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Abstract: At present, compared to 3D convolution, 2D convolution is less computationally expensive
and faster in stereo matching methods based on convolution. However, compared to the initial cost
volume generated by calculation using a 3D convolution method, the initial cost volume generated
by 2D convolution in the relevant layer lacks rich information, resulting in the area affected by
illumination in the disparity map having a lower robustness and thus affecting its accuracy. Therefore,
to address the lack of rich cost volume information in the 2D convolution method, this paper proposes
a multi-scale adaptive cost attention and adaptive fusion stereo matching network (MCAFNet) based
on AANet+. Firstly, the extracted features are used for initial cost calculation, and the cost volume is
input into the multi-scale adaptive cost attention module to generate attention weight, which is then
combined with the initial cost volume to suppress irrelevant information and enrich the cost volume.
Secondly, the cost aggregation part of the model is improved. A multi-scale adaptive fusion module
is added to improve the fusion efficiency of cross-scale cost aggregation. In the Scene Flow dataset,
the EPE is reduced to 0.66. The error matching rates in the KITTI2012 and KITTI2015 datasets are
1.60% and 2.22%, respectively.

Keywords: cost attention; adaptive fusion; attention mechanism; stereo matching

1. Introduction

Computer vision is widely used in autopilot systems, unmanned aerial vehicles,
intelligent manufacturing, augmented reality and other fields. In environments where
human work is limited, computer vision can help with recognition and detection. As a
type of computer vision technology, binocular vision uses binocular cameras to estimate
depth based on stereo matching, and then obtains the three-dimensional information of the
surrounding environment through the obtained depth information. It has high accuracy, a
low cost and a small size and is suitable for complex environments. Binocular vision can be
flexibly applied to intelligent robots, unmanned aerial vehicles and other equipment.

In recent years, compared to traditional methods, binocular stereo matching methods
based on deep learning have seen great improvements in accuracy and speed. Among
these methods, the single-scale method constructs a single cost volume based on the
characteristics of a single-resolution image. This method processes a single cost volume
and requires the use of 3D convolution in convolutional neural networks to improve its
accuracy. However, the use of 3D convolution will increase the number of parameters in
the model, resulting in reduced model speed. However, multi-scale methods, which fuse or
process the images or cost volumes of different resolutions, can not only provide rich feature
information for matching pixel points, but also be used in cost aggregation to improve
the efficiency of matching costs. The multi-scale method combined with 2D convolution
can obtain multi-scale information and aggregate the matching costs of multiple scales,
achieving better results. Moreover, 2D convolution requires fewer parameters and has
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a small impact on model speed. However, using multi-scale methods to improve the
robustness of the edges of objects and areas affected by illumination in real scenes, thus
helping to better identify objects in subsequent 3D reconstruction tasks, remains a difficult
problem to be solved by multi-scale methods. Therefore, investigations into multi-scale
binocular stereo matching methods based on convolutional neural networks have high
research value and significance. The research content and contributions of this article are
as follows:

(1) Improvements have been made to the multi-scale model AANet+ [1], and exper-
iments have been conducted on Scene Flow datasets and other real scene datasets. The
experimental results show that the proposed model significantly improves the disparity in
robustness compared to the benchmark model.

(2) Addressing the problem of low prediction disparity robustness in areas affected
by light in real scenes in multi-scale stereo matching methods, a multi-scale cost attention
module is added to suppress the redundant information and focus on areas affected by
light.

(3) Addressing the problem of information loss caused by cross-scale fusion in multi-
scale stereo-matching methods, an adaptive fusion structure is designed that utilizes a
polarization self-attention mechanism to generate attention and fuse the attention with cost
volumes to reduce information loss.

Based on the above, the research motivation in this article is mainly to reduce disparity
errors in areas affected by light in disparity maps, and make contributions to subsequent
3D reconstruction tasks.

2. Related Works

Stereo-matching methods based on deep learning can be divided into single-scale
stereo matching methods and multi-scale stereo matching methods according to the pro-
cessing methods for different resolution cost volumes. Stereo matching based on multi-scale
methods has been proven to improve the robustness of weakly or non-textured regions in
disparity images. Inspired by traditional multi-scale stereo matching, Zhu et al. combined
multi-scale methods with 3D convolution to obtain multi-scale features through multi-scale
feature extraction and used cross-space pyramids to aggregate context information, improv-
ing the accuracy of multi-scale methods [2]. Inspired by image segmentation algorithms,
Alex et al. proposed GC-Net [3], which uses a concatenation method to aggregate feature
images obtained from feature extraction, concatenates left and right feature images to
obtain cost volumes and uses a multi-scale method to aggregate cost volumes using 3D con-
volution to improve the accuracy of disparity maps. In order to effectively fuse multi-scale
context information, Wu et al. proposed SSPCV-Net [4], which uses a recursive method
to upsample low-resolution cost volumes, utilizes a 3D aggregation module to extract the
multi-level features of cost volumes, gradually completes the fusion of multi-scale cost
volumes and finally obtains a more accurate disparity map through disparity regression.

Shen et al. proposed that in the downsampling stage of the cost volume aggregation
module, the cost volumes of different scales are directly fused, reducing the number of
3D convolutions used and preserving the disparity information for the cost volumes of
different scales [5]. However, this method fails to adjust the disparity search range in a
timely manner, and the generalization ability of the model needs to be improved. For
this reason, Shen et al. proposed CFNet [6], which uses a multi-scale cost volume fusion
method to fuse the cost volumes of different scales as initial cost volumes, obtaining an
initial disparity map and then using a cascade method to adjust the disparity search range
for uncertainties in the initial disparity map. The resolution of the disparity map is thus
gradually improved and refined. This method effectively integrates multi-scale information
and improves the generalization ability of the model.

When the above multi-scale method is used in combination with 3D convolution,
the model’s speed is slow due to the large number of parameters. In order to improve
the prediction effect of the multi-scale method in weak and non-textured regions and to
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improve the speed of the model, Xu et al. proposed AANet [1], in which 2D convolution is
used to establish a stereo matching network, and a multi-scale method is used to aggregate
cost volumes. Deformable convolution is added to the network to achieve an adaptive effect
on the model. Two cost-aggregation modules are proposed: cross-scale cost aggregation
and intra-scale cost aggregation. This method balances the speed and accuracy of the model
well. Li [7] and Jia [8] proposed two model structures, respectively. Their common feature
is the use of an hourglass structure composed of 2D convolutions to aggregate multi-scale
cost volumes, thereby reducing computational complexity and balancing the accuracy
and speed of the model. Syed et al. [9] used multi-scale distortion features to estimate
the disparity and minimize the disparity search range in the cost volume. They used a
refined structure composed of 2D convolutions to process the disparity maps, reducing
computational complexity while maintaining accuracy. Although the above network model
achieves good balance between the accuracy and speed of stereo matching models, multi-
scale information cannot be effectively fused, and its robustness is low in certain areas,
such as object edge areas, foreground areas and occlusion areas.

In order to solve the problem of the high error match at the edges of multi-scale
methods, Xue et al. used lightweight 2D and 3D multi-scale aggregation modules to
aggregate low-resolution cost volumes and utilized multi-scale RGB image guidance for
upsampling, improving the disparity robustness at the edges. However, the prediction
effect on blocked areas and areas affected by lighting in the image is poor [10]. Yang et al.
designed RDNet [11] to design a separate branch to learn edge information. Guided by
edge information, RDNet improves the robustness of boundaries in disparity maps, and
combines multi-scale methods to improve the accuracy of disparity maps. Jeon et al. [12]
combined a multi-scale fusion structure with a cross-scale fusion function, using a staggered
cascade method to combine the cost volumes of different scales. Finally, an adaptive cost
volume loss function was used to estimate the cost. This method improves the disparity
accuracy of the edges. Zhang et al. [13] proposed fusing low-level and high-level features
to preserve image edge information, and designed a multi-scale cost aggregation module to
extract rich global context information, reducing dependence on local information. Unlike
HFMANet [13], Li et al. [14] designed a multi-channel group by group correlation method
to construct cost volumes, and then used an adaptive cost aggregation method to regularize
cost volumes from different scales through intermediate supervision. These two methods
are helpful for disparity estimation in weak texture areas. Tao et al. [15] designed a stereo
matching network with confidence perception unimodal cascaded and fused pyramids,
using confidence graphs to construct a unimodal cost distribution to narrow the disparity
search range. Then, a cross-scale interactive aggregation module is designed to fully utilize
multi-scale information. This method improves the disparity robustness of occluded areas
in disparity maps. Most of the methods mentioned above focus on the low robustness of
edges and weak texture areas. However, in real scenes, objects are easily affected by light
and become difficult to estimate disparity. Therefore, this paper proposes a multi-scale
cost attention and adaptive fusion structure, which alleviates the problem of low disparity
robustness in illuminated areas in real-scene datasets using multi-scale methods. In the
Scene Flow dataset, the method proposed in this article further reduces endpoint errors
and improves disparity robustness in non-textured regions and small structures.

3. Methods

Addressing the problem of the cost volume information in 2D convolution methods
not being rich, a multi-scale cost attention stereo matching network is designed based on
AANet+. The network structure is composed of feature extraction, cost construction, cost
aggregation and disparity regression. Multi-scale feature fusion in AANet+ is adopted
to improve the efficiency of feature extraction. In this paper, the cross-correlation layer is
used to construct the cost volume, and a multi-scale cost attention module is proposed to
generate the cost attention, multiply it with the initial cost, suppress redundant information
and enhance the reliable information. For cost aggregation, this paper designs a multi-scale
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adaptive fusion module, which inputs the intra-scale cost into the multi-scale adaptive
fusion module to improve the fusion efficiency. In the multi-scale attention module, the
three scales of cost volume are input into the attention module, the generated attention is
multiplied with the cost volume, and the results are fused to enhance the consistency of cost
volume, reducing the inconsistencies in the cost characteristics caused by the direct fusion
of different-scale cost volumes and improve the efficiency of cross-scale fusion. Finally, the
soft argmin method is used for disparity regression. The structure is shown in Figure 1:

Figure 1. Stereo matching network with multi-scale cost attention and self-use fusion.

3.1. Feature Extraction and Multi-Scale Cost Attention

In AANet+, a cascade U-shaped network is used for feature extraction, and then
three scales of convolution layers are used to output feature maps with 1/3, 1/6 and
1/12 resolutions, respectively. In order to improve the efficiency of feature extraction,
deformable convolution is added. Unlike ordinary convolution, deformable convolution
can add an offset to the sample points and adaptively sample the feature points to a specific
location. The structure is shown in Figure 2.

Figure 2. The feature fusion structure in AANet+, in which L1, L2, L3 and L4 are deformable
convolutions and the rest are standard 2D convolutions.

In Figure 2, L1, L2, L3 and L4 are deformable convolution layers, and the features are
fused by feature splicing, which can reduce the loss of feature information. There is a lack
of improvement in the cost construction method in stereo matching networks based on 2D
convolution. After feature extraction, most stereo matching networks use relevant layers
similar to FlowNetC [16] to structure the cost. This method uses a matrix product, which is
fast, but its accuracy is lower than that of the grouping cost volume method in GwcNet [17].
Therefore, multi-scale adaptive cost attention is added to the cost calculation to improve
the accuracy of the initial cost volume. In contrast to ACVNet [18], this module adopts
2D convolution. After adaptive selection by deformable convolution [19], the cost volume
is input into the pyramid structure with an attention mechanism to refine multi-scale
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information, further enrich the cost volume, improve the attention accuracy of the cost and
make up the gap between 2D convolution and 3D convolution. Taking the cost volume
with 1/3 resolution as an example, the multi-scale adaptive cost attention module is shown
in Figure 3.

Figure 3. Multi-scale cost attention structure, where c represents the cost after cost construction and
L1 represents deformable convolution.

Attention weight is used to filter the initial cost volume, allowing the model to pay
attention to useful information and reduce unnecessary information. The method of
calculating the cost volume in the cross-correlation layer is realized by calculating the
similarity between pixels, which becomes unreliable due to the lack of sufficient matching
information, resulting in a disparity map with low accuracy in ill-posed areas, such as
dark areas. Therefore, attention weights are generated by extracting geometric information
from the correlation between a pair of stereoscopic images. Figure 3 illustrates the idea
of multi-scale adaptive cost attention. Multi-scale cost attention can be divided into three
parts. First, the left and right feature maps are obtained from the feature extraction module,
and the cost volume is calculated using the correlation method. Then, after initial adaptive
selection, the cost volume is grouped by channels, including two 1/4 channels and one 1/2
channel. For each pixel, dilated convolution is used to control the expansion rate to ensure
that the range of the receptive field corresponds to the feature map, and to improve the
accuracy of the pixel similarity calculation. Then, the grouped cost volume is spliced into
the given number of channels before grouping, and the spliced cost volume is optimized
through a pyramid-like structure. In pyramid structures, in order not to lose the cost
volume information, a channel attention mechanism [20] is added to improve the accuracy
of the adaptive cost volume attention. Finally, in order to obtain accurate cost attention,
the softmax function is used to obtain the weight of the cost attention and multiply it by
the initial cost volume to obtain the refined initial cost volume. The formula is shown in
Formula (1):

C(d, h, w) =
1
N
〈Fs

l (h, w), Fs
r (h, w− d)〉 ⊗ θ (1)

where
〈

Fs
l (h, w), Fs

r (h, w− d)
〉

represents the inner product of feature vectors, n represents
the number of channels for extracting features, C(d, h, w) represents the calculated cost, ⊗
represents that attention is multiplied by the cost of the initial construction and θ represents
the generated cost attention.

3.2. Multi-Scale Attention Fusion Module
3.2.1. Cost Aggregation in AANet+

In AANet+ [1], there are two methods of cost aggregation: intra-scale cost aggregation
and cross-scale cost aggregation. Intra-scale cost aggregation is completed by deformable
convolution [19,21], and the sampling points are adaptively aggregated to similar disparity
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positions through deformable convolution to solve the problem of disparity discontinuity.
The formula of intra-scale aggregation is shown in Formula (2):

CI(d, p) =
K2

∑
k=1

Wk ∗ C(d, P + Pk + ∆Pk) ∗mk (2)

where CI(d, p) represents the aggregated cost of disparity d at pixel p, k represents the
number of sampling points, Wk represents the aggregation weight and Pk represents the
fixed offset based on the window cost aggregation method. In order to achieve efficient
adaptive aggregation, ∆Pk is added to represent the additional offset that can be learned,
so as to obtain ideal results from edges and thin structures. Mk denotes the position
weight, which is used to control the mutual influence of positions between pixels, thus
strengthening adaptive aggregation. Intra-scale cost aggregation adopts a residual structure,
where the middle convolution layer is a deformable convolution and the rest are ordinary
convolutions, as shown in Figure 4.

Figure 4. Intra-scale cost aggregation.

After intra-scale aggregation, AANet+ designs a similar full-connection method to
aggregate the cost of three different scales of intra-scale aggregation following the idea
of aggregating the cost of different scales in the traditional cross-scale aggregation algo-
rithm [22]. This solves the problem of poor disparity robustness in weakly or non-textured
regions. As shown in Formula (3):

CS =
S

∑
k=1

fk(CIk) (3)

where CS is the cost after cross-scale aggregation, CIk is the cost volume after intra-scale
aggregation and fk is the general function; that is, when k = s, the cost is multiplied by a
fixed value; when k < s, the cost volume is downsampled 2s - k times; and when k > s, the
cost volume is first upsampled to the same resolution and then uses a 1 × 1 conv alignment
channel. However, the cross-scale aggregation method simply adds three different scales
of cost entities. The features of different scales may be inconsistent in scale and semantics.
Direct addition will easily result in the loss of cost information, which will have a certain
impact on the quality of the disparity map.

3.2.2. Adaptive Fusion Module

In view of the problems of cross-scale aggregation in AANet+ [1], a multi-scale adap-
tive fusion module is designed to replace the simple addition structure in cross-scale
aggregation. The attention module uses polarized self-attention to enhance the accuracy of
multi-scale aggregation. The adaptive fusion module formula is shown in Formula (4):

Ĉ = L(C)⊗ CK + CI ⊗ L(C) (4)

where Ĉ is the cost after aggregation, C is the initial fusion cost and CK and CI are the costs
of different scales after cost aggregation within the scale, where CI is the cost multiplied
by a fixed value when k = s and L(C)is the polarizing self-attention module. Taking scale
H/12 as an example, the multi-scale adaptive fusion structure is shown in Figure 5.
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Figure 5. Multi-scale adaptive fusion structure, where C1, C2 and C3 represent the costs of different
scales and ⊗ stands for the multiplication operation.

In contrast to the fusion of attention features (AFF) [23], for the three-input scale cost
volumes, C1 and C2 are the input into the attention module, and the weight is generated
after the input passes through the attention module. The generated attention mechanism
is multiplied by C1 and C2 separately, and then C1 and C2 are fused. Finally, the above
operation is repeated using the fused cost and C3. The cost volume is multiplied with the
corresponding weight generated, and attention is paid to important information and the
cost volume is enriched, thus reducing the information lost by simply fusing the cost. The
added attention module is shown in Figure 6.

Figure 6. Polarized self-attention mechanism.

Most of the attention mechanisms introduced in stereo matching tasks are channel
attention mechanisms, such as in SENet [24], or the combination of channel attention
mechanisms and spatial attention mechanisms, such as in CBAM [20]. Channel attention
can assign the same weight to different spatial positions to improve the accuracy of stereo
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matching tasks. In order to improve the fusion efficiency and improve the accuracy of
the disparity map from the pixel level, the attention mechanism combining the pixel-
level channel self-attention and spatial self-attention [25] is adopted. Firstly, the number
of channels is changed to 1 and C/4 through the convolutional layer. Then, the cost
volume matrix is reorganized through two tensor shaping operators. The cost volume
with one channel is normalized using softmax and multiplied by the cost volume in the
orthogonal direction. Finally, the channel is adjusted through convolution, and channel self-
attention is generated using the sigmoid function. The formula for channel self-attention in
the polarized attention mechanism is as follows:

Cch = σ[F((R(F(C))× So f tmax(R(F(C)))))] (5)

where C represents the cost volume, F represents a convolution layer, R represents the
tensor reshape operator, σ represents the sigmoid and Cch represents the generated channel
cost attention.

In spatial self-attention, the fusion cost volume is firstly folded into 1×1 resolution
features through adaptive average pooling, generating pixel-level spatial attention through
softmax, and H × W high-resolution features are multiplied. Finally, the sigmoid function
is used for mapping to generate the attention mechanism output. The formula for spatial
self-attention in the polarized attention mechanism is as follows:

Csq = σ[R((So f tmax(R((AVG(F(C)))))× (R(F(C)))))] (6)

where Csq represents the generated spatial cost attention and AVG represents average
pooling. The polarization attention mechanism of pixel-level regression is different from
CBAM in that the polarization attention uses softmax and sigmoid in both channel and
space to inject pixel-level attention into features, so as to pay full attention to the cost
information and improve the fusion efficiency.

3.3. Disparity Regression

For each pixel, the soft argmin method [3] is used for disparity regression. The
disparity regression method is differentiable and can return sub-pixel precision disparity,
which is helpful to improve the disparity regression accuracy, so it is applied to the proposed
model. The formula is as follows:

d =
Dmax−1

∑
d=0

d ∗ σ(Cd) (7)

where Dmax−1 represents the maximum disparity, σ represents the sigmoid function, Cd
represents the cost volume obtained through cost aggregation and upsampling and σ(Cd)
can be expressed as the probability of disparity.

3.4. Loss Function

Because the data in the Scene Flow dataset [26] have a large number of truth labels,
the smoothL1 loss function is used to train the Scene Flow dataset:

L =
1
N
∗

N

∑
i=1

smoothL1(dpred, dgt) (8)

where the smoothL1 function is:

smoothL1(dpred, dgt) =

0.5(dpred − dgt)2, i f
∣∣∣dpred − dgt

∣∣∣ < 1∣∣∣dprd − dgt

∣∣∣− 0.5, otherwise
(9)
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where N represents the number of labeled pixels, dpred represents the predicted disparity
and dgt represents the true value of disparity. Because the KITTI [27,28] dataset lacks the
truth label, the KITTI dataset trained by the existing model with good effect is used as the
false label [1]. Therefore, the loss function under the KITTI dataset is:

L =
N

∑
i=1

smoothL1(Di
pred, Dpseudo) (10)

where p represents the pixel, and Dpseudo represents a false label true value.

4. Experiments and Result
4.1. Datasets

Middlebury: The Middlebury [29] dataset consists of four datasets, including data
from 2001, 2003, 2005, 2006, 2014 and 2021. The latest dataset was proposed by Literature
66 and was captured by Middlebury College using a mobile device on a robotic arm.
The latest dataset can be divided into 3000 × 2000 resolution, 1500 × 1000 resolution and
750 × 500 resolution.

Scene Flow: The Scene Flow dataset is a 3D composite dataset, subdivided into the
FlyingThings3D dataset, Driving dataset and Monkaa dataset. The Scene Flow dataset
has a total of over 30000 pairs of training images, with a pixel size of 540 × 960, which
contain abundant training samples and dense disparity maps. It has become a mainstream
pre-training dataset in recent years.

KITTI: The KITTI dataset is a real road scene dataset collected by an international
team through mobile vehicles using laser radar to obtain image depth information and
convert it into disparity. Therefore, the disparity value obtained is relatively accurate. The
dataset contains a total of over 300 pairs of images, including KITTI2012 and KITTI2015.
The KITTI2012 and KITTI2015 datasets use 154 image pairs and 160 image pairs as training
sets, respectively.

4.2. Experimental Setting

This experiment uses the Python framework, and the construction of the network
environment and the training process in the experiment are run on the server configured
as an NVIDIA Tesla T4 GPU. In this paper, four datasets are used for the experiment,
namely Scene Flow, Middlebury, KITTI2015 and KITTI2012. For the Scene Flow dataset,
this experiment was inspired by ACVNet and trained three times. First, the multi-scale
adaptive cost attention was trained, and then the weight of the attention obtained from
the training was frozen for the second training. The second training combined the multi-
scale adaptive attention structure with the backbone network, and the obtained training
parameters were saved. Finally, the weight obtained from the second training was trained
with the final network and the final stereo matching network was obtained. The purpose of
the three training sessions was to obtain a multi-scale cost attention with high accuracy and
keep it intact, so that the model can improve its accuracy on ill-posed areas in the disparity
map after applying the multi-scale cost attention, such as the areas affected by light and
small areas.

In the Scene Flow dataset, the image is randomly cut to a 288 × 576 resolution, and a
verification set size of 540 × 960 resolution is set with an initial learning rate of 0.001 and an
epoch of 64 and optimized using the Adam optimizer (β1 = 0.9, β2 = 0.999). After the 20th
epoch, the learning rate is reduced to once every 10 epochs. For the KITTI2012 dataset, this
experiment uses the pre-training model generated by the Scene Flow dataset for training
and fine-tunes the model parameters. However, for the KITTI2015 and KITTI2012 datasets,
the same strategy as that in [1] is adopted for disparity prediction; that is, the true value
of disparity is used as supervision to improve the accuracy of the model in this dataset.
The maximum disparity is set to 192. In this paper, the model generalization experiment is
carried out in the Middlebury dataset. The pre-training model in the Scene Flow dataset is
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used to test directly on the Middlebury dataset. The resolution of the image is one-quarter
of the resolution.

4.3. Experimental Results Analysis
Ablation Study

In order to verify the effectiveness of the network modules mentioned in this paper,
an ablation experiment was carried out on the Scene Flow dataset. The models’ designs
were compared, and four schemes were used to evaluate the proposed model.

The first scheme is the training reference network, and the resulting endpoint error
is 0.831. The percentage of difference outlier (D1) is 0.340, the proportion of pixels with a
prediction error greater than 1PX is 0.0880, the proportion of pixels with a prediction error
greater than 2PX is 0.0534 and the proportion of pixels with a prediction error greater than
3PX is 0.0405.

The second scheme is to train the network with multi-scale cost attention, and the
resulting endpoint error is 0.776. The percentage of difference outlier (D1) is 0.304, the
proportion of pixels with a prediction error greater than 1PX is 0.0918, the proportion
of pixels with a prediction error greater than 2PX is 0.0509 and the proportion of pixels
with a prediction error greater than 3PX is 0.0368. When the multi-scale cost attention is
added separately, the key information in the cost volume is focused, and the redundant
information is reduced, so all errors are greatly reduced.

The third scheme is to train the network model with multi-scale adaptive fusion, and
the resulting endpoint error is 0.783. The percentage of a difference outlier (D1) is 0.332,
the proportion of pixels with a prediction error greater than 1PX is 0.0908, the proportion
of pixels with a prediction error greater than 2PX is 0.0516 and the proportion of pixels
with a prediction error greater than 3PX is 0.0386. When the adaptive fusion module is
added separately, it reduces the loss of price information in the cross-scale aggregation of
the network model, so the error decreases.

The fourth scheme is the network proposed in this chapter, and the resulting endpoint
error is 0.664. The percentage of difference outlier (D1) is 0.227, the proportion of pixels
with a prediction error greater than 1PX is 0.0638, the proportion of pixels with a prediction
error greater than 2PX is 0.0369 and the proportion of pixels with a prediction error greater
than 3PX is 0.0271.

The results of the whole ablation experiment are shown in Table 1, where D1 represents
the pixel proportion of the first frame image prediction error, and 1PX, 2PX and 3PX
represent the errors of the pixel points. The values of these four indicators are in the form
of percentages. From the table, we can see that the network proposed in this paper has the
lowest error in the ablation experiment.

Table 1. Ablation experiment of network models.

EPE D1(%) 1PX(%) 2PX(%) 3PX(%)

Baseline 0.831 3.40 8.80 5.34 4.05
Multi-scale cost attention 0.776 3.04 9.18 5.09 3.68
Multi-scale adaptive fusion 0.783 3.32 9.08 5.16 3.86
MCAFNet 0.664 2.27 6.38 3.69 2.71

4.4. Generalization Study

The visualization results are as follows:
In Figure 7, the first column is the original image, the second column is the pre-

dicted disparity map for AANet+ and the third column is the predicted disparity map
for MCAFNet. As can be seen from the figure, MCAFNet has a low mismatch rate in
non-textured areas such as chairs and human faces.
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Figure 7. Visual comparison of the pre-training model in the Scene Flow dataset on the Middlebury
dataset. The first column is the original image, the second column is the visualization result of
AANet+ and the third column is the visualization result of our network.

Addressing the generalization performance of the proposed model, a generalization
experiment is carried out in the Middlebury [29] dataset. For the generalization experiment,
both the model in this paper and the benchmark network model adopt the pre-training
model of the Scene Flow dataset, and the comparison index is the percentage of pixels
with errors larger than 2 pixels (Bad2.0), that is, the error ratio is under 2 pixels. As
shown in Table 2, although the speed difference between the proposed network and the
benchmark network model AANet+ is 0.05 s, the error matching rate of MCAFNet is 20%
lower than AANet+.

Table 2. The generalization experiment of our network and benchmark model AANet+.

Network Bad2.0 Time (s)

AANet+ [1] 50.7 0.16
MCAFNet 40.3 0.21

4.5. Comparative Experiment
4.5.1. Comparative Experiments on the Scene Flow Dataset

For the Scene Flow dataset, Table 3 reflects the quantitative evaluation results of this
network and GC-Net, PSM-Net, AANet and AANet+. The evaluation indicators used in
this paper are the end point error (EPE) and time. For the Scene Flow dataset, we can
see from Table 3 that the MCAFNet method proposed in this paper has better accuracy.
Compared with AANet, the difference in speed of the network proposed in this paper is
0.15 s, and only 0.05 s compared with the reference network AANet+. Compared with other
3D convolution-based network models, namely PSM-Net and GC-Net, the speed of the
network proposed in this paper is 48% and 76% higher, respectively. In terms of accuracy,
the end point error of the network mentioned in this chapter is approximately 20% lower
than that of AANet+. Compared with the PSNet and GCNet network models, the precision
of the network proposed in this paper decreased by 39% and 73%, respectively.
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Table 3. Comparison of indicators of different networks on the Scene Flow dataset.

Network EPE Time (s)

AANet [1] 0.88 0.06
PSMNet [30] 1.09 0.41

GCNet [3] 2.51 0.90
AANet+ [1] 0.83 0.16
MCAFNet 0.66 0.21

On the Scene Flow dataset, the proposed network is visually compared with the
reference network model AANet+. The visual comparison results are shown in Figure
8. It can be seen from the red box in Figure 8 that, compared with AANet+, MCAFNet’s
predicted disparity map is closer to the true disparity map. Compared with the reference
network, it improves the accuracy in the case of a small speed difference.

Figure 8. Visualization results on the Scene Flow dataset. The red box represents the comparison
between MCAFNet and AANet+. The first column is the original map, the second column is the true
value map of disparity, the third column is the predicted disparity map of AANet+ and the fourth
column is the predicted disparity map of MCAFNet.

4.5.2. Comparative Experiments on the KITTI2012 Dataset

In this paper, the evaluation indicators provided by the KITTI dataset are used for
comparison. The comparison indicators of the KITTI 2012 dataset are the non-occluded
area error (Noc) of 2PX(pixel), 3PX (pixel) and 5PX (pixel) and all area errors (All). It can be
seen from Table 4 that, compared with AANet+, the error of MCAFNet in the non-occluded
area on the KITTI2012 dataset is significantly reduced. Under the evaluation indicators of
2, 3 and 5 pixels in all areas, the error of the network mentioned in this paper is reduced by
0.35, 0.07 and 0.04, respectively, which proves that the prediction of disparity of the network
mentioned is more accurate than that of the reference network. Compared with GCNet
and ERSCNet, MCAFNet has a good performance in error matching rate in the comparison
results of 3 pixels and 5 pixels. At 3 pixels, the Noc mis-matching rate decreases by 9.6% and
11%, respectively. With the exception of SegStereo [31], iResNet-i2 [32] and MSDCNet [33],
the network in this paper has the lowest Noc and All mismatch rates compared with the
remaining network models.
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Table 4. Comparative experiment on the KITTI2012 dataset.

Network 2PX 3PX 5PX
Noc(%) All(%) Noc(%) All(%) Noc(%) All(%)

AANet [1] 2.90 3.60 1.91 2.42 1.20 1.53
ERSCNet 2.97 3.66 1.80 2.30 1.04 1.36
GCNet [3] 2.71 3.46 1.77 2.31 1.12 1.46

iResNet-i2 [32] 2.69 3.34 1.71 2.16 1.06 1.32
SegStereo [31] 2.66 3.19 1.68 2.03 1.00 1.21
MSDCNet [33] 2.71 3.37 1.63 2.09 0.98 1.26

AANet+ [1] 2.62 3.40 1.71 2.15 1.22 1.38
MCAFNet 2.40 3.05 1.60 2.08 1.02 1.34

The comparison results of this model with AA-Net+ and iResNet-i2 on the KITTI2012
dataset are shown in Figure 9. The comparison results are provided by the KITTI dataset.
In Figure 9, the first line is the original map, the second line is the iResNet-i2-predicted
disparity map and the third line is the AANet+-predicted disparity map. The fourth line is
the GCNet-predicted disparity map. The fifth line is the AANet-predicted disparity map.
The sixth line is the prediction disparity map of the network proposed in this paper. It
can be seen from the red box mark in the error map that, compared to other multi-scale
methods, our proposed model can better predict disparity in the illuminated area.

Figure 9. Visualization results on the KITTI2012 dataset. The first line is the original image, and
the second, third, fourth, fifth and sixth lines are the error map and disparity map of iResNet-i2,
AANet+, GCNet, AANet and our network, respectively. The red box represents a comparison
between MCAFNet and other network models.

4.5.3. Comparative Experiments on the KITTI2015 Dataset

The comparison results of this model and AA-Net+ on the KITTI2015 dataset are
shown in Figure 10. The comparison results are provided by the KITTI dataset. In Figure 10,
the first line is the original map, the second is the predicted disparity map of AANet+. The
third line is the error diagram of GCNet. The fourth line is the error map of AANet, and
the fifth line is the error map of our proposed model network. From the red box mark in
the figure, compared to other multi-scale methods, our proposed model can better predict
disparity in the illuminated area.
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Figure 10. The visualization results on the KITTI2015 dataset, in which the first line is the original
map, the second line is the visualization results of AANet+, the third line is the error map of GCNet,
the fourth line is the error map of AANet and the fifth line is the error map of our proposed model
network.The red box represents a comparison between MCAFNet and other network models.

The evaluation index provided by the KITTI2015 dataset is used for comparison. The
comparison index of the KITTI2015 dataset is the proportion of predicted error pixels in the
foreground area (D1 fg), background area (D1 bg) and all areas (D1 all) in the first frame of
the image. It can be seen from Table 5 that compared with BGNet [34], FADNet [35] and
AA-Net+ in the KITTI2015 dataset, the network in this paper has a good performance in
the false matching rate of the background area and all areas in the first frame of the image.
Compared with the reference network AANet+, the false matching rate of all areas has
decreased by 2.6%. Compared with PSMNet, the mismatch rate of all regions decreased by
4.3%. MCAFNet has the lowest error matching rate in the background area and all areas in
the first frame of the image.

Table 5. Comparative experiment on the KITTI2015 dataset.

Network Noc All
D1-fg(%) D1-bg(%) D1-All(%) D1-fg(%) D1-bg(%) D1-All(%)

MADNet [36] 8.41 3.45 4.27 9.20 3.75 4.66
SMV [37] 8.82 3.28 4.20 9.32 3.45 4.43

Reversing-PSMNet [38] 8.33 2.97 3.86 8.70 3.13 4.06
DSMNet-synthetic [39] 6.19 2.84 3.34 6.72 3.11 3.71

ACOSF [40] 7.23 2.58 3.35 7.56 2.79 3.58
BGNet [34] 4.34 1.91 2.31 4.74 2.01 2.51

AdaStereo [41] 5.06 2.39 2.83 5.55 2.59 3.08
PVStereo [42] 5.73 2.09 2.69 6.50 2.29 2.99
SegStereo [31] 3.70 1.76 2.08 4.07 1.88 2.25

Separable Convs [43] 3.77 2.68 2.03 4.36 1.90 2.31
FADNet [35] 2.61 2.35 2.39 3.10 2.50 2.60
PSMNet [30] 4.31 1.71 2.14 4.62 1.86 2.32
AANet+ [1] 4.16 1.89 2.11 4.68 1.96 2.28
MCAFNet 3.92 1.61 1.99 4.48 1.77 2.22

5. Conclusions

With the aim of addressing the problem of cost construction using 2D convolution, a
multi-scale cost attention and adaptive fusion network based on AANet+ is proposed. The
network inputs the initial cost volume obtained from cost construction into the multi-scale
cost attention structure, and multiplies the obtained cost attention with the initial cost
volume, reducing redundant information and improving the accuracy of the initial cost
volume. The network improves the cross-scale aggregation in cost aggregation. It improves
the addition to multi-scale attention fusion, adds an attention mechanism, enriches multi-
scale cost information and improves the efficiency of cross-scale cost aggregation. Our
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experiments show that the end point error of the proposed network in the Scene Flow
dataset is 39% and 73% lower than those of PSMNet and GC-Net, respectively. The end
point error of our proposed network is 20% lower than AANet+, and the error matching
rates in the KITTI2012 and KITTI2015 datasets are 1.60% and 2.22%, respectively. Compared
with the reference network, the proposed network improves the robustness of the areas
affected by light in real scenes.
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Abbreviations
The following abbreviations are used in this manuscript:

MCAFNet Multi-scale cost attention and adaptive fusion network
EPE End point error
1/2/3PX 1/2/3 pixel
D1 The percentage of difference outlier
Bad2.0 The percentage of pixels with errors larger than 2 pixels
fg Foreground
bg Background
Noc Non-occluded area
All All areas
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