
Citation: Zhuang, B.; Zhang, C.; Hu,

Z. Self-Supervised Skill Learning for

Semi-Supervised Long-Horizon

Instruction Following. Electronics

2023, 12, 1587. https://doi.org/

10.3390/electronics12071587

Academic Editor: Fernando De la

Prieta Pintado

Received: 26 January 2023

Revised: 22 March 2023

Accepted: 22 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Self-Supervised Skill Learning for Semi-Supervised
Long-Horizon Instruction Following
Benhui Zhuang 1 , Chunhong Zhang 2 and Zheng Hu 1,*

1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China; zhuangbenhui@bupt.edu.cn

2 Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts
and Telecommunications, Beijing 100876, China; zhangch@bupt.edu.cn

* Correspondence: huzheng@bupt.edu.cn

Abstract: Language as an abstraction for hierarchical agents is promising to solve compositional
long-time horizon decision-making tasks. The learning of the agent poses significant challenges,
as it typically requires plenty of trajectories annotated with languages. This paper addresses the
challenge of learning such an agent under the scarcity of language annotations. One approach for
leveraging unannotated data is to generate pseudo-labels for unannotated trajectories using sparse
seed annotations. However, as the scenes of the environment and tasks assigned to the agent are
diverse, the inference of language instructions is sometimes incorrect, causing the policy to learn
to ground incorrect instructions to actions. In this work, we propose a self-supervised language-
conditioned hierarchical skill policy (SLHSP) which utilizes unannotated data to learn reusable and
general task-related skills to facilitate learning from sparse annotations. We demonstrate that the
SLHSP that learned with less than 10% of annotated trajectories has a comparable performance to
one that learned with 100% of annotated data. Our approach to the challenging ALFRED benchmark
leads to a notable improvement in the success rate over a strong baseline also optimized for sparsely
annotated data.

Keywords: semi-supervised learning; language grounding; skill learning

1. Introduction

Application areas such as robotics and finance typically involve long-horizon com-
positional decision-making tasks, and natural language as an abstraction for hierarchical
policies is a promising paradigm for solving these tasks. As a type of hierarchical policy that
applies language representations, latent language policy (LLP) maps from a high-level goal
to a sequence of natural language instructions, and then the policy grounds these instructions
into actions. Here, the grounding of a language instruction into actions involves associating
the language instruction with a sequence of actions that reflect its meaning and meet its
requirements. However, existing LLP methods assume either short-time horizon tasks [1,2]
or fully-supervised datasets that include both the mapping from high-level goals to instruction
sequences and the mapping from instructions to actions [3–5]. An annotated trajectory, as
shown in Figure 1, contains a high-level task goal, a set of annotated language instructions
(in red), and alignments between instructions and state–action pairs. As manually annotat-
ing such a dataset is time-consuming and expensive, it is extremely challenging to scale up
such fully-supervised methods in complex environments and long-horizon tasks.

To obviate the need for a large number of language annotations, existing methods
either resort to exploiting supervision with information in various modalities (e.g., a
voxel map) [3,6], pre-trained models [7–10], instructions generated using rule-based tem-
plates [11], or unannotated data [12,13]. The focus of our work is to leverage unannotated
trajectories in a sparsely annotated dataset, in which less than 10% of trajectories are annotated
with natural language instructions to learn an LLP. To achieve this, previous studies [12–15]

Electronics 2023, 12, 1587. https://doi.org/10.3390/electronics12071587 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071587
https://doi.org/10.3390/electronics12071587
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5062-2460
https://orcid.org/0000-0003-3008-1887
https://orcid.org/0000-0002-8874-5466
https://doi.org/10.3390/electronics12071587
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071587?type=check_update&version=1

Electronics 2023, 12, 1587 2 of 18

propose utilizing unannotated trajectories through pseudo-label generation [16], which aug-
ments unannotated trajectories with pseudo-instruction labels. Specifically, it labels unan-
notated trajectories with language instructions predicted by a model trained for labeling.
However, as the scenes of the environment and tasks assigned to the agent are diverse, the
inference of language instructions is sometimes incorrect. In this case, the policy learns to
ground incorrect instructions to actions, which deteriorates the performance of the LLP;
this problem is exacerbated as the amount of available annotation decreases. This problem
of overfitting to incorrect pseudo-labels is called confirmation bias [17].

adapt

Se
m

i-S
up

er
vi

se
 P

ol
ic

y
Le

ar
ni

ng

Annotated

Trajectory

Unannotated

Trajectory

Place a
candle on a
metal cart.

Move candle
from counter
to toilet.

Goal

Go to the
toilet.

Pick up the candle
on the toilet tank.

Go to
the cart.

Place the candle on the
top shelf of the cart

Instruction

Annotations

MoveAhead MoveAhead Pickup

Goal MoveAhead MoveAhead MoveAhead Pickup

Skill Posterior

Language-Conditioned
Skill Prior

Learn

Learn

Figure 1. Semi-supervised LLP learning with sparse language annotations.

To alleviate the problem of confirmation bias, we propose a self-supervised language-
conditioned hierarchical skill policy (SLHSP). The SLHSP exploits unannotated trajectories
by learning a generative model for reusable and task-general action segments called “skills”
through self-supervised learning. The learned skill representation facilitates the grounding
of instructions into action sequences. Instead of labeling skill trajectories (action segments)
with pseudo-labels (instructions) and learning a mapping between the two symbolic spaces
(the space of word sequence and the space of action sequence), the SLHSP grounds language
instructions directly to the internal skill space of the generative model. This internal skill
space is structurally organized and can be seen as a continuous and regularized version of the
symbolic action sequence space. These two properties make the grounding of instruction
efficient, bypassing the need for augmentation to the annotated trajectories and avoiding
the error introduced by incorrect labeling.

Specifically, Figure 1 illustrates the use of unannotated data to learn a latent skill space
for effective grounding of language instruction. As mentioned previously, a sampled skill in
the latent skill space corresponds to an action sequence. Grounding language instructions
into symbolic action sequences is equivalent to first aligning language instructions with
latent skill variables and then decoding the latent skill variables into action sequences by
reusing the learned generative model. The continuous and regularized nature of the latent
skill space makes it data-efficient in aligning instruction features with latent skill variables.
More concretely, this aligning process encodes natural language instruction features into
the same vector space as latent skills. The target feature vector for a given language
instruction is obtained by encoding the corresponding annotated trajectory using the
learned generative model, and this process can be seen as “pseudo-latent label generation”.
The major challenge in learning the aforementioned latent skill space is determining
reusable and general task-related actions’ segments as skills to handle the combinatorial
complexity of the task. To address this challenge, the SLHSP learns a novel high-level
separator policy, supervised by annotated data, to preprocess the unannotated trajectories,
and extracts action sequences that meet the above requirements.

Electronics 2023, 12, 1587 3 of 18

In the experiments, we show that grounding language to the learned skill space
through the aforementioned skill requires less than 10% of language annotations. The
SLHSP outperforms semi-supervised baselines and shows a performance comparable to
that of existing state-of-the-art methods that utilize additional inputs or prior knowledge in
both training and evaluation. Experiments visualizing the latent skill variable demonstrate
that the learned skills are structurally organized.

The main contributions of this work are summarized as follows.

• We propose a self-supervised latent skill space with reusable and general task-related
skills that can be effectively applied to a wide range of instruction following tasks.

• We propose an annotation-efficient method for the learning of the LLP.
• We propose an efficient grounding method that aligns instructions and learned skills

in a latent space.

2. Related Work

The scarcity of annotated data presents a challenge in handling long-horizon instruc-
tion following tasks. Existing works have extensively studied this issue, either by exploiting
external knowledge (e.g., large language models, human feedback, or pre-defined tem-
plates) or by designing efficient policies to utilize unannotated data. In this section, we first
review previous approaches that solve the scarcity problem by utilizing external knowledge,
and then compare the SLHSP with existing approaches that utilize unannotated data.

2.1. Utilizing External Knowledge

Additional supervisions for training and additional agent observations are two types of
external knowledge. For example, several studies have applied rule-based symbolic plans
as an additional supervision for training [3,4,6]. Existing LLP methods typically provide
step-by-step natural language instructions to actions as additional language observations
to the agent [18–20]. In addition to language observations, [21] uses multiple visual
observations around the agent for better sensing of the environmental state. Depth and
semantic visual information is also utilized to learn a persistent spatial representation (e.g.,
a voxel map) [3,6], which provides the agent with a holistic view of the environmental
state. Contrary to these works, the SLHSP assumes no additional supervisions for training
and additional observations. The SLHSP utilizes unannotated data to reduce the cost of
data annotation.

Large language models (LLMs) have demonstrated success in few-shot learning on vision-
language-related tasks. In vision-language navigation and manipulation tasks, LLMs enable
the agent to reason in novel scenarios using language instructions [10,22]. The inferred
instruction plan can be semantically translated to admissible actions conditioned on existing
demonstrations [7]. Li et al. [8] investigated how LLMs adapt to sequential decision-making
problems, while Huang et al. [9] avoid relying on expert demonstrations by leveraging
language feedbacks. Unlike these works, which ground language instruction into actions
relying on LLMs, the SLHSP utilizes knowledge extracted from unannotated data.

Rule-based semantic parsing converts task goals into symbolic logic expressions which
incorporate prior knowledge from designed rules. For example, the task goal is mapped
to lambda calculus expressions [23] or linear temporal logic [24], and then these template
expressions are interpreted into agent actions through fixed rules. However, instead of
parsing task goals through predefined rules, the SLHSP reasons through natural language
instructions, making it more feasible in environments with complex state and action spaces.

2.2. Utilizing Unannotated Data

Generation pseudo-labels for unannotated trajectories is commonly used to augment
them so that the labeled data can be utilized for supervised learning of the policy. Sharma
et al. [12] proposed learning a model from sparse annotation in order to segment unannotated
trajectories into semantically meaningful segments and label the segments with language
instructions. Combined with the annotated data, the labeled data are leveraged in the

Electronics 2023, 12, 1587 4 of 18

imitation learning of the language-conditioned policy. Similarly, Xiao et al. [13] analyzed
the generation of pseudo-labels through a pre-trained vision-language model. In the
context of reinforcement learning, existing works relabel collected experiences with ei-
ther a hard-coded [15] or a learned label generator [14]. Instead of labeling unannotated
trajectories with pseudo-language instruction labels, the SLHSP utilizes unannotated tra-
jectories through self-supervised learning to avoid the introduction of errors caused by
incorrect labeling.

Learning modules that generate reusable actions segments are also a promising ap-
proach to utilizing unannotated trajectories, and these modules are typically called skills.
These skills can be learned from unannotated trajectories collected from an expert pol-
icy [20], a suboptimal behavior policy [25,26], or even a random policy [25]. Thus, the
rich source of trajectory data makes this type of method widely applicable. As skills in
LLPs are required to execute language instructions, we categorize these methods according
to how the language instructions are associated with the learned skills. In the context of
reinforcement learning, associating instructions with skills has been studied with either a
teacher policy (e.g., a human teacher) or a rule-based policy that provides instruction labels
as supervision [2,14,27,28], short-horizon tasks [25] or synthetic languages [29]. Contrary
to these works, the SLHSP assumes long-horizon tasks and natural language instructions.
In the context of imitation learning, Lynch et al. [30] associate learned skills with language
instructions through a goal space defined by goal images, and only the image of the final
goal state is used to represent each sampled skill. In contrast, the SLHSP defines skills in
a space wherein each sample is conditioned on the entire trajectory sequence so that it is
applicable for complex tasks whose goal state cannot be fully expressed by a single image.

3. Method

The aim of our work is to learn a latent language policy, which is a hierarchical policy
that applies languages as the intermediate representation, for long-horizon compositional
tasks using only sparsely annotated trajectories. The essential idea through which the
SLHSP will reach this target is the utilization of unannotated trajectories to facilitate
the grounding of language instructions into actions and reduce the number of required
language annotations. To alleviate the problem of confirmation bias [17], the SLHSP avoids
augmenting unannotated trajectories through pseudo-labels, and utilizes these trajectories
by learning reusable skills through self-supervised learning.

Learning reusable skills and grounding language instructions to learned skills are the two
essential processes of the SLHSP. Using only unannotated datasetD, the learning of reusable
skills is formulated by learning general and reusable action segments that can be temporally
composed to solve tasks. The extracted skills are represented by a continuous latent
variable z ∈ Z , where Z is the latent skill space. Given a small annotated dataset Dann,
the grounding of language instructions to learned skills is defined as mapping a language
instruction to a skill distribution over the latent skill space Z so that the sampled latent
skill is decoded into an action sequence that follows the instruction.

The SLHSP has three components, which we will describe in this section: (1) reusable
skill extraction from unannotated data through self-supervised learning, (2) prior skill
adaptation from sparsely annotated data for grounding natural language instructions to
the learned skills, and (3) language plan generation for composing repeated subtasks into
a long-horizon task through natural language instructions. Figure 2 provides a graphical
overview of the SLHSP.

Electronics 2023, 12, 1587 5 of 18

Fixed Prior

Skill Posterior

Learned Skill Prior

adapt

Latent Skill Space

 (inference)

Planner

Place a candle on
a metal cart.Goal

Go to the toilet.

Go to the cart.

Annotations

Pick up the candle
on the toilet tank.

Place the candle on the
top shelf of the cart.

Move candle from counter to toilet.Goal

 (train)

Skill Prior

Annotated Trajectory from

Skill Encoder
 Skill Decoder

Unannotated Trajectory from

Subtask segmented by

Figure 2. Architecture of the SLHSP. The skill encoder and decoder are self-supervised on D, while
the skill prior, planner and separator are supervised using annotated trajectories Dann.

3.1. Problem Formulation

The SLHSP aims to solve long-horizon instruction following tasks which are formu-
lated as a Markov decision process (MDP) defined by a tuple {S ,A, T , R, γ} of states,
actions, transition probabilities, reward functions, and discount factors. At each time step,
the agent obtains a state st and outputs an action at, which is executed in the environment,
resulting in the transition to the next state st+1 according to T . The task goal for the agent
is defined by a high-level description written in natural language.

We assume access to two sets of expert trajectories: a large unannotated dataset
D and a small annotated dataset Dann. In the annotated dataset Dann, a trajectory τann

i
is annotated with multiple step-level language instructions {g1, . . . , gj, . . . }, and each
state–action pair in τann

i is aligned with an annotated instruction to form a state–action–
annotation pair {(st, at, gj)}

t=Ti
t=1 , where Ti is the length of τann

i . Here, we define the state–
action sequence aligned with a language instruction as a subtask. Thus, the trajectory τann

i is
segmented into several subtasks, and each subtask corresponds to an annotated language
instruction gj. We use τann,j to denote the jth subtask trajectory in the annotated trajectory
τann

i . For example, a task j with goal Ij = Examine a clock with a lamp in Dann has a set
of language annotations {g1 = Go to the dresser, g2 = Pick up the clock that is on the dresser,
g3 = Hold it up to the lamp, g4 = Turn the lamp on}, and the trajectory τann

j is segmented into

subtasks by sequentially aligning each step with a language annotation {(st, at, gj)}
t=Tj
t=1 .

However, in the unannotated dataset D, both the language annotations and segmentations
are unavailable. As an example, a task i with goal Ii = Turn lamp on to look at clock in D has
only a state–action trajectory τi = {(st, at)}t=Ti

t=1 .

3.2. Reusable Skill Extraction

The basic idea of reusable skill extraction from unannotated trajectories is to learn
a generative model of action sequences (skills) that can be applied across tasks. A skill
am:n is defined as a sequence of actions {am, . . . , an} of variable length. As the learned
skills should be reusable and general, the boundary m and n of a skill in an unannotated
trajectory determines the quality of the extracted skill. As there is no information in D
to indicate the appropriate boundary for skills, the SLHSP resorts to the information in
Dann. Supervised by the annotated subtasks, the SLHSP learns a subtask separator policy
πh,se

ψ (discussed in Section 3.4). The learned separator policy is then applied to preprocess

Electronics 2023, 12, 1587 6 of 18

the unannotated trajectories, and each task trajectory τ is segmented into multiple subtask
trajectories τ =

{
τ1, . . . , τ j, . . .

}
to help extract reusable and task-general skills.

Inspired by [31], the SLHSP learns a low-dimensional skill spaceZ through a stochastic
latent variable model (see Figure 2) from the segmented trajectories. Formally, assuming
that m and n are starting and ending points of a subtask trajectory τ j determined by the
separator policy πh,se

ψ , encoding the subtask information requires learning an encoder
q(z | sm:n) and a decoder p(sm:n | z), where sm:n is the state sequence from step m to step n.
These two models are learned by using the amortized variational inference [32], and the
objective is to maximize the evidence lower bound (ELBO):

log p(sm:n) ≥ log p(sm:n | z)︸ ︷︷ ︸
Lrec

+β (log p(z)− log q(z | sm:n))︸ ︷︷ ︸
Lreg

. (1)

Here, Lrec is the reconstruction term and β is a hyperparameter used to weight the regu-
larization term [33], which is denoted as Lreg. Note that the reconstruction of the state’s
sequence sm:n depends on the transition probability T of the environment in which the
agent acts. This is because the agent cannot directly determine what the upcoming states in
the future are, but instead affects future states through predicted actions. Considering the
transition probability T (si+1 | si, ai), the reconstruction term Lrec in Equation (1) can be
rewritten as follows:

log p(sm:n | z) = log p(sm)
n

∏
i=m

T (si+1 | si, ai)︸ ︷︷ ︸
transition probability

p(ai | si, z). (2)

On the right-hand side of Equation (2), the transition probabilities are determined by the en-
vironment. This indicates that the skill decoder should reconstruct the subtask trajectory by
predicting actions that result in sm:n. Therefore, optimizing the agent’s parameters accord-
ing to the reconstruction loss in Equation (1) is equivalent to optimizing the following term:

Lrec = log p(sm)
n

∏
i=m

p(ai | si, z). (3)

Replacing the reconstruction loss in Equation (1) with Equation (3), the evidence lower
bound is formulated:

log p(sm:n) ≥ log p(sm)
n

∏
i=m

p(ai | si, z) + β log p(z)− log q(z | sm:n). (4)

With subtask trajectories from the preprocessed unannotated dataset D, the learning of
the skill encoder qφ, parameterized by φ, and the skill decoder pθ , parameterized by θ, is
carried out to maximize the following lower bound:

log p(sm:n) ≥ Eτj∼D,z∼qφ(z|sm:n)

[
log

n

∏
i=m

pθ(ai | si, z) + β
(
log p(z)− log qφ(z | sm:n)

)]
, (5)

where pθ and qφ are modeled as deep neural networks. The prior p(z) is set to be a unit
Gaussian N (0, I). To support the prediction of actions with historical decision information,
the skill decoder pθ(at | st, at−1, z) is augmented with previous action at−1 as an input
when decoding each action. More details about the implementation of the skill encoder
and decoder are discussed in Section 3.5.

As this learning process requires no language annotations, the dataset D can be
collected via automatically generated trajectories through other learned or rule-based
agents. The overall procedure of latent skill space learning is presented in Algorithm 1.

Electronics 2023, 12, 1587 7 of 18

Algorithm 1: Latent Skill Space Learning

Input: Parameters θ and φ, learning rates αθ and αφ, number of epochs N, pre-trained πh,se
ψ ,

and unannotated dataset D
Output: Learned parameters θ and φ
Initialize the skill encoder φ and the skill decoder θ.
for n← 0 to N do

repeat
τ ∼ D
(τ1, τ2, . . .)← πh,se

ψ (τ) # segment trajectory into subtasks trajectories

for τ j in (τ1, τ2, . . .) do
(sm:n, am:n)← τ j

z ∼ qφ(z | sm:n)

φ← φ− αφ∇φβ
(
log p(z)− log qφ(z | sm:n)

)
θ ← θ − αθ∇θ log ∏n

i=m pθ(ai | si, ai−1, z)
end

until the last episode τ in D;
end

3.3. Skill Prior Adaptation

Mapping language instructions into action sequences is extremely challenging due
to the complex dynamics and states of the environment. Moreover, the search space of
action sequences increases exponentially with the length of the trajectory. Thus, in such
a large space, grounding language instructions into action sequences is challenging and
requires numerous annotated trajectories to supervise the learning process. To learn from
only sparse annotations, the SLHSP applies the learned skill space Z to the grounding of
language instructions. A language instruction has conditioned the prior skill pρ(z | gj),
parameterized by ρ, it is learned to estimate the distribution of skills that accomplish
the instruction, and the generation of the action sequence is handled by the learned skill
decoder pθ . As illustrated in Figure 2, the target of the skill prior is the posterior distribution,
computed by the skill encoder by encoding the corresponding state trajectory. Thus, the
process of learning the skill prior pρ can be seen as the adaptation of the skill prior to the
posterior qφ. The overall adaptation process is presented in Algorithm 2.

Algorithm 2: Skill Prior Adaptation
Input: Parameters ρ, number of epochs N, learned skill encoder qφ, and annotated dataset

Dann

Output: Learned parameters ρ
Initialize the skill prior ρ.
for n← 0 to N do

repeat
τann ∼ Dann

(τann,1, τann,2, . . .)← τann

for τann,j in (τann,1, τann,2, . . .) do
(sm:n, gj)← τann,j

ρ← ρ− αρ∇ρDKL

(
qφ(z | sm:n) | pρ(z | gj)

)
end

until the last episode τann in Dann;
end

Specifically, the policy minimizes the Kullback–Leibler divergence between the pos-
terior qφ(z | sm:n) and the language-conditioned skill prior pρ(z | gj) on the following
annotated trajectories:

Ladapt(τ
ann,j) = DKL

(
qφ(z | sm:n) | pρ(z | gj)

)
, (6)

Electronics 2023, 12, 1587 8 of 18

where the parameters φ of the skill encoder are fixed during the adaptation. Thus, the
skill posterior qφ(z | sm:n) learned from unannotated trajectories stays unchanged, and the
language conditioned skill prior pρ(z | gj) optimizes its parameters ρ to minimize Ladapt:

argmin
ρ

Eτann,j∼DannLadapt(τ
ann,j). (7)

During the inference, the skill prior pρ(z | gj) and the skill decoder pθ(at | st, at−1, z)
together serve as a language-conditioned policy for the SLHSP. As an LLP, the SLHSP uses
this language conditioned policy as a low-level policy that executes planned language
instructions. Formally, this low-level policy is formulated as

πl
ρ,θ = pρ(z | gj)

n

∏
t=m

pθ(at | z, st, at−1), (8)

With the low-level policy πl
ρ,θ , the SLHSP learns a high-level policy that breaks down the

task goal into multiple language instructions; this is introduced in the next section.

3.4. Planning via Natural Language

The high-level policy of the SLHSP serves two main functions: segmentation of
unannotated trajectories into subtasks for latent skill space learning, and decomposition
of the task goal through language instructions into several subtasks for inference. For the
trajectory segmentation, it learns a separator πh,se

ψ (yt | s1:t, a1:t, I), parameterized by ψ, to
estimate the distribution of yt ∈ {0, 1}, indicating whether the step t is the end point of a
subtask. For the generation of natural language instructions, it learns a subtask describer
πh,de

ω , parameterized by ω. The describer policy samples an instruction ĝj as

ĝj ∼ πh,de
ω (gj | g1:j−1, I), (9)

where j is the index of the current subtask.
Specifically, the learning of the separator πh,se

ψ and the describer πh,de
ω are supervised

by limited annotated data in Dann. The describer πh,de
ω (gj | g1:j−1, I) is initialized with a

pre-trained T5-small model [34], following [12]. During the prediction of gj, the task goal
sentence I is concatenated with the previous subtask instructions g1:j−1 to form a single
sequence of words, and then the planner sequentially decodes words of gj by attending
to these input words. For the separator πh,se

ψ (yt | s1:t, a1:t, I), a transformer model encodes
the multi-modal feature sequence, which includes visual features, action features, and
language features, and classifies whether step t is an end of a subtask. However, in
an episode trajectory, there is only a small portion of end points of subtasks, thus the
classification labels are severely unbalanced. This problem is tackled by adding the inverse
class-type frequency of labels as a weight term to the classification loss.

Note that the focus of this paper is to learn and ground natural languages in a latent
skill space that enables semi-supervised learning of an LLP. The specific design of the
describer policy is orthogonal to our work. Consequently, our implementation of the
describer is only an example; it can be replaced with a broad set of policies that decouple
the task goal I into multiple language instructions.

3.5. Network Architectures

In this section, we introduce the key network architectures used by the SLHSP compo-
nents: the separator πh,se

ψ , the skill encoder qφ, the skill prior pρ, the skill decoder pθ , and

the describer πh,de
ω . These components utilize transformer networks [35] as building blocks.

The encoder network, shown in Figure 3a, fuses the multimodal features for the separator
πh,se

ψ , the skill encoder qφ, and the skill prior pρ. The word embeddings of language inputs
are first encoded by a transformer model and then the encoded language features are fused

Electronics 2023, 12, 1587 9 of 18

with other features through the multimodal transformer encoder. Note that as the agent
in the ALFRED benchmark has no access to the full environment states, but only to the
egocentric visual observations, the skill decoder pθ uses visual observations om:n to esti-
mate the information of sm:n. For the skill encoder and the separator, the encoder network
encodes the visual observations, actions, and task goal as inputs, while for the skill prior,
the encoder network encodes only the language instruction gj. The output feature matrix ht
of the encoder network is then used by linear layers to estimate the distribution of subtask
endpoints (for the separator) or the distribution of skills (for the skill encoder and the skill
prior). We found that the performance of the SLHSP benefits from longer observation
and action history inputs to the decoder, and thus the skill decoder predicts each action
conditioned on the sampled skills z, full histories of observations o1:t and actions a1:t−1.

Masked Multi-Head

Attention

Add & Norm

Point-wise FFN
Add & Norm

Action Embedding
Matrix

Word Embedding
MatrixResNet-18

concatenate

Transformer
Encoder

 Encoded Feature

Inputs of the
skill encoder

Input of the
skill prior

Inputs of the separator

(a) Multimodal encoder network

Action Embedding
Matrix

Sampled Skill

ResNet-18
sum

Masked Multi-Head

Attention

Add & Norm

Multi-Head

Attention

Add & Norm

Point-wise FFN
Add & Norm

Linear

Softmax

Action Distribution

(b) Skill decoder network

Figure 3. Network structures. (a) Multimodal encoder network structure of separator πh,seψ, skill
prior pρ, and skill encoder qφ, with different input options illustrated with colored boxes. (b) Skill
decoder network structure with a transformer decoder.

Illustrated in Figure 3b, the skill decoder pθ is implemented as a transformer decoder
network. For each time step, the action embeddings are summed with the observation
embeddings, which are computed based on a pre-trained ResNet18 model [36]. The
summed features are fed as inputs to the transformer decoder and selectively attended to
by the model. The latent code z is directly fed to the second layer multi-head attention of
the transformer decoder. The output of the skill decoder network is the distribution over
the environmental actions, which is discussed in Section 4.4. Finally, the describer πh,de

ω is a
fine-tuned T5-small model, and details can be found in [34].

4. Experiment

Through the experiment, we aim to answer the following questions. (1) Can the
learned latent skill space improve performance on long-horizon tasks? (2) How many
annotations are required to learn the SLHSP? (3) How are language instructions associated
with skills in the latent skill space?

4.1. Dataset

We evaluated the SLHSP and baseline models using the ALFRED benchmark [18],
which has a set of simulated environments with language-instructed long-horizon composi-
tional indoor household tasks. The benchmark provides a dataset of 25 K expert trajectories
(21 K for training), and each expert trajectory is segmented into a composition of several

Electronics 2023, 12, 1587 10 of 18

subtasks τ = {τ1, . . . , τ j, . . . } (trajectories in ALFRED dataset contain on average 7.5 sub-
tasks), each of which is annotated with a language instruction gj. To construct a sparsely
annotated dataset, the annotated trajectories are sampled from the ALFRED dataset with
subtask segmentations and language instructions, while the unannotated trajectories are
sampled task trajectories only. Typically, the number of annotated trajectories is signifi-
cantly fewer than the number of unannotated trajectories. For instance, 10% of annotated
trajectories contain 2000 annotated trajectories (|Dann| = 2000) and 19,000 unannotated
trajectories (|D| = 19,000). Specifically, the segmented subtasks in the dataset are catego-
rized into eight different types: a navigation subtask (GoToLocation) and several object
manipulation subtasks (Pickup, Put, Cool, Heat, Clean, Slice, Toggle). The training and
validation splits of the dataset in [18] are followed in the experiments, and the validation
split is further divided into seen and unseen folds based on whether the scenes or objects
are shown to the agent during training. The number of trajectories in validation seen and
unseen splits are 820 and 821, respectively.

As mentioned by [12], the annotated instruction for the navigation subtask is collected
post hoc, after the agent has completed the subtask. For instance, it is impossible for
the planner to generate the instruction “Turn right, take a step, turn right again, move to the
microwave”. before the agent has explored the layout of the room. To plan with instructions,
we follow [12], modifying this type of instruction with the template “Go to the [object]”.
After the modification, the above example instruction is written as “Go to the microwave”.

4.2. Baselines

We compared the SLHSP with models that are also designed to learn from sparse
language annotations and inference with only task goals. (SL)3 [12] is a semi-supervised
method that learns a language labeling policy from a small amount of annotated data
and augments unannotated data with language instructions. It is similar to the SLHSP
in terms of learning from sparse annotations. However, the SLHSP bypasses the data
augmentation step by directly grounding the language to a learned latent skill space. A
variant of (SL)3 that uses ground truth segmentations (see [12] for more details), which is
denoted as (SL)3(GT α), is also included as a baseline model. To analyze the improvement
of the data efficiency of language annotation that is caused by our method, the constructed
flat model seq2seq and hierarchical model seq2seq2seq [12] are also adopted as baselines.
The SLHSP and all these baselines apply the same input and output information during
training and inference.

Various state-of-the-art models (including those utilizing extra input information)
for long-horizon instruction following tasks in ALFRED are also included as baselines.
Although these methods have different inputs or training supervisions compared to SLHSP,
they are compared with SLHSP to show the relative performance that can be achieved
with only limited supervision. MOCA [19] and ET [37] use ground truth segmentation
and subtask instruction in both training and inference. Instead of using an egocentric view
of the environment, LWIT [21] takes multiple egocentric views as input to augment the
observation at each step. HiTUT [4] designs unified transformers with self-monitoring and
backtracking mechanisms to achieve strong performance in unseen scenarios. HLSM [3]
and FILM [6] utilize the depth and semantic information of visual observation to construct
a persistent semantic map, which guides the agent with holistic information. EmBERT [5]
fine-tunes a BERT model [38] for language-conditioned long-horizon task completion. Most
of these methods use additional information (e.g., step-by-step instruction, rich visual
information that includes depth and visual semantics) to either supervise the learning
process or facilitate the inference process. A detailed comparison of these models is
reported in Table 1.

Electronics 2023, 12, 1587 11 of 18

Table 1. Evaluated models in the experiments. ! denotes the use of corresponding attribute, and#
refers to the absence of corresponding attribute.

Model
During Training During Inference

Goals Instructions Segmentations Multi-View Depth Goals Instructions Multi-View Depth

SLHSP (ours) ! ! (10%) ! (10%) # # ! # # #

(SL)3 [12] ! ! (10%) # # # ! # # #

seq2seq [12] ! # # # # ! # # #

seq2seq2seq [12] ! ! # # # ! # # #

E.T. [37] ! ! ! # # ! ! # #

MOCA [19] ! ! ! # # ! ! # #

LWIT (Multi view) [21] ! ! ! ! # ! ! ! #

LWIT (Single view) [21] ! ! ! # # ! ! # #

HiTUT [4] ! # ! # ! ! # # !

HLSM [3] ! # ! # ! ! # # !

FILM [6] ! # ! # ! ! # # !

EmBERT [5] ! ! ! ! # ! ! ! #

4.3. Model Variants

To analyze the data efficiency and the performance of the SLHSP, several variants
of the SLHSP are proposed for comparison. As all the components are indispensable for
the SLHSP to work, instead of analyzing it through ablation studies, these variants are
constructed from the perspective of available training data. In the experiments, different
numbers of annotations are used in the learning of SLHSP. The annotation of a trajectory
comprises two parts: the segmentation of the task trajectory and the annotation of the language
instruction to segmented trajectory segments. The annotated segmentations are for the
learning of the separator policy, while the annotated instructions are for the grounding of
instructions to skills. The annotation setting 10% seg + 1% ann in the experiments denotes
that the fractions of annotated segmentations and instructions are 10% and 1%, respectively.
By default, the SLHSP uses the same number of segmentation and instruction annotations,
and is denoted as SLHSP(x%), where x is the fraction of annotated trajectories. For long-
horizon task evaluation, the language as scaffold between the hierarchy of the SLHSP
allows it to be augmented with other language-conditioned models in a modular way. This
way, some planned instructions can be executed by other language-conditioned models
to improve the overall performance. Similar to [12], the SLHSP augments its navigation
abilities with a rule-based navigator policy with ground-truth environment information to
assist the low-level policy in executing navigation-related subtasks, and the augmented
model is denoted as SLHSP + nav.

4.4. Implementation Details

In ALFRED, the agent’s action space is discrete and consists of 13 different actions,
including five navigation-related actions (MoveAhead, RotateRight, RotateLeft, LookUp, Look-
Down) and seven interaction-related actions (e.g., Pickup, Close, Put, Open, Slice, ToggleOn,
ToggleOff). To perform interaction-related actions, an interaction mask is required to select
the object in the agent’s view with which to interact. We follow MOCA in obtaining the
object mask by first predicting the object class, and then convert the object class to a mask
in view, through the mechanism of Object-Centric Localization [19]; there are 82 different
object classes.

For the observation space, the visual observation of the agent consists of 300× 300
RGB images. These images are then sent to a frozen ResNet18 model [36] to obtain feature
maps of size 512× 7× 7. The language and action inputs to the agent are encoded through
trainable embedding matrices, whose dimensions are set to 768.

The number of layers of all transformer networks in SLHSP is set to 2, and the number
of heads in all multi-head attention mechanisms is set to 8. For the learning process, both
the skill extraction and skill prior adaptation processes are conducted for 20 epochs with a

Electronics 2023, 12, 1587 12 of 18

batch size of 8. The optimizer adopted for learning is AdamW [39], and the learning rate is
set to 1× 10−4, which is decayed to 1× 10−5 after 10 epochs of learning. The regularization
weight term β is set to 1× 10−2.

4.5. Evaluation Metrics

Models are evaluated through both online interaction with the environment simulator
and offline comparison with expert trajectories. For the online evaluation, a task goal
is achieved if object positions and state changes meet the requirements of the task goal,
and a subtask is achieved if the object positions and state changes of the subtask are
met, conditioned on the preceding expert sequence [18]. Specifically, the end-to-end task
success rate

vtask =
achieved task goals

|Deval|
, (10)

where Deval is the dataset of tasks used for evaluation, and the subtask success rate

vsubtask =
achieved subtasks∣∣∣{τ j

i |τ
j
i ∈ τi, τi ∈ Deval}

∣∣∣ , (11)

are evaluated. The environment is initialized and tasks are defined with the settings
defined in the dataset. As the information used by the evaluated models is different, it
is unfair to directly compare the absolute value of their corresponding success rates. In
Tables 2 and 3, the results of the evaluation are grouped into models that are trained with
sparse annotations and inference with only the task goal, and models that use additional
inputs in either training or inference. The latter group refers to the use of extra inputs, such
as multi-view observation and depth observation, or the use of full set of annotations and
segmentations to supervise the training. For the offline evaluation, the data efficiency is
evaluated following [12], in which the offline success rate score vexact is computed as the
fraction of exact match of the predicted actions

vexact =
|{ât | ât = at, at ∈ τi, τi ∈ Deval}|
|{at | at ∈ τi, τi ∈ Deval}|

, (12)

where ât is the predicted action.
In order to evaluate the effectiveness of an agent in completing a task, the path length

weighted (PLW) score [18] is applied to discount the success rate, according to the relative
path length to the expert trajectory. Formally, the PLW score p is computed as

p =
ŵ

max(w∗, ŵ)
, (13)

where w∗ is the path length (the number of action) of the expert trajectory, and ŵ is the path
length of the predicted path. In Table 2, the path length weighted success rate is obtained
by simply multiplying the PLW score p with the corresponding task success rate vsubtask.

5. Results
5.1. Overall Performance

In this section, we analyze the question of whether the learned latent skill space
improves performance on long-horizon tasks. Table 2 compares the SLHSP with baseline
models that use only sparse annotations, and models that use either rich observations, such
as multiple visual observations and depth information, or ground-truth segmentations and
instructions. In Table 2a, both (SL)3 and SLHSP are trained with only 10% of annotations
(|D| = 19,000, |Dann| = 2000). The seq2seq and seq2seq2seq models are trained with 100%
of annotations (|D| = 0, |Dann| = 21,000). We can see that none of the baseline methods
complete an entire long-horizon task, but the SLHSP is able to successfully accomplish
some tasks in this condition. Notably, the performance of (SL)3 on vtask is mainly affected

Electronics 2023, 12, 1587 13 of 18

by its navigation ability, as (SL)3 has a relatively low success rate on the GoTo subtask (in
Table 3), and 87% of subtasks in ALFRED are GoTo. (SL)3 improves its performance on
vtask if it is augmented with a rule-based policy for navigation, as reported in Table 2b.
Similarly, when augmenting the SLHSP with a rule-based navigator for navigation, the
SLHSP is on par with some state-of-the-art approaches. Note that as the implementation
details of (SL)3 + planner and (SL)3 + HLSM in [12] are not available, their implementations
are different from our navigator policy. The performances of these augmented models are
affected by the ability of the rule-based policy to both navigate the agent and coordinate
with the learned policy. By comparing “SLHSP + nav (10%)” with the other models in Table
2b, the SLHSP shows that it has the potential to be augmented to demonstrate performance
that is on par with the other state-of-the-art methods.

Table 2. Task success rate vtask evaluation on ALFRED benchmark for models trained with sparse
annotations and additional inputs, reported for seen and unseen folds. Values in parentheses are
PLW success rates p× vtask, and boldface indicates highest in column. “-” denotes unreported scores.

(a) Sparse Annotation

Model Unseen vtask Seen vtask

SLHSP (10%) (ours) 1.2 (0.5) 1.7 (0.7)
(SL)3 (10%) [12] 0.0 (-) -
seq2seq [12] 0.0 (-) -
seq2seq2seq [12] 0.0 (-) -

(b) Additional Inputs

Model Unseen vtask Seen vtask

SLHSP + nav (10%) (ours) 23.7(18.5) 30.9 (24.9)
(SL)3 + planner (10%) [12] 40.4 (-) -
(SL)3 + HLSM (10%) [12] 15.5 (-) -
HLSM [3] 18.3 (-) 29.6 (-)
FILM [6] 20.1 (-) 24.6 (-)
EmBERT [5] 5.7 (3.1) 37.4 (28.8)
LWIT (Multi view) [21] 9.7 (7.3) 33.7 (28.4)
E.T. [37] 7.3 (3.3) 46.6 (32.3)
HiTUT [4] 12.4 (6.9) 25.2 (12.2)
MOCA [19] 5.4 (3.2) 25.9 (19.0)

Table 3. Subgoal success rate vsubtask on an unseen validation fold. The highest values per fold and
subtask are shown in boldface. “-” denotes scores that are not reported.

Model Goto
Pick

up

Put
Cool

Hea
t

Clea
n

Slic
e

Toggle

Avg.

Sparse annotation

SLHSP (10%) (ours) 40 63 45 95 98 43 42 20 56
(SL)3 (10%) [12] 13 50 48 75 74 56 54 32 50
seq2seq2seq [12] 15 29 42 69 58 15 50 32 39
seq2seq [12] 14 20 15 33 64 16 25 13 25

Additional inputs

SLHSP (100%) (ours) 40 66 46 99 100 42 48 31 59
(SL)3 (100%) [12] 15 50 45 82 75 68 55 32 53
LWIT (Multi view) [21] 39 79 66 94 95 68 85 66 74
HiTUT [4] - 71 69 100 97 91 78 58 -
MOCA [19] 32 44 39 38 86 71 55 11 47
E.T. [37] 45 67 66 100 97 91 53 72 74

Electronics 2023, 12, 1587 14 of 18

Accomplishing the entire long-horizon task is challenging. Additionally, we assess
the ability of models to complete the next subtask, conditioned on the preceding expert
sequence, and report the results of subtask evaluation in Table 3. The SLHSP improves
on vsubtask by 6% compared with the (SL)3. On the navigation subtask GoTo, the SLHSP
shows a marginal improvement of 27% and 25% over the (SL)3 under conditions of 10% and
100% annotations„ respectively. This indicates that navigation-related instructions can be
better associated with action sequences by utilizing learned reusable skills, compared with
directly mapping instructions to action sequences. Compared with the other state-of-the-art
methods, the SLHSP shows comparable performances in most subtask types.

5.2. Data Efficiency

In this section, we analyze the data efficiency of the SLHSP. As illustrated in Figure 4,
the performance scores of the SLHSP models learned with 10% and 100% annotations
are nearly the same, which indicates that only sparse annotations are adequate for the
SLHSP to obtain a reasonable performance. Compared with other methods, the SLHSP
learned with only 5% of language annotations outperforms the (SL)3 learned with full
(100%) language annotations. Moreover, with 40% of language annotations, the SLHSP
receives nearly the same performance as the (SL)3(GT α) model, which has access to ground
truth segmentations, and leaves the seq2seq and seq2seq2seq baselines far behind. The
performance difference of SLHSP learned with 10% and 100% annotations is presented
in Table 4, with less than 1.4% and 1.3% in the settings of 10% and 100% segmentations,
respectively. These results shows that the learned skill decoder undertakes the majority
of the work for the grounding process, so that the language instructions can be efficiently
grounded to actions with a small amount of annotated data.

1 5 10 40 80 100
Annotation ratio

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Ac
cu

ra
cy

(SL)3

(SL)3(no-latent)
(SL)3(GT)
seq2seq
seq2seq2seq
SLHSP (ours)

Figure 4. Offline subtask success rate vexact. The amount of annotated trajectories denotes the fraction
of trajectories of all annotated trajectories. The dashed lines illustrate the performance of models that
use 100% of annotated trajectories.

Table 4. Offline success rate vexact of SLHSP learned with different training data settings.

Annotation Settings Average Success Rate

10% seg + 1% ann 70.2
10% seg + 5% ann 75.0
10% seg + 10% ann 76.7
100% seg + 10% ann 77.0
10% seg + 100% ann 78.1
100% seg + 100% ann 78.3

Electronics 2023, 12, 1587 15 of 18

As mentioned in Section 4.3, the annotation contains two parts: language instructions
and trajectory segmentations. In Table 4, we analyze the influence of these two parts
on the performance of SLHSP. It reports the results of offline success rate averaged over
three random seeds, where the “seg” represents ground truth segmentations for learning
separator policy, and “ann” represents annotations for skill prior adaptation. The results
show that increasing the annotation ratio of the sparsely annotated dataset is crucial to
improve performance when there are less than 10% of annotated trajectories. From the
perspective of the segmentations, the improvement of success rate brought by the increase
from 10% to 100% is only 0.2%, which is tiny compared with the improvement brought by
the increase in the number of language annotations. This finding suggests that learning the
separator policy requires fewer labels than adapting the skill prior.

5.3. Latent Skill Space

To examine the association between language instructions and skills, we first an-
alyzed the properties of the latent skill space. The latent skill space obtained through
self-supervised learning is structurally organized. In Figure 5, gray points are samples not
belonging to the plotted subtask type. Each plot shows sample points based on trajectories
or instructions from a subtask type, with an equal number of sample points per subtask
type. The t-SNE model is learned with perplexity of 20. We found that the sample points of
the latent variable z form clusters. However, these clusters are not directly related to the
type of subtasks. This is because a latent skill encodes a sequence of trajectory observations,
so that these clusters are formed in accordance with the features of visual observations.
As shown in Figure 5c–h, most of the highlighted samples are centered in a few clusters;
this indicates that these subtask trajectories have similar visual observations. In contrast,
trajectories in Figure 5a (GoToLocation) and Figure 5b (PickupObject) are more diverse in
terms of the observation sequence, and the corresponding skill samples are scattered in
nearly all the clusters.

(a) GotoLocation (b) PickupObject (c) PutObject (d) CoolObject

(e) HeatObject (f) CleanObject (g) SliceObject (h) ToggleObject

Figure 5. t-SNE visualization of adapted skill prior (red) and skill posterior (blue) samples.

Samples from the adapted skill prior are associated with samples from the skill encoder
(skill posterior). In Figure 5c–h, most of the samples from the skill prior are distributed
in the same clusters with the samples from the skill posterior. This indicates that the
language instructions are correlated with the skills. However, in Figure 5a (GoToLocation)
and Figure 5b (PickupObject), the patterns of the distributions of skill samples in these
two types of subtasks are not explicit, and there are two possible reasons for this. First,
the visual observations between samples are diverse. The associations between samples

Electronics 2023, 12, 1587 16 of 18

are not centered in a few clusters. Second, the information loss caused by the dimension
reduction of the t-SNE visualization hides some correlations between the skill prior and the
skill posterior.

5.4. Case Study

For a more intuitive view of how SLHSP works in long-horizon instruction following
tasks, we visualize two qualitative examples of the task execution trajectory in Figure 6.
The SLHSP predicts a sequence of subtasks {ĝk}k=K

k=1 via natural language and executes
them sequentially. Navigation trajectories are denoted with thick lines, and key frames
are illustrated around a map, with positions highlighted by circles. Line and circle colors
correspond to subtasks. The agent’s egocentric view range is shown as a white cone at
each step. In the plot on the left, the agent successfully accomplishes the task. The agent
switches smoothly between the navigation and manipulation subtasks. This indicates that
the high-level separator policy accurately recognizes a subtask is accomplished, and the
SLHSP switches to the instruction of the next subtask during inference. The plot on the
right shows a failure case. Although the describer of the SLHSP generates appropriate
instructions, the SLHSP agent failed to navigate to the garbage bin in the 5th subtask (“Go
to the garbage bin”). This might be due to the inaccuracy of the skill prior distribution,
meaning the sampled skill from the skill prior cannot reflect the intended instruction.

Go to the table

Task goal : Examine a remote control by the light of a floor lamp.

Pick up the remote control

Go to the floor lamp

Turn on the floor lamp

Task goal : Place a cooled apple inside of the garbage bin.

Go to the kitchen island

Pick the apple up off
of the kitchen island

Go to the refrigerator

Place the apple
inside the fridge to
cool, then take it
back out

Go to the garbage bin

Figure 6. Qualitative results of online evaluation. Success (left) and failure (right) cases are shown
for the agent navigating and manipulating objects to reach the task goal I.

6. Conclusions

We introduce an SLHSP for long-horizon compositional decision-making tasks. The
SLHSP is a latent language policy learning framework for utilizing unannotated datasets
to improve the data efficiency of language annotations. The SLHSP learns a latent skill
space from unannotated data to regularize the action sequence space that the language
grounds to, so that only sparse annotations are adequate to learn the mapping between the
languages and action sequences.

While progress has been made in building embodied agents that can understand
natural language and make decisions, there is still much work to be done to handle the
complexity and diversity of real-world scenarios. The application of a SLHSP accelerates
the accomplishment of real-life instruction-following robotics by diminishing the amount
of supervisory data required for learning, which saves expensive labeling efforts. In the
future, to make our approach more applicable in real-life instruction-following robotics,
we intend to combine large language models with our semi-supervised method to further
improve generalization ability and data efficiency, for example, through few-shot or even
zero-shot grounding of language instructions.

Electronics 2023, 12, 1587 17 of 18

Author Contributions: Conceptualization, B.Z. and C.Z.; Formal analysis, B.Z.; Funding acquisition,
Z.H.; Investigation, B.Z.; Methodology, B.Z.; Project administration, Z.H.; Supervision, C.Z. and Z.H.;
Validation, B.Z.; Visualization, B.Z.; Writing—original draft, B.Z.; Writing—review & editing, C.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Project grant
number 2018YFE0205503.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com/askforalfred/alfred.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Andreas, J.; Klein, D.; Levine, S. Learning with Latent Language. In Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June
2018; pp. 2166–2179. [CrossRef]

2. Jiang, Y.; Gu, S.; Murphy, K.; Finn, C. Language as an Abstraction for Hierarchical Deep Reinforcement Learning. In Proceedings
of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 9414–9426.

3. Blukis, V.; Paxton, C.; Fox, D.; Garg, A.; Artzi, Y. A Persistent Spatial Semantic Representation for High-level Natural Language
Instruction Execution. In Proceedings of the Conference on Robot Learning, London, UK, 8–11 November 2021; Volume 164,
pp. 706–717.

4. Zhang, Y.; Chai, J. Hierarchical Task Learning from Language Instructions with Unified Transformers and Self-Monitoring. In
Proceedings of the International Joint Conference on Natural Language Processing, Virtual, 1–6 August 2021; pp. 4202–4213.
[CrossRef]

5. Suglia, A.; Gao, Q.; Thomason, J.; Thattai, G.; Sukhatme, G.S. Embodied BERT: A Transformer Model for Embodied, Language-
guided Visual Task Completion. arXiv 2021, arXiv:2108.04927.

6. Min, S.Y.; Chaplot, D.S.; Ravikumar, P.K.; Bisk, Y.; Salakhutdinov, R. FILM: Following Instructions in Language with Modular
Methods. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May
2022.

7. Huang, W.; Abbeel, P.; Pathak, D.; Mordatch, I. Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for
Embodied Agents. In Proceedings of the International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022;
Volume 162, pp. 9118–9147.

8. Li, S.; Puig, X.; Paxton, C.; Du, Y.; Wang, C.; Fan, L.; Chen, T.; Huang, D.; Akyürek, E.; Anandkumar, A.; et al. Pre-Trained
Language Models for Interactive Decision-Making. arXiv 2022, arXiv:2202.01771.

9. Huang, W.; Xia, F.; Xiao, T.; Chan, H.; Liang, J.; Florence, P.; Zeng, A.; Tompson, J.; Mordatch, I.; Chebotar, Y.; et al. Inner
Monologue: Embodied Reasoning through Planning with Language Models. arXiv 2022, arXiv:2207.05608.

10. Ahn, M.; Brohan, A.; Brown, N.; Chebotar, Y.; Cortes, O.; David, B.; Finn, C.; Gopalakrishnan, K.; Hausman, K.; Herzog, A.; et al.
Do As I Can, Not As I Say: Grounding Language in Robotic Affordances. arXiv 2022, arXiv:2204.01691.

11. Vaezipoor, P.; Li, A.C.; Icarte, R.T.; McIlraith, S.A. LTL2Action: Generalizing LTL Instructions for Multi-Task RL. In Proceedings
of the International Conference on Machine Learning, Virtual, 18–24 July 2021; Volume 139, pp. 10497–10508.

12. Sharma, P.; Torralba, A.; Andreas, J. Skill Induction and Planning with Latent Language. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; pp. 1713–1726. [CrossRef]

13. Xiao, T.; Chan, H.; Sermanet, P.; Wahid, A.; Brohan, A.; Hausman, K.; Levine, S.; Tompson, J. Robotic Skill Acquisition via
Instruction Augmentation with Vision-Language Models. arXiv 2022, arXiv:2211.11736.

14. Cideron, G.; Seurin, M.; Strub, F.; Pietquin, O. HIGhER: Improving instruction following with Hindsight Generation for Experience
Replay. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Canberra, Australia, 1–4 December 2020;
pp. 225–232. [CrossRef]

15. Röder, F.; Eppe, M.; Wermter, S. Grounding Hindsight Instructions in Multi-Goal Reinforcement Learning for Robotics. arXiv
2022, arXiv:2204.04308.

16. Lee, D.H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Proceedings of
the Workshop on Challenges in Representation Learning, ICML, Atlanta, GA, USA, 16–21 June 2013; Voume 3, p. 896.

17. Arazo, E.; Ortego, D.; Albert, P.; O’Connor, N.E.; McGuinness, K. Pseudo-Labeling and Confirmation Bias in Deep Semi-
Supervised Learning. In Proceedings of the International Joint Conference on Neural Networks, Glasgow, UK, 19–24 July 2020;
pp. 1–8. [CrossRef]

https://github.com/askforalfred/alfred
http://doi.org/10.18653/v1/n18-1197
http://dx.doi.org/10.18653/v1/2021.findings-acl.368
http://dx.doi.org/10.18653/v1/2022.acl-long.120
http://dx.doi.org/10.1109/SSCI47803.2020.9308603
http://dx.doi.org/10.1109/IJCNN48605.2020.9207304

Electronics 2023, 12, 1587 18 of 18

18. Shridhar, M.; Thomason, J.; Gordon, D.; Bisk, Y.; Han, W.; Mottaghi, R.; Zettlemoyer, L.; Fox, D. ALFRED: A Benchmark for
Interpreting Grounded Instructions for Everyday Tasks. In Proceedings of the Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10737–10746. [CrossRef]

19. Singh, K.P.; Bhambri, S.; Kim, B.; Mottaghi, R.; Choi, J. Factorizing Perception and Policy for Interactive Instruction Following. In
Proceedings of the International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1868–1877.
[CrossRef]

20. Corona, R.; Fried, D.; Devin, C.; Klein, D.; Darrell, T. Modular Networks for Compositional Instruction Following. In Proceedings
of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online,
6–11 June 2021; pp. 1033–1040. [CrossRef]

21. Nguyen, V.; Suganuma, M.; Okatani, T. Look Wide and Interpret Twice: Improving Performance on Interactive Instruction-
following Tasks. In Proceedings of the International Joint Conference on Artificial Intelligence, Montreal, QC, Canada,
19–27 August 2021; pp. 923–930. [CrossRef]

22. Jansen, P.A. Visually-Grounded Planning without Vision: Language Models Infer Detailed Plans from High-level Instructions. In
Proceedings of the Empirical Methods in Natural Language Processing, Online, 16–20 November 2020; pp. 4412–4417. [CrossRef]

23. Artzi, Y.; Zettlemoyer, L. Weakly Supervised Learning of Semantic Parsers for Mapping Instructions to Actions. Trans. Assoc.
Comput. Linguist. 2013, 1, 49–62. [CrossRef]

24. Patel, R.; Pavlick, E.; Tellex, S. Grounding Language to Non-Markovian Tasks with No Supervision of Task Specifications. In
Proceedings of the Robotics: Science and Systems, Pittsburgh, PA, USA, 26–30 June 2020. [CrossRef]

25. Nair, S.; Mitchell, E.; Chen, K.; Ichter, B.; Savarese, S.; Finn, C. Learning Language-Conditioned Robot Behavior from Offline
Data and Crowd-Sourced Annotation. In Proceedings of the Conference on Robot Learning, London, UK , 8–11 November 2021;
Volume 164; pp. 1303–1315.

26. Mees, O.; Hermann, L.; Burgard, W. What Matters in Language Conditioned Robotic Imitation Learning Over Unstructured Data.
IEEE Robot. Autom. Lett. 2022, 7, 11205–11212. [CrossRef]

27. Andrychowicz, M.; Crow, D.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; Zaremba, W.
Hindsight Experience Replay. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017; pp. 5048–5058.

28. Akakzia, A.; Colas, C.; Oudeyer, P.; Chetouani, M.; Sigaud, O. Grounding Language to Autonomously-Acquired Skills via Goal
Generation. In Proceedings of the International Conference on Learning Representations, Virtual, 3–7 May 2021.

29. Carta, T.; Lamprier, S.; Oudeyer, P.; Sigaud, O. EAGER: Asking and Answering Questions for Automatic Reward Shaping in
Language-guided RL. arXiv 2022, arXiv:2206.09674.

30. Lynch, C.; Sermanet, P. Grounding Language in Play. arXiv 2020, arXiv:2005.07648.
31. Pertsch, K.; Lee, Y.; Lim, J.J. Accelerating Reinforcement Learning with Learned Skill Priors. In Proceedings of the Conference on

Robot Learning, Cambridge, MA, USA, 16–18 November 2020; Volume 155, pp. 188–204.
32. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the International Conference on Learning

Representations, Banff, AB, Canada, 14–16 April 2014.
33. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.P.; Glorot, X.; Botvinick, M.M.; Mohamed, S.; Lerchner, A. beta-VAE: Learning

Basic Visual Concepts with a Constrained Variational Framework. In Proceedings of the International Conference on Learning
Representations, Toulon, France, 24–26 April 2017.

34. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020, 21, 140:1–140:67.

35. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you
Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

37. Pashevich, A.; Schmid, C.; Sun, C. Episodic Transformer for Vision-and-Language Navigation. In Proceedings of the International
Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 15922–15932. [CrossRef]

38. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [CrossRef]

39. Loshchilov, I.; Hutter, F. Fixing Weight Decay Regularization in Adam. arXiv 2017, arXiv:1711.05101.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR42600.2020.01075
http://dx.doi.org/10.1109/ICCV48922.2021.00190
http://dx.doi.org/10.18653/v1/2021.naacl-main.81
http://dx.doi.org/10.24963/ijcai.2021/128
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.395
http://dx.doi.org/10.1162/tacl_a_00209
http://dx.doi.org/10.15607/RSS.2020.XVI.016
http://dx.doi.org/10.1109/LRA.2022.3196123
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ICCV48922.2021.01564
http://dx.doi.org/10.18653/v1/n19-1423

	Introduction
	Related Work
	Utilizing External Knowledge
	Utilizing Unannotated Data

	Method
	Problem Formulation
	Reusable Skill Extraction
	Skill Prior Adaptation
	Planning via Natural Language
	Network Architectures

	Experiment
	Dataset
	Baselines
	Model Variants
	Implementation Details
	Evaluation Metrics

	Results
	Overall Performance
	Data Efficiency
	Latent Skill Space
	Case Study

	Conclusions
	References

