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Abstract: In the field of software engineering, applying language models to the token sequence
of source code is the state-of-the-art approach to building a code recommendation system. When
applying language models to source code, it is difficult for state-of-the-art language models to deal
with the data inconsistency problem, which is caused by the free naming conventions of source code.
It is common for user-defined variables or methods with similar semantics in source code, to have
different names in different projects. This means that a model trained on one project may encounter
many words the model has never seen before during another project. Those freely named variables
or functions in the code will bring difficulties to the processes of training and prediction and cause a
data inconsistency problem between projects. However, we discover that the syntax tree of source
code has hierarchical structures. This code structure has strong regularity in different projects and
can be used to combat data inconsistency. In this paper, we propose a novel Hierarchical Language
Model (HLM) to improve the robustness of the state-of-the-art recurrent language model, in order
to be able to deal with data inconsistency between training and testing. The newly proposed HLM
takes the hierarchical structure of the code tree into consideration to predict code. The proposed
HLM method generates the embedding for each sub-tree according to hierarchies and collects the
embedding of each sub-tree in context, to predict the next piece of code. The experiments on inner-
project and cross-project datasets indicate that the newly proposed HLM method performs better
than the state-of-the-art recurrent language model in dealing with the data inconsistency between
training and testing, and achieves an average improvement in prediction accuracy of 11.2%.

Keywords: language model; Hierarchical Language Model; code completion; code recommendation

1. Introduction

In recent years, language models have been used in many fields. Many applications,
such as machine translation [1], audio recognition [2], and text classification [3] adopt
language models to improve model performance. The field of software engineering has
recently adopted language models to improve the performance of many tasks, such as
code smell detection [4] and software bug detection [5]. To build a code recommendation
system, the source code is parsed into a token sequence and the language model is applied
to help recommend code snippets for software engineers. Existing works on subjects such
as recurrent language models have contributed to the solution of code completion and have
helped software engineers to improve the efficiency of developing software.

However, existing state-of-the-art language models are designed specifically for natu-
ral languages. A programming language is very different from natural language, and the
direct application of language models designed for natural languages to programming
languages faces many challenges. One of the biggest differences between programming
languages and natural languages is that programming languages have free naming rules.
For a user-defined variable or method in a program, different people have different naming
habits and rules. This means that it is impossible to use a fixed vocabulary table or dictio-
nary, to include all of the possible variable names or method names in the programming
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language. The number of possible words in a programming language is infinite. On the
contrary, natural languages often have a fixed vocabulary table, and a dictionary is enough
to model all words in such a language. This difference leads to a dilemma when applying
language models to code.

Because of the free naming conventions of source code, for different projects, the vari-
able names, method names, or type names in those projects may vary greatly. If the model
is trained on one project, it may encounter many unfamiliar words in another project. If
the unfamiliar words appear everywhere, the trained language model will be confused
and eventually it will not know how to infer the next word. If some words are unfamiliar
when making predictions, discrepancies between training and prediction will occur. The
discrepancies may gather and explode during a long prediction phase. This phenomenon
is also referred to as exponential bias, and is the reason for the rapid decline in prediction
effect when there exist data inconsistencies between training and prediction. The data
inconsistency problem between training and prediction brings about difficulties in applying
code completion technology in large-scale industrial scenarios. According to our statistics,
this problem is serious when it comes to source code handling. For two different projects
with more than 200 files on GitHub, approximately 70% of the tokens in these two projects
are different. Thus, the data inconsistency problem needs to be discussed and resolved. By
checking a large amount of source code, we discover that the syntax tree of the source code
has hierarchical structures, with strong regularity in different projects, and can be used to
combat data inconsistency.

As the abstract syntax tree (AST) of source code has a hierarchical structure, in this
paper, we propose a novel Hierarchical Language Model (HLM), to improve the robustness
of the state-of-the-art recurrent language model, to gain the ability to deal with data
inconsistencies between training and testing. For each hierarchy of the code tree, from the
bottom of the tree to the root, we use the state-of-the-art language model to accumulate
the information of each tree in each hierarchy. Then, the embedding for each tree in each
hierarchy is generated. This procedure is named the encoding procedure. In the next step,
the code tree is traversed from the root to the bottom, and the existing state-of-the-art
language model is used to decode each encountered tree node. This procedure is named the
decoding procedure. The decoding procedure takes the embedding for each hierarchy tree
generated during the encoding procedure into consideration. It should be noted, that for
traditional language models, only the decoding procedure exists. The proposed framework
adds an encoding procedure on the basis of the original decoding procedure, making the
model more expressive. The encoding procedure actually takes each tree in each hierarchy
as a segment. This can help the model to handle long code context, because when a token
sequence is long, grouping that long sequence into segments and predicting the next piece
of code based on the generated segments, is often helpful.

In summary, to solve the data inconsistency problem between projects, we propose
the Hierarchical Language Model (HLM) to generate the embedding for each sub-tree
according to hierarchies in the encoding procedure, and collect the embedding of each
sub-tree in context, to predict the next piece of code in the decoding procedure. Experiments
on inner-project and cross-project datasets indicate that the newly proposed HLM method
performs better than the state-of-the-art recurrent language model in dealing with the
data inconsistency between training and testing, and achieves an average improvement in
prediction accuracy of 11.2%. The main contributions of this paper include the following:

• To the best of our knowledge, this is the first study to specifically discuss the data
inconsistency problem of source code and propose a method to specifically solve
this problem.

• The proposed method uses the tree hierarchical structure of source code to combat the
inconsistency of tokens.

• The new framework divides the single decoding process of the original language
model into the encoding process and the decoding process. This proposed framework
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can greatly improve the available parameters of the original model and inspire other
language models.

• A new tree encoding–decoding mechanism is designed and applied to the hierarchical
structures of code.

• Both inner-project and cross-project evaluations are conducted, to compare the perfor-
mance of models, and an average improvement of 7% is achieved.

2. Related Work
2.1. Statistical Models for Code Completion

The statistical language model uses the statistical patterns of code to recommend the
next piece of code, based on a given code context. The pioneering work in [6], applied the
statistical n-gram model to source code to help predict the next piece of code. SLAMC [7]
assigned topics to each token to predict the next code token based on tokens in the context
and the corresponding topics of these tokens. A large-scale investigation [8] of n-gram
models on a large code corpus was conducted and a visualization tool was provided.
Cacheca [9] confirmed the localness of the source code and proposed a cache model
to improve the code suggestion performance. The pattern of the common application
programming interface (API) calls, with the associated parameter objects, were captured
by per-object n-grams [10]. The Naive Bayes model was applied to a graph [11] to suggest
API usage. A decision tree, together with an n-gram model [12], was applied to solve the
problem of code completion. The code was modeled in the form of DSL [13]. Based on DSL,
the model was trained in such a way that the model continued sampling and validating
until the right code was suggested. For statement-level code completion, the authors in [14]
used a self-defined intermediate representation (IR) and a fuzzy search algorithm to search
for similar context, to handle the unseen data, in order to improve the n-gram model.

2.2. Deep Learning Models for Code Completion

The pioneering work in [15], used a deep language model to solve the problem of code
completion, based on the RNN model. A long short-term memory (LSTM) network is a
kind of recurrent neural network that introduces the gate mechanism, to capture longer
dependencies than the RNN model. The LSTM model was applied to solve the problem of
code completion [16,17], in order to achieve higher accuracy. The attention network [18] is
applied to the LSTM model to further improve the ability to capture the characteristics of
the context. A Pointer network [18], or graph network [19], is adopted to predict the unseen
data. The main difference between the two, is that the work in [19] adopts a different
switch algorithm and separates the parameters between the language model and repetition
learning model. This makes the prediction effect of unknown data more obvious. The
work in [20], uses the tree language model with the tree encoding context. To make the
token embedding better, the BERT pre-trained method [21] was proposed, to let the BERT
model train the token embedding on three general preset tasks and fine-tune the token
embedding on specific multi-tasks [22]. Based on the recurrent language model, the graph
model [23] was proposed, to capture the long-term dependencies. The already trained
GPT2 model [24] was directly used for code completion. The above works do not handle the
data inconsistency and the models are not designed to utilize the code structure hierarchies.
The proposed method in this paper can be used as a supplement to the above works.

2.3. Models for Code Synthesis

Code synthesis involves generating a code snippet based on the hint described in
natural languages or other forms. The technology used in code synthesis is similar to the
technology used in code completion. Models such as Seq2Seq [25], Seq2Tree [26], and
Tree2Tree [27] were proposed for the problem of code synthesis. To synthesize the API
sequences based on natural languages, the Seq2Seq model [28,29] was applied. The neural
program translation needs to translate one program to another program. The program is
in the form of an abstract syntax tree (AST), and the Tree2Tree [30] model translates one
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tree to another tree. It should be noted that the proposed model in this paper could also
be used as the decoding module in code synthesis tasks. We will further investigate the
performance of the Hierarchical Language Model to be used as the decoding module in
code synthesis tasks in future work.

2.4. Models for Code Classification

The purpose of code classification is to generate an embedding for the whole code, and
use the generated embedding to perform classification. The code classification model can
be used in the encoding procedure of the proposed framework. The tree-based convolution
neural network (TBCNN) [31] applies the general convolution mechanism to the syntax
tree of the code, to judge what type of program it is. The convolution-based attention
model [32] was applied to help generate the name of a function. TreeNN [33] was adopted
for producing representations of homogeneous and polynomial expressions. To categorize
expressions according to semantics, based on TreeNN, EQNET [34] additionally adopted an
extra abstraction and reconstruction layer, to help capture the semantics of the expressions.
Code is organized in statements, and a bi-directional long short-term memory (BiLSTM)
model is applied to the embedding of each statement [35] to generate the representation of
a code snippet, in order to help classify it.

2.5. Hierarchical Language Model for Source Code

To the best of our knowledge, the proposed Hierarchical Language Model (HLM)
framework is the first to use the hierarchical structure of code to explicitly handle the data
inconsistency between training and testing. The proposed framework is also the first to
add an explicit encoding procedure to the original decoding procedure of state-of-the-art
language model frameworks. The experiments indicate that the newly proposed model
indeed has some special properties.

3. Proposed Method
3.1. Preliminary
3.1.1. Abstract Syntax Tree (AST)

The code snippet “if (a + b > 5)” and its corresponding AST, are illustrated in Figure 1.
In this figure, the root is the node with content i f and the leaf nodes are node a, node b,
and node 5. Each node in the AST has a content, which is also called a token. In this paper,
each node corresponds to a token, and a token must be the content of a node.

if () > + a

b

5......

If (a+b > 5) ......

Figure 1. An example of an AST.

Concepts of an AST: The formal definitions of some concepts of an AST are described here.

• Sibling nodes: In an AST, the sibling nodes have the same parent node. They are also
considered to be at the same level or at the same hierarchy. For example, in Figure 1,
node 5 and node + are sibling nodes, and node 5 and node + are sibling nodes. Node
+ is the previous sibling of node 5, and node 5 is the next sibling of node +.

• Descendant nodes: For node n, all nodes except node n in the tree rooted at node n,
are referred to as descendants of node n. For example, in Figure 1, the descendant
nodes of node > are node +, node 5, node a, and node b.
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• Ancestor nodes: If node p is the descendant of node q, then node q is referred to as the
ancestor of node p.

3.1.2. State-of-the-Art Code Completion Method

For an AST, the aim of code completion is to complete each node in that AST one
by one. As each node must be predicted one by one, the order in which each node is
generated must be decided. We observe that when people write a function, the skeleton
of that function is often written first. Then, the details in the skeleton of the function are
written, and so on. This order in which the code is written is consistent with the pre-order
traversal of AST. Thus, when predicting nodes on an AST, we use pre-order traversal to
traverse the tree to predict each encountered node.

Traditional Language Model Computation Step for Code Completion. The tra-
ditional methods flatten the AST into a token sequence. We assume that the gener-
ated token sequence is t1, t2, . . . , tn. Now, if we want to predict the next token, tn+1,
based on the existing token sequence, the traditional methods compute the probability
P(tn+1|t1, t2, . . ., tn). Here, we use a simplest recurrent language model to show, in detail,
how P(tn+1|t1, t2, . . ., tn) is computed. The symbol ei is the embedding for token ti. The em-
bedding ei for token ti is just a vector of shape [1, m], where m is the embedding feature size
and is set by a human. The shape [1, m], means that the matrix has 1 row and m columns,
that is, it is just a vector with m elements. To ease the description, we set n to i− 1; now, we
want to compute P(ti|t1, t2, . . ., ti−1). With the above definition, the output embedding hi
for predicting tokeni is computed as follows.

hi = tanh(W1 ∗ ei−1 + W2 ∗ hi−1) (1)

hi is generated using hi−1 and ei−1 with matrix multiplications. In the above equation,
W1 and W2 are trainable parameter matrices with shape [m, m]. hi−1 should be computed
recursively until h0, which is a preset trainable parameter vector. Then, hi is a vector
of shape [1, m], which is of the same size as ei−1 or hi−1. Then, for predicting token ti,
we need to compute the probabilities for all possible candidate tokens in the vocabulary.
Assuming that there are v total tokens in the vocabulary, given the output embedding hi,
the computation step to compute the probabilities for all of these v tokens is as follows:

P = so f tmax(hi ∗U) (2)

In the above equation, U is a trainable parameter matrix and is of shape [m, v]. P is a
vector of shape [1, v]. Because of the so f tmax operation, each element in P is between [0, 1]
and all elements in P sum to 1. When predicting ti, we choose the token with the highest
probability in the vocabulary, which means if P[j] is the highest value, then we should
choose the jth token in the vocabulary as the final recommendation. When training, in the
actual existing corpus, if ti is the the jth token in the vocabulary, then P[j] should be the
highest value. If P[j] is not the highest value, we should use the random gradient descent
algorithm to update all of the trainable parameters, to maximize the P[j].

3.2. Differences and Insights between Existing Models and the Hierarchical Language Model

The previous subsection shows that traditional language models handle data points
one by one. Even the transformer method still follows the framework described in the
previous subsection. The AST shown in Figure 2 can be taken as an example to show the
differences between traditional language models and the proposed HLM. If we want to
predict the node {}, which is the target of edge t2, the traditional language model will
handle node i f , node (), node >, node +, node a, node b, and node 5 sequentially, in order
to gather the embedding of the encountered nodes and generate the output embedding for
predicting the target node. The following equation records the processing path of nodes:

Traditional_Path : i f , (),>,+, a, b, 5
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if () > + a

b

5

If (a+b > 5) { i = i + 1; }

{} = i

+ i

1

t0 t1

t2

t3 t4

t5

Encoding Tree

Figure 2. Insights of the Hierarchical Language Model.

In the previous subsection, we describe a simple deep language model. However,
there are many different language models. Here, we use the abstract symbol f , to refer
to the procedure of a general language model that takes the information of tokens or the
already processed information as the input, and outputs the processed embedding. As can
be seen from the following equation, the function f, first handles node i f and node (). Then,
the function f takes the processed embedding generated during the previous step, and the
new node >, to generate the new embedding. Repeating the handling nodes in the path,
the final output embedding h will be generated. With the output embedding h, we can use
Equation (2) to compute probabilities for all candidate tokens in the vocabulary.

Traditional_Out_Embedding : h = f ( f ( f ( f ( f ( f (i f , ()),>),+), a), b), 5)

An obvious problem is that precious structural information in the AST will be ignored
when the AST is handled in this way. Furthermore, if the nodes are processed in this
order, the leaf nodes are processed later than the non-leaf nodes. However, the leaf nodes
often contain the names of variables or methods, that vary greatly in different projects. All
language models have the following characteristic: the closer the token is to the target,
the greater the impact on the prediction result of the language model. Thus, we cannot let a
token that varies greatly between different projects be processed. The insights of the design
of the proposed Hierarchical Language Model, are that the AST should be processed in
hierarchies and that it should not be processed last.

Thus, when predicting the node {}, which is the target of the edge t2, the Hierarchical
Language Model (HLM) will traverse the AST and collect the information of complete trees in
different hierarchies. For example, node >, node +, node a, node b, and node 5 in Figure 2,
make up a complete sub-tree. The models designed especially for trees can be used to
generate embedding for that tree. The tree embedding is generated in post-order traversal,
meaning that node a and node b in the bottom hierarchy are handled first; then, node + and
node 5 in the second bottom hierarchy are handled later. It should be noted that if we want
to predict the target of edge t2 in Figure 2, the target node being predicted is the descendant
of node i f , so we assume the tree rooted at node i f is not complete. Similarly, the target
node being predicted is the next sibling of node (), so we also assume the tree rooted at
node () is not complete. For nodes which are not in a complete tree, we use the same
method as the traditional language model to handle these nodes. So, node i f and node ()
are handled first, in the pre-order traversal of the AST, to generate an embedding, named
embedpre_order. Then, node >, node +, node a, node b, and node 5 are handled in post-order
traversal of the AST, to generate another embedding, named embedpost_order. To generate
h, to be used for computing the probabilities of all candidate tokens in the vocabulary in
Equation (2), we can design a function f, such that h = f (embedpre_order, embedpost_order). The
details will be described in the next subsection. The procedure to generate embedpre_order
is named the decoding procedure. The procedure to generate embedpost_order is named the
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encoding procedure. By doing so, the original single decoding procedure is divided into
two procedures, and in the encoding procedure, we can use models specifically designed
for trees, to generate embedding. The following equation records the processing path
of HLM.

Decoding_Path : embedpre_order = f 1(i f , ())

Encoding_Path :hierarchy1 = f 2(a, b)

hierarchy2 = f 2(+, 5, hierarchy1)

embedpost_order = f 2(>, hierarchy2)

Final_Out_Embeding : h = f 3(embedpre_order, embedpost_order)

3.3. Hierarchical Language Model

The encoding procedure of HLM, is to generate the embedding for each tree (sub-tree)
in the AST. The decoding procedure of HLM, is to accumulate the information of context
(consists of sub-trees) to predict the next node. For the proposed Hierarchical Language
Model (HLM), to predict node n at the specified position, HLM accumulates information
based on the decoding path of node n.

3.3.1. Encoding Procedure of HLM

We use post-order traversal to traverse the AST, from the leaves to the root, in order to
encode a tree. For a leaf node n, we assume its token embedding is τn, and the encoding
(cellenc

n , henc
n ) of the tree rooted at node n is computed by Equation (3). In Equation (3),

cellenc
0 and henc

0 are preset trainable parameter vectors.

cellenc
n , henc

n = LSTM(τn, cellenc
0 , henc

0 ) (3)

For a non-leaf node m, we assume its token embedding is τm, and its children are
put in a list named m_children. The encoding (cellenc

m , henc
m ) of the tree rooted at node m is

computed with Equation (4). In Equation (4), cell1
0 , h1

0, cell2
0 , and h2

0 are preset trainable
parameter vectors. henc

mc is the encoding for the tree rooted at the child node mc of node m.
It should be noted that henc

mc should be generated in the same way as henc
m .

cellc f , hc f = cell1
0 , h1

0

cellcb, hcb = cell2
0 , h2

0

f or mc in m_children :

cellc f , hc f = LSTM(henc
mc , cellc f , hc f )

f or mc in reverse(m_children) :

cellcb, hcb = LSTM(henc
mc , cellcb, hcb)

cellenc
m , henc

m = 2DimensionalLSTM(τm, cellc f , hc f , cellcb, hcb)

(4)

We use the AST in Figure 3 to show the computation steps for the non-leaf node P,
of which the number of children is three. cellenc

P and henc
P are computed in Equation (5).

cellc f , hc f = LSTM(henc
S3 , LSTM(henc

S2 , LSTM(henc
S1 , cell1

0 , h1
0)))

cellcb, hcb = LSTM(henc
S1 , LSTM(henc

S2 , LSTM(henc
S3 , cell2

0 , h2
0)))

cellenc
P , henc

P = 2DimensionalLSTM(τP, cellc f , hc f , cellcb, hcb)

(5)
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P S1

S2

S3

n c

Figure 3. Encoding of the AST.

3.3.2. Decoding Procedure of HLM

Decoding Path of HLM: The decoding path of HLM, for node n, is the transfer path
from the root to node n. From a node, only the first child of that node or the next sibling of
that node can be transferred to. Thus, the candidate transfer paths of the AST in Figure 1
are shown in Figure 4. In Figure 4, the solid arrow represents the transition to the first child,
and the dotted arrow represents the transition to the next sibling node. Thus, under this
definition, a directed acyclic graph (DAG) was generated, and the transfer path from the
root to each node was uniquely determined. In detail, from the root node of the tree, if node
n is the descendant of the root node, to reach node n, we must transfer from the root node to
the first child of the root node. After reaching a new node, then, if node n is the descendant
of the newly reached node, we must transfer to the first child of the newly reached node.
Otherwise, we must transfer to the next sibling of the newly reached node. If we continue
transferring in this way, we finally reach node n. There are two kinds of transitions: transfer
to first child and transfer to next sibling.

If () > + a

b

5

If (a+b > 5) { i = i + 1; }

{} = i

+ i

1

Figure 4. Path from root to node.

Transition on Decoding Path of HLM: As described above, the decoding path consists
of a sequence of transitions. In Figure 5, the dotted arrows give an illustration of the path
and the transition from the root to node + (the second child of node =). Each transition
between nodes on the path is marked as t0, t1, t2, . . . t5. The information flow of a transition
represents the accumulated information of previous transitions before that transition. The
information that flows for each transition has a fixed data format: (cell, h); cell and h are
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two feature vectors of fixed length. The symbols celli and hi, represent the information on
transition ti. Note that for each transition ti, the source node of that transition is named
srcti , and the target node of that transition is named tgtti . For node srcti , all descendant
nodes are named srcdescendants

ti
.

if () > + a

b

5

If (a+b > 5) { i = i + 1; }

{} = i

+ i

1

t0 t1

t2

t3 t4

t5

Figure 5. Candidate paths of the AST.

Detailed Decoding Step of HLM: Then, we iterate the transitions one by one, to
compute the accumulated information for predicting node n. At first, the information of
transition t0: cell0, h0 is set to a fixed default value. Then, for each transition ti, if ti is of
the “transfer to the first child” type, we use Equation (6) to compute the information for
transition ti. We assume that the token embedding of the source node of the transition ti is
referred to as τi. The information of transition ti is computed by

celli, hi = LSTM(τi, celli−1, hi−1) (6)

The encoding of the tree rooted at the node srcti , in the encoding procedure described
in the previous subsection, is referred to as cellenc

srcti
, henc

srcti
. For the encountered transition

ti, if ti is of the “transfer to the next sibling” type, the information of transition ti is
computed by

celli, hi = 2DirectionalLSTM(cellenc
srcti

, henc
srcti

, celli−1, hi−1) (7)

The computed celli, hi can be used to predict the target node tgtti of transition ti. With
the generated hi, Equation (2) can be used to compute the probabilities of all candidate
tokens, and the top-k tokens with the highest probabilities are taken as the final results.

4. Experiment

The Hierarchical Language Model can be applied to any programming language that
can be parsed into an abstract syntax tree. As the number of projects written in the Java
programming language is the largest in Github, in this experiment, famous Java projects
are downloaded from Github to enter into the code corpus (dataset) for experiments. The
source code of each downloaded project is pre-processed to ensure its quality. For each code
corpus, the training set accounted for 60%, the validation set accounted for 15%, and the
test set accounted for 25%. In experiments, the validation set is used to prevent over-fitting.
Every function is parsed into AST and every AST is regarded as a training example or as a
test example. Each node in an AST is predicted. The models in the experiments are trained
to predict each node in the AST correctly. The accuracy is the summation of the prediction
accuracy of each node in each AST. Some sequential models, such as RNN or LSTM, cannot
be directly applied to data in tree structures. IThe tree will be flattened into a sequence,
making sequential models applicable.
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4.1. UNK Setting

In natural language processing, the least frequently occurring words are marked as
unknown word (UNK). In order to avoid UNK being the most frequent words, we set the
least frequently appearing words in the training set as UNK. Thus, UNK can still be rare
words, but not the most frequent words. In test data, the embedding of non-vocabulary
words is replaced with the embedding of UNK, but we do not think UNK is the right word
when computing prediction accuracy.

4.2. Datasets

In this experiment, three datasets are generated. Datasets 1 and 2 are the inner-project
code corpus. Dataset 3 is the cross-project code corpus. Table 1 shows the composition of
each dataset. Dataset 1 consists of Java files in the main module of project apache commons
lang. The size of Dataset 1 is 2.8 MB. The apache maven is a famous project; we downloaded
the source code from its official website (not on GitHub). The size of the project is 4.4 MB. As
observed from open-source projects, many files contain a large amount of Java documents,
comments, or small functions, with only one or two statements. Those noisy data should
be removed. For generating cross-project datasets, we used the following three steps, to
generate high-quality datasets containing long and non-noisy code. The first step was to
choose two to four projects from Github at random. The second step was to compute a
score for each Java file in each project: the total number of nodes in functions divided by
the total number of functions, resulted in the score for a Java file. Given the threshold
for the size of the dataset (for example 8 MB), the third step is to select the top Java files
with the highest scores in each project, to mix into a dataset until the threshold for the size
of the dataset is reached. Dataset 3 contains the top-scored Java files from projects Gocd
(5023 stars), apache-incubator-joshua (73 stars), vlc-android-sdk (723 stars), and locationtech-
geowave (344 stars). In all datasets, functions with less than 100 AST nodes or more than
10,000 AST nodes were removed. The evaluation results on Dataset 3 are more convincing,
because such results reflect the performance of the model on different projects. The last
column in Table 1, shows the vocabulary size of each dataset.

Table 1. Datasets.

From Projects Size Vocabulary

Dataset 1 apache commons lang main 2.8 MB 1273

Dataset 2 apache maven 4.4 MB 5283

Dataset 3 gocd, apache-incubator-joshua
and locationtech-geowave 7.53 MB 8030

4.3. Baselines

To evaluate the performance of our model, some baselines needed to be trained. RNN
and LSTM were taught to predict the next token based on already predicted tokens in the
sequence generated by flattening a tree. RNN and LSTM are classical models for capturing
patterns in sequential data. These two models are included in the baseline. Compared with
RNN, LSTM has a more powerful ability to capture the long-term dependency in sequential
data. Every model in the baseline needs to predict every token, for every function in
the dataset.

4.4. Hyperparameters

We used the Adam algorithm to compute the gradients. We trained examples one by
one, instead of grouping examples into batches, because different ASTs may have different
numbers of nodes. The vector size for the feature vector of one token was 128. All other
parameters were decided successively.
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4.5. Termination Condition

We used the strategy of early stopping for the termination of model training. The model
stopped instantly if the the prediction accuracy on the validation set started to decrease.

4.6. Platform

The experiments were conducted on a desktop computer. The CPU of the computer
was i5-8400, the GPU was a Geforce RTX 2070, and the memory size was 32 GB. The imple-
mentation of the model was based on TensorFlow.

4.7. Evaluation

The metrics to evaluate the performance of different models in this experiment in-
clude top-k (top-1, top-3, top-6, and top-10) accuracy and mrr (mean reciprocal rank).
The top-k accuracy is computed by judging whether the right token appears in the first
k recommendations of the code completion model. When predicting the token of the
next node, if the oracle token appears in the rth recommendation, then the rank of this
recommendation (completion) is r and the reciprocal rank of this recommendation is 1

r .
The mrr is computed by averaging the reciprocal rank of the oracle token for each code
recommendation (completion).

Table 2 shows the top-k accuracy and the mrr evaluated for four datasets. HLM refers
to the Hierarchical Language Model. On all three datasets, RNN performs the worst. On
small datasets, i.e., Dataset 1 and Dataset 2, HLM achieved, on average, an 8.5% higher
top-1 accuracy than LSTM. On large datasets, i.e., Dataset 3, HLM achieved, on average,
a 16.9% higher top-1 accuracy than LSTM. After carefully investigating the experimental
results, we found that the proposed HLM is good at predicting tokens related to the syntax
tree structure. For top-1 accuracy, the different models used in the experiments had a large
degree of discrimination. For top-3, top-6, and top-10 accuracy, the distinction between
different models became smaller and smaller. This illustrates that the top-1 prediction
accuracy is the most convincing. From the perspective of top-1 prediction accuracy, HLM
performs better than other models. Figure 6 shows the top-1 accuracy for different models
on different datasets. As can be seen, the proposed HLM achieves the best results for all
datasets. This figure intuitively shows the effect of the proposed model.

Table 2. Evaluation results on test sets.

DS MD Top-1 Top-3 Top-6 Top-10 mrr

1

RNN 32.8 45.1 53.6 59.8 0.41

LSTM 46.8 60.7 67.2 71.3 0.55

HLM 50.3 64.7 70.7 73.8 0.58

2

RNN 44.0 56.9 63.8 69.3 0.52

LSTM 50.9 64.1 69.6 72.5 0.58

HLM 55.7 69.5 73.4 75.2 0.63

3

RNN 34.8 52.2 56.4 59.3 0.43

LSTM 48.6 61.3 68.6 70.4 0.56

HLM 56.8 64.9 71.3 72.5 0.62
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Figure 6. Top-1 accuracy for different models.

Table 3 shows the training time for the different models on different datasets. As the
proposed model splits the original decoding procedure into encoding procedure and
decoding procedure, the training time for one round is twice as long as the baseline
model. However, as the proposed model captures the characteristics of code structures,
the proposed model is much easier to converge than the baseline model, which does not
capture the code hierarchy structures. The number of rounds required for the convergence
of the new model is generally one half to one third of that of the baseline model. In total,
the proposed framework still uses less time to complete the training procedure than the
baseline model.

Table 3. Training time for different models.

Time for One Round Number of Rounds to Converge Total Time

DS1
LSTM 1 min 18 18 min

HLM 2 min 7 14 min

DS2
LSTM 6 min 29 174 min

HLM 15 min 9 135 min

DS3
LSTM 22 min 35 770 min

HLM 40 min 11 440 min

As can be seen from the experimental results, the proposed model achieves the best
results. By introducing more parameters in the proposed framework, the model can fit the
data better. Furthermore, in the encoding procedure, the tree model is adopted, to capture
the characteristics of the abstract syntax tree (AST) of the code, which also contributes to
the improvement. The HLM uses post-order traversal to traverse the AST, to encode all sub-
trees. This kind of encoding is good at handling unseen data. As the unseen token is often
on the leaf node of the AST, if we continue to abstract important information from the leaves
to the root, the impact of unseen data on leaves is often reduced. Meanwhile, the standard
LSTM model treats all tokens equally. When encountering unseen tokens, the standard
LSTM model handles the unseen token, and information bias appears. The information
bias can be accumulated if there are many unseen data in a long sequence. This problem
is called exponential bias. The ability to reduce the impact of the unseen tokens is the key
to performance improvement. In summary, the top-1 prediction accuracy on the test set
is representative, with HLM performing better in terms of top-1 accuracy than all other
models; hence, we can conclude that HLM outperforms state-of-the-art models in handling
data inconsistency.
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5. Discussion

This paper proposes a new mechanism to generate the embedding for predicting
next code tokens. This new mechanism is different from all existing frameworks for
language models, and can be used in multi-modal or multi-head mechanism, to integrate
the existing old mechanisms together, to improve the model performance. Thus, the newly
proposed mechanism is meaningful and can be used as a supplement to existing models. To
understand the significance of this work, we need to explain the multi-modal mechanism,
or the ensemble learning mechanism, to explain why this newly proposed framework
has important significance from a research perspective. In the field of machine learning,
ensemble learning has been widely used in various scenarios. For non-deep learning
models, they often share different data formats, so they can only be integrated in the final
step about voting for the final results. For deep learning models, the data formats in
different deep learning models are nearly all the same, that data format is the tensor. Then,
the ensemble methods in deep learning systems are more advanced and are called multi-
modal, multi-view, or multi-head mechanisms. The multi-modal or multi-head mechanisms
have been widely used to improve the model efficiency in deep learning systems. Because
the data formats in all deep learning models are tensors, we can easily feed the tensors
generated by different deep learning models into a deep neural network, to generate a new
tensor, this new tensor can be taken as the embedding generated by combining different
deep learning models. The more different the integrated multiple deep learning models are,
the more information the resulting tensor contains, which ultimately improves the ability
of the model to fit data. Once a different encoding or decoding mechanism is proposed,
this new mechanism can be combined with the existing old mechanism, to jointly improve
the model efficiency. As the proposed mechanism in this paper is different from all existing
mechanisms, thus, it is worthy to spend time to combine the mechanism proposed in this
paper with other existing mechanisms, to predict the next code in the future.

The interesting finding for this work is that, through the proposed framework, the tree
structure of the source code can be used to reduce the data inconsistency between training
and testing. Besides, by capturing the tree structure of code, during training, the number of
rounds required to reach the convergence state will also be greatly reduced. The existing
works predict tokens one by one. The predicting procedure is also named as the decoding
procedure. Even for transformer models, the tokens are also predicted (decoded) one by
one. When decoding, the information of already visited tokens will be accumulated in the
decoding order. In this paper, we find that the information of already visited tokens can
be accumulated in a different order than the traditional decoding order. In fact, based on
the tree hierarchy, we use an order opposite to the decoding order to collect information
about the nodes that have been visited. The procedure of collecting information of already
visited tokens is named as the encoding procedure, and the encoding procedure has been
separated from the decoding procedure. This is the key scientific contribution, that the
encoding process and the decoding process are separated in a language model. This feature
is different from existing language models, including transformers. As far as we know,
existing models use the same procedure to encode the sequence and decode the sequence.
The framework also shows that the encoding procedure can use tree models, and the
decoding procedure can use the traditional sequential model. Note that, the encoding
procedure can also use other language models, such as the transformer or the graph model.
The decoding procedure can also use other language models, such as the transformer,
the graph model, or the tree model. Selecting different models for the encoding procedure
and the decoding procedure can have different prediction effects. It is worth performing a
lot of experiments to find the best model configuration for the encoding procedure and the
decoding procedure, although this will consume a lot of code work. In the future, the pre-
training method based on transfer learning could also be combined with the framework
proposed in this article, to improve the prediction effect.
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6. Conclusions

The Hierarchical Language Model (HLM) is proposed, to handle the hierarchical
structure of the code syntax tree. According to our experiments, the use of the HLM
results in an improvement of at least 7% in top-1 accuracy, compared with the LSTM
model. The proposed HLM method models the tree structure of the code. To be precise,
the method takes the brotherhood of nodes, and the parent–child connections between
nodes, into consideration. However, there are still other node relationships that need to be
considered. For example, the control–flow or data–flow relationships between statements
should be considered. A great deal of engineering implementation is required to accurately
extract these complex relationships. In future work, we will adopt more advanced program
analysis technology to extract the various relationships of the code, and model these
relationships in a deep learning system, to further improve the prediction performance.
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