and H.H.; methodology, Y.L. and W.L.; software, Y.L.
and X.Y.; validation, Y.L. and X.Y.; formal analysis, Y.L. and H.H.; investigation, Y.L. and W.L; data
curation, W.L; writing—original draft preparation, Y.L.; writing—review and editing, H.H. and W.L.;
supervision, H.H., W.L. and X.Y.; funding acquisition, X.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This work has been partly supported by the National Natural Science Foundation of China
(Grant Nos. 62072467 and 62002383), National Key Research and Development Plan of China (Grant
Nos. 2021YFB1006200 and 2021YFB1006201).

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the reviewers for their valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, X.; Peng, X.; Xie, T.; Sun, J.; Ji, C.; Li, W.; Ding, D. Fault Analysis and Debugging of Microservice Systems: Industrial Survey,

Benchmark System, and Empirical Study. IIEEE Trans. Softw. Eng. 2021, 47, 243–260. [CrossRef]
2. Gokan Khan, M.; Taheri, J.; Al-dulaimy, A.; Kassler, A. PerfSim: A Performance Simulator for Cloud Native Microservice Chains.

IEEE Trans. Cloud Comput. 2021, 1, 1–18. [CrossRef]
3. Arouk, O.; Nikaein, N. Kube5G: A Cloud-Native 5G Service Platform. In Proceedings of the GLOBECOM 2020–2020 IEEE Global

Communications Conference, Taipei, Taiwan, 11–13 December; 2020; pp. 1–6.
4. Gao, X.; Steenkamer, B.; Gu, Z.; Kayaalp, M.; Pendarakis, D.; Wang, H. A Study on the Security Implications of Information

Leakages in Container Clouds. IEEE Trans. Dependable Secur. Comput. 2021, 18, 174–191. [CrossRef]
5. Nife, F.N.; Kotulski, Z. Application-Aware Firewall Mechanism for Software Defined Networks. J. Netw. Syst. Manag. 2020,

28, 605–626. [CrossRef]
6. Bardas, A.G.; Sundaramurthy, S.C.; Ou, X.; DeLoach, S.A. MTD CBITS: Moving Target Defense for Cloud-Based IT Systems. In

Proceedings of the 22nd European Symposium on Research in Computer Security, Oslo, Norway, 1–3 December; 2017; pp. 167–186.
7. Zhuang, R.; DeLoach, S.A.; Ou, X. Towards a Theory of Moving Target Defense. In Proceedings of the First ACM Workshop on

Moving Target Defense, Scottsdale, AZ, USA, 3 November 2014; pp. 31–40.
8. Lu, K.; Song, C.; Lee, B.; Chung, S.P.; Kim, T.; Lee, W. ASLR-Guard: Stopping Address Space Leakage for Code Reuse Attacks. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver Colorado, CO, USA,
12 October 2015; pp. 280–291.

9. Larsen, P.; Homescu, A.; Brunthaler, S.; Franz, M. SoK: Automated Software Diversity. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy, San Jose, CA, USA, 7–9 May 2014; pp. 276–291.

10. Meier, R.; Tsankov, P.; Lenders, V.; Vanbever, L.; Vechev, M. NetHide: Secure and Practical Network Topology Obfuscation. In
Proceedings of the 27th USENIX Security Symposium, Baltimore, MD, USA, 15–18 August 2018; pp. 1–18.

11. Debroy, S.; Calyam, P.; Nguyen, M.; Stage, A.; Georgiev, V. Frequency-Minimal Moving Target Defense Using Software-Defined
Networking. In Proceedings of the 2016 International Conference on Computing, Networking and Communications (ICNC),
Kauai, HI, USA, 2–5 February 2016; pp. 1–6.

12. Carroll, T.E.; Crouse, M.; Fulp, E.W.; Berenhaut, K.S. Analysis of Network Address Shuffling as a Moving Target Defense.
In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June
2014; pp. 701–706.

13. Jin, H.; Li, Z.; Zou, D.; Yuan, B. DSEOM: A Framework for Dynamic Security Evaluation and Optimization of MTD in Container-
Based Cloud. IEEE Trans. Dependable Secur. Comput. 2021, 18, 1125–1136. [CrossRef]

14. Zhang, S.; Guo, Y.; Sun, P.; Cheng, G.; Hu, H. Deep reinforcement learning based moving target defense strategy optimization
scheme for cloud native environment. J. Electron. Inf. Technol. 2022, 44, 608–616. [CrossRef]

http://doi.org/10.1109/TSE.2018.2887384
http://doi.org/10.1109/TCC.2021.3135757
http://doi.org/10.1109/TDSC.2018.2879605
http://doi.org/10.1007/s10922-020-09518-z
http://doi.org/10.1109/TDSC.2019.2916666
http://doi.org/10.11999/JEIT211589

Electronics 2023, 12, 1598 18 of 18

15. Belair, M.; Laniepce, S.; Menaud, J.-M. Leveraging Kernel Security Mechanismsto Improve Container Security: A Survey. In
Proceedings of the 14th International Conference on Availability, Reliability and Security, New York, NY, USA, 11–13 October
2019; pp. 1–6.

16. Lopes, N.; Martins, R.; Correia, M.E.; Serrano, S.; Nunes, F. Container Hardening Through Automated Seccomp Profiling. In
Proceedings of the 2020 6th International Workshop on Container Technologies and Container Clouds, Delft, The Netherlands, 7
December 2020; pp. 31–36.

17. Lin, X.; Lei, L.; Wang, Y.; Jing, J.; Sun, K.; Zhou, Q. A Measurement Study on Linux Container Security: Attacks and Counter-
measures. In Proceedings of the 34th Annual Computer Security Applications Conference, San Juan, PR, USA, 3 December
2018; pp. 418–429.

18. Flora, J.; Antunes, N. Studying the Applicability of Intrusion Detection to Multi-Tenant Container Environments. In Proceedings
of the 2019 15th European Dependable Computing Conference (EDCC), Naples, Italy, 4 September 2019; pp. 133–136.

19. Lim, S.Y.; Stelea, B.; Han, X.; Pasquier, T. Secure Namespaced Kernel Audit for Containers. In Proceedings of the ACM Symposium
on Cloud Computing (SoCC), New York, NY, USA, 15–17 December 2021; pp. 518–532.

20. Lin, Y.; Tunde-Onadele, O.; Gu, X. CDL: Classified Distributed Learning for Detecting Security Attacks in Containerized
Applications. In Proceedings of the Annual Computer Security Applications Conference, Austin, TX, USA, 7 December 2020;
2020; pp. 179–188.

21. Almeida, W.H.C.; de Aguiar Monteiro, L.; Hazin, R.R.; de Lima, C.; Ferraz, F.S. Survey on Microservice Architecture—Security,
Privacy and Standardization on Cloud Computing Environment. In Proceedings of the 12th International Conference on Software
Engineering Advance, Athenas, Greek, 20 December 2017; pp. 1–7.

22. Zhao, P.; Wu, L.; Hong, Z.; Sun, H. Research on Multicloud Access Control Policy Integration Framework. China Commun. 2019,
16, 222–234. [CrossRef]

23. Pereira-Vale, A.; Fernandez, E.B.; Monge, R.; Astudillo, H.; Márquez, G. Security in Microservice-Based Systems: A Multivocal
Literature Review. Comput. Secur. 2021, 103, 102200. [CrossRef]

24. Xu, R.; Jin, W.; Kim, D. Microservice Security Agent Based On API Gateway in Edge Computing. Sensors 2019, 19, 4905. [CrossRef]
[PubMed]

25. Sankaran, A.; Datta, P.; Bates, A. Workflow Integration Alleviates Identity and Access Management in Serverless Computing. In
Proceedings of the Annual Computer Security Applications Conference, Austin, TX, USA, 7 December 2020; pp. 496–509.

26. Torkura, K.A.; Sukmana, M.I.H.; Meinel, C. Integrating Continuous Security Assessments in Microservices and Cloud Native
Applications. In Proceedings of the 10th International Conference on Utility and Cloud Computing, Austin, TX, USA, 5 December
2017; 2017; pp. 171–180.

27. Ahmed, N.O.; Bhargava, B. From Byzantine Fault-Tolerance to Fault-Avoidance: An Architectural Transformation to Attack and
Failure Resiliency. IEEE Trans. Cloud Comput. 2018, 8, 847–860. [CrossRef]

28. Li, Y.; Dai, R.; Zhang, J. Morphing Communications of Cyber-Physical Systems towards Moving-Target Defense. In Proceedings
of the 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June 2014; pp. 592–598.

29. Yu, H.; Li, H.; Yang, X.; Ma, H. On Distributed Object Storage Architecture Based on Mimic Defense. China Commun. 2021,
18, 109–120. [CrossRef]

30. Qiang, W.; Chunming, W.; Xincheng, Y.; Qiumei, C. Intrinsic Security and Self-Adaptive Cooperative Protection Enabling Cloud
Native Network Slicing. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1287–1304. [CrossRef]

31. Wang, Y.; Guo, Y.; Guo, Z.; Liu, W.; Yang, C. Protecting Scientific Workflows in Clouds with an Intrusion Tolerant System. IET Inf.
Secur. 2020, 14, 157–165. [CrossRef]

32. Wang, Y.; Guo, Y.; Wang, W.; Liang, H.; Huo, S. INHIBITOR: An Intrusion Tolerant Scheduling Algorithm in Cloud-Based
Scientific Workflow System. Future Gener. Comput. Syst. 2021, 114, 272–284. [CrossRef]

33. Nguyen, T.T.; Reddi, V.J. Deep Reinforcement Learning for Cyber Security. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–17.
[CrossRef] [PubMed]

34. Uprety, A.; Rawat, D.B. Reinforcement Learning for IoT Security: A Comprehensive Survey. IEEE Internet Things J. 2021,
8, 8693–8706. [CrossRef]

35. Xiao, L.; Wan, X.; Dai, C.; Du, X.; Chen, X.; Guizani, M. Security in Mobile Edge Caching with Reinforcement Learning. IEEE
Wirel. Commun. 2018, 3, 116–122. [CrossRef]

36. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. Application of Deep Reinforcement Learning to Intrusion Detection for
Supervised Problems. Expert Syst. Appl. 2020, 141, 112963. [CrossRef]

37. Sun, P.; Guo, Z.; Liu, S.; Lan, J.; Wang, J.; Hu, Y. SmartFCT: Improving power-efficiency for data center networks with deep
reinforcement learning. Comput. Netw. 2020, 179, 107255. [CrossRef]

38. Li, H.; Guo, Y.; Sun, P.; Wang, Y.; Huo, S. An Optimal Defensive Deception Framework for the Container-based Cloud with Deep
Reinforcement Learning. IET Inf. Secur. 2022, 16, 178–192. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.23919/JCC.2019.09.017
http://doi.org/10.1016/j.cose.2021.102200
http://doi.org/10.3390/s19224905
http://www.ncbi.nlm.nih.gov/pubmed/31717617
http://doi.org/10.1109/TCC.2018.2814989
http://doi.org/10.23919/JCC.2021.08.009
http://doi.org/10.1109/TNSM.2021.3071774
http://doi.org/10.1049/iet-ifs.2018.5279
http://doi.org/10.1016/j.future.2020.08.004
http://doi.org/10.1109/TNNLS.2021.3121870
http://www.ncbi.nlm.nih.gov/pubmed/34723814
http://doi.org/10.1109/JIOT.2020.3040957
http://doi.org/10.1109/MWC.2018.1700291
http://doi.org/10.1016/j.eswa.2019.112963
http://doi.org/10.1016/j.comnet.2020.107255
http://doi.org/10.1049/ise2.12050

	Introduction
	Related Work
	Container Security
	Microservice Security
	Active Defense Technology
	Deep Reinforcement Learning

	Threat Model
	Problem Modeling
	HSAG Model
	Problem Description

	Detailed Design of the Framework
	Design of OADSF
	Adaptive Security Configuration Algorithm Based on P3DQN

	Simulation and Evaluation
	Simulation Setup
	Comparison Strategy
	Simulation Results

	Conclusions
	References

