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Abstract: Siamese network-based trackers have developed rapidly in the field of visual object tracking
recently. Many Siamese network-based trackers currently in use rely on result fusion to combine the
classification result map and regression result map. However, these result maps are obtained from
the multi-level feature map and are independent of each other. It is inappropriate and flawed to use
result fusion. Additionally, classification module and regression module are independent of each
other, which leads to feature misalignment. In this paper, we propose a feature-fusion approach that
involves fusing similarity response maps using a novel scale attention mechanism and subsequently
decoding the features. To reduce the feature misalignment and produce more precise tracking results,
we suggest using Classification Supervised Regression Loss (CSRL), to train the model. Experiments
conducted on three challenging benchmark datasets show that this method outperforms current
models in terms of both performance and efficiency, running at 40 fps.

Keywords: visual object tracking; Siamese network; feature fusion; feature alignment

1. Introduction

Object tracking is a basic challenge that involves predicting the target state in the
video based on the initial state. It has several uses, including visual surveillance [1], pose
estimation [2], and autonomous vehicles [3]. Therefore, it is a very active research direction.
Despite the recent advances, various issues, such as scale variances, background clutters,
scale variation and scale variation, continue to make it very challenging.

In recent years, Siamese network-based trackers [4–7] have shown encouraging
progress. The pioneering method, SiamFC [4] utilizes the Siamese network architecture [8]
to address the object tracking problem to the object tracking issue, establishing the ground-
work for a series of later methods. Following this work, although several studies [9–11]
focus on improving the feature representation of the Siamese model, the overall structure
has remained mostly unchanged. In 2018, SiamRPN [5] introduced the region proposal
network (RPN) [12]. Then, SiamRPN++ [6] presented a sampling strategy to successfully
introduce ResNet to the Siamese tracker. In addition, it proposes a depth-wise crosscorrela-
tion (DW-Xcorr) layer to produce multichannel similarity response maps. Since RPN relies
on anchor points and a series of related hyperparameters, the model’s generalization ability
is severely reduced. The following research has focused on how to remove the effects of
anchor points. Therefore, a series of anchor-free trackers are proposed. SiamBAN uses a
per-pixel-prediction method to regress the bounding box from the similarity response map.
Recently, a series of new trackers inspired by transformer [13] have been proposed, such as
TransT [14].

To leverage multi-level features for prediction, existing Siamese network-based track-
ers [4–7] input the feature maps of the last three blocks of ResNet-50 [15] into the similarity
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matching module to obtain three similarity response maps. After that, the three similarity
response maps are input to the tracking head separately for prediction. The result maps
obtained from the tracking head are fused in an adaptive manner. As shown in Figure 1a,
these methods fuse different levels of result maps to obtain the final tracking results. How-
ever, these result maps represent the results obtained from multi-level features. Directly
fusing them is inherently flawed. Instead, a better approach is to fuse the results obtained
from different scales based on their corresponding weights. Moreover, result fusion may be
effective, but it does not provide an explanation for why it works.

Figure 1. Comparison of previous work and our work. (a) Previous works use result fusion to fuse
the result maps and obtain the tracking results. The classification branch and regression branch first
decode the features of the simialrity response map to obtain the result map, and then fuse it. (b) Our
work uses a novel scale attention to fuse the multi-level similarity response maps. Subsequently,
the two branches decode it to produce the tracking results.

Therefore, we propose a a more valid and explainable method named Siamese Feature
Fusion Network (SiamFFN) for handling this. The framework consists of backbone, similar-
ity matching module, and feature fusion head. Unlike the previous tracking head, feature
fusion head fuses the feature maps. As shown in Figure 1b, a scale attention is proposed
to fuse multi-level similarity response maps based on their semantic importance. Then,
the fused similarity response map is feature decoded to obtain the tracking results.
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Moreover, the classification and regression branches are separate, leading to feature
misalignment in the resulting output feature maps. Siamese network-based trackers lack
a direct structural connection between the classification and regression branches, which
are optimized independently of each other. However, the regression branch generates the
corresponding prediction bounding box based on the classification result map during the
tracking phase. As a result, there is a large number of inconsistent predictions during the
inference stage, where the predictions often have high classification scores but less accurate
regression bounding boxes. As shown in Figure 2, the blue bounding box has a higher
classification score than the red bounding box, leading to the blue bounding box being
outputted as the final tracking result. However, the red bounding box is more accurate
in terms of tracing results. Therefore, we use a Classification Supervised Regression Loss
(CSRL), which enables joint optimization of both two branches.

Figure 2. The flow chart of the tracing head during inference. The blue bounding box has a higher
classification score than the red bounding box, but the red bounding box has significantly more
accurate tracking results.

In summary, this letter makes three contributions:

1. We design a Siamese Feature Fusion Network (SiamFFN). which uses the way of
feature fusion to obtain the final tracking results. It is more scientific and effective
than the previous approach of using result fusion.

2. We use a Classification Supervised Regression Loss (CSRL) to alleviate the misalignment
between two branches. This enables the model to produce more accurate predictions.

3. An empirical evaluation on multiple challenging benchmark datasets validates the
superior performance of SiamFFN over several state-of-the-art trackers, demonstrating
its effectiveness in achieving top-performing results.

The rest of this article is structured as follows. Section 2 provides a review of three
parts: Siamese networks based tracker, attentional mechanisms and feature alignment.
Section 3 describes Siamese Feature Fusion Network (SiamFFN) and Classification Su-
pervised Regression Loss (CSRL). Section 4 presents a comprehensive evaluation of the
performance of SiamFFN compared to other state-of-the-art trackers. Additionally, we
conduct ablation experiments to prove the effectiveness of our SiamFFN and CSRL. Finally,
we draw conclusions.

2. Related Work

This section focus on three aspects: Siamese network-based trackers, attentional
mechanisms and feature alignment.

2.1. Siamese Network-Based Trackers

Siamese network-based trackers [4–7] have made significant breakthroughs in visual
object tracking recently. As one of the pioneering works, SiamFC [4] extracts features
using a modified AlexNet [16], which removes the padding and fully connected layers
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In addition, SiamFC proposes the cross-correlation (Xcorr) layer for correlation operation.
Then, the researchers go on to build some revised Siamese methods [9–11] on the basis
of this Siamese framework. DSiam [9] proposes dynamic Siamese networks which can
learn target appearance changes and background suppression. RASNet [10] introduces
spatial attention and channel attention mechanisms. However, because these trackers are
all built on SiamFC’s framework, they can only achieve multi-scale search by inputting
images at multiple scales to account for scale variation. Such processing requires additional
computational effort and the accuracy achieved is not very high.

Then, the region proposal network (RPN) [12] is introduced by SiamRPN [5]. RPN is
made up of two branches: a classification branch using to distinguish between the target’s
foreground and background and a regression branch using to regress the bounding box.
In addition, SiamRPN also introduces the up-channel cross correlation (Up-Xcorr) layer.
After that, SiamRPN++ [6] deepens the Siamese network. It removes the stride from the
last two blocks of ResNet [15] and adds the dilated convolution [17]. Apart from this,
SiamRPN++ also proposes a depth-wise cross correlation (DW-Xcorr) layer, which has
become a popular way to calculate similarity.

SiamRPN++ refines the basic framework of Siamese network-based trackers, and most
of the subsequent trackers are improved with this framework. C-RPN [18] proposes to
solve the class imbalance problem by cascading a series of RPNs in a Siamese network
from deep layers to shallow layers. Some other studies concludes that RPN must rely on a
huge number of hyperparameters related to the anchors, which considerably decreases the
tracker’s generalization performance. To solve them, the anchor-free method is proposed,
such as SiamBAN [7], SiamFC++ [19] and Ocean [20]. In this way, they can remove the
inconvenient anchor hyperparameters. Recently, transformer [13] gains popularity in
computer vision. Transformer is completely built on the attention mechanism, with no
levels of convolutional or recurrent neural networks. Based on it, TransT [14] proposes a
novel attention-based feature fusing network.

However, most of the existing Siamese network-based trackers [6,7] use result fusion
to obtain the final tracking results. These result fusion trackers are not structurally sound.
In contrast to them, our Siamese Feature Fusion Network (SiamFFN) uses feature fusion
in its structural design. Specifically, we design a novel scale attention to fuse multi-level
feature maps according to their semantic importance. Furthermore, we use a Classification
Supervised Regression Loss (CSRL) to facilitate feature alignment between the two branches.
The related work about them is reviewed in section B and section C.

2.2. Attentional Mechanisms

Attention mechanism can be described as an algorithm for dynamic weight modifi-
cation based on the input image features. It excels at a lot of visual tasks since its debut.
SENet [21] presents the idea of squeeze-and-excite (SE) block as the first approach. GSoP-
Net [22] adds a global second-order pooling to the fundamental global average pooling
to simulate higher-order statistics. ECANet [23] works to minimize the complexity of
the excitation module by determining channel interaction using a 1D convolution. Re-
cently, transformer [13] has achieved remarkable performance in various tasks by utilizing
self-attention mechanism.

Visual object tracking also makes use of attention. RASNet [10] applies the atten-
tion method suggested by SENet to Siamese network-based trackers. Its main technique
involves leveraging the attention mechanism to enhance the representation of feature
maps. Based on transfomer influence, TransT [14] proposes a novel attention-based feature
fusing network.

Our proposed scale attention differs from previous approaches in the following ways:
(1) The motivations are different. Our scale attention is proposed to fuse the similarity
response map, while most of the previous approaches use attentional mechanisms to
improve the representation of features. (2) The implementations are different from previous
work [24]. We apply global average pooling to extract the spatial information from the



Electronics 2023, 12, 1568 5 of 15

feature map, and then integrate all channels together by convolution. Finally, we obtain the
scale weights based on semantic information by activating with ReLU and hard Sigmoid.
We can accordingly perform better feature fusion on the similarity response map.

2.3. Feature Alignment

In most of the object detectors [12,25,26], there is the problem of feature misalignment.
To solve this problem, IoU-Net [27] proposes to use the predicted IoU as localization
confidence. PISA [28] suggests a Classification-Aware Regression Loss (CARL), with higher
classification score gradients in samples with greater regression losses. Harmonic loss [29]
proposes that classification and regression branches can oversee each other’s optimization
during training.

The same problem exists in most of the tracking heads. SiamFC++ [19] uses a new
branch to predict the centerness [30]. SiamRCR [31] suggests a technique for combining
classification and regression losses. However, it still needs to add an additional localization
branch to predict the localization accuracy. Recently, some studies shift their focus towards
addressing this issue by employing loss functions. Following it [32], we use Classifica-
tion Supervised Regression Loss (CSRL) to optimize the joint classification branch and
regression branch.

3. Method

In this section, a novel feature fusion approach is proposed to design the tracker’s
tracking head, and our model is called Siamese Feature Fusion Network (SiamFFN). More-
over, we suggest using a Classification Supervised Regression Loss (CSRL) to solve the
problem of feature misalignment.

3.1. Siamese Feature Fusion Network

Our baseline model, SiamBAN is a simple yet effective Siamese tracking framework.
SiamBAN’s tracking head first decodes the features of the three input similarity response
maps. After that, the three obtained results are adaptively fused. These three sets of result
maps are obtained from multi-level similarity response maps, and they are independent of
each other. The use of result fusion is a simple way to combine results, but its effectiveness
is limited.

Our SiamFFN is mainly built on the SiamBAN. As shown in Figure 3, SiamFFN
consists of Siamese network backbone, similarity matching module, and feature fusion
head. The Siamese network was built around the ResNet-50 [15]. To output multi-level
features, we eliminate the downsampling operation from the last two blocks and add
atrous convolution [33]. Multi-level feature maps are then fed into the similarity-matching
module, resulting in three similarity response maps. In the feature fusion head, a novel
scale attention mechanism is used to fuse the multi-level similarity response maps. As
shown in Figure 4, three input similarity response map F3, F4, F5 are concatenated along a
new dimension:

S = stack(F3, F4, F5) (1)

in which S is the fused similarity response map and stack concatenating operation.
For better integration, we propose a scale attention mechanism which can capture the

semantic significance of multi-level features. Specifically, global average pooling is first
used to obtain the maximum value of each similarity response map. After that, all channels
are integrated together by a convolution layer to finally acquire three numbers. Finally,
the ReLU function is used to activate it. For any input similarity response map Fi, the scale
attention πs is as follows:

πs(Fi) = δ(Conv(Avg(Fi))) (2)

in which Conv denotes the convolution layer, Avg denotes average pooling and δ denotes
ReLU function.
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Figure 3. The overall architecture of the proposed Siamese Feature Fusion Network (SiamFFN).
The modified ResNet-50 outputs three different levels of feature maps. DW-Xcorr is responsible for
calculating the similarity between them and outputting three similarity response maps. Then, we
use a novel scale attention to fuse multi-level feature maps according to their semantic importance.
Finally, it is decoded to obtain the final classification and regression maps.

Figure 4. Feature fusion approach.

Similarly, the different levels of scale attention are concatenated together and reacti-
vated by the hard sigmoid function. The equation is as follows:

W = hard_sigmoi(stack(πs(F3), πs(F4), πs(F5))) (3)

hard_sigmoid = max(0, min(1,
x + 1

2
)) (4)

Then, we multiply the similarity response map and scale attention of the corresponding
level. Finally, the fused similarity response map is obtained by averaging them. The specific
formula is as follows:

Fout = mean ∑
i=3,4,5

SiWi (5)

in which mean denotes averaging operation.
Our proposed feature fusion approach fully considers the semantic features of different

levels and fuses them according to their importance.

3.2. Classification Supervised Regression Loss

The tracking head usually contains a classification branch and a regression branch.
In 208 the inference phase, the tracking head finds the points with the highest classification
scores in the classification map. According to its coordinates, the corresponding bounding
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box information is found in the regression map. However, the lack of a connection between
the two branches can result in feature misalignment problems. Therefore, we use a Classifi-
cation Supervised Regression Loss (CSRL), which receives the inspiration from corrective
loss [32].

For regression branch, the IoU_Loss [34] is denoted as:

IoU_Loss = 1− IoU (6)

where IoU denotes Intersection over Union.
The Cross Entropy (CE_Loss)is used for the classification branch, and is denoted as:

CE_Loss = −∑
i

yilogpi (7)

in which yi denotes true value and pi denotes prediction value.
As previously stated, the optimization between the two branches in the previous

method was separate. We observe the tracking phase of existing methods and discover that
the majority of them use classification branches to trigger regression branches. Therefore,
we use a Classification Supervised Regression Loss. For positive samples xi, the formula is
as follows:

Lpos = CE_Loss + e−CE_Loss IoU_Loss (8)

In particular, we place a variable associated with classification loss in front of regression
loss. As a result, a sample with a better classification score will obtain a large weight of
the regression loss. Therefore, the two branches will produce more consistent prediction
outputs throughout the inference phase, resulting in extraordinarily high localization
accuracy.

4. Experiments

We conduct a comprehensive experimental evaluation of the our Siamese Feature
Fusion Network (SiamFFN). OTB-2015 [35], VOT2016 [36] and UAV20L [37] are three
tracking benchmarks we used in the experiments. To begin, we introduce the datasets
used in our experiments and provide details about the training process implementation.
Following that, three tracking benchmarks and the associated evaluation metrics are given.
At last, we will discuss the comparison and ablation experiments.

4.1. Dataset

In this research, we use GOT-10k [38], COCO [39], ImageNet VID [40] and ImageNet
DET [40] to train our SiamFFN. On several well-known tracking benchmarks, including
OTB-2015 [35], VOT2016 [36] and UAV20L [37], we test our model. We will first give a
quick overview of these datasets.

GOT-10k [38] contains 10,000 videos and contains over 1.5 million manually annotated
bounding boxes. It is constructed based on the WordNet structure, which is used to ensure
the category balance in the videos.

COCO [39] is a large-scale dataset suitable for various image tasks, containing over
330 K images with annotations for 220 K images. It includes 1.5 million targets, 80 target
classes, and 91 material classes.

ImageNet [40] consists of 14,197,122 images and is a large computer vision dataset. It
has many sub-datasets with different divisions. Among them, ImageNet VID has a total of
30 categories.

OTB-2015 [35] consists of 100 videos of 22 object categories. The video length of
OTB-2015 dataset varies from 71 to 3872 frames, with an average resolution of 356 × 530.

VOT2016 [36] includes 60 sequences. Each sequence is labeled by different attributes
for each frame, including IV, MOC, SCO, ARC, OCC, and FCM. Sequences are usually
757 × 480 pixels in quality, with frame sizes varying from 48 to 1507 pixels.
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UAV20L [37] consists of 20 long videos depicting 5 distinct object classes created with
a flying simulator. The lowest frame count for these sequences is 1717 and the highest
frame count is 5527.

4.2. Evaluation Criteria

OTB-2015 [35] and UAV20L [37] use the precision plot and success plot.
Precision Plot. Average Euclidean distance is used to calculate the central location

error for each video frame. Depending on the threshold value, different percentage values
can be obtained, which allow us to plot the precision values.

Success Plot. In each frame, Rb denotes the predicted bounding box and Rgt represents
the ground truth. We can calculate the overlapping area between them by following
formula:

OS =

∣∣Rb ∩ Rgt
∣∣∣∣Rb ∪ Rgt
∣∣ . (9)

VOT2016 [36] employs three measures in accordance with the VOT evaluation proto-
cols: A, R, and EAO. A (accuracy) indicates the average overlap between the ground truth
and the bounding area projected by the tracker during its effective tracking. R (robustness)
is used to calculate how many times the tracker 279 misses a subject while tracking. EAO
(expected average overlap) estimates the average overlap anticipated by the tracker over a
lot of short-term sequences that share the same visual characteristics.

4.3. Implementation Details

Our approach is implemented under PyTorch 1.8.0 framework on a Intel(R) Xeon(R)
Silver 4210R CPU (2.40 GHz) along with a Nvidia Geforce RTX 3090 GPU. The backbone is
modified ResNet-50 [15]. To train SiamFFN, we use Classification Supervised Regression
Loss. The entire network is trained for 20 epochs using Stochastic Gradient Descent (SGD)
with a momentum of 0.9 and a batch size of 80. During the first five warm-up epochs,
the learning rate varies from 0.001 to 0.005. For the remaining 15 epochs, the learning rate
ranges from 0.005 to 0.00005.

4.4. Comparison on Public Benchmarks

OTB-2015 [35]. We evaluate our tracker against nine state-of-the-art methods includ-
ing TCTrack++ [41], TransT [14], Stark [42], SiamBAN [7], SiamRPN [5], SiamDW [43],
DaSiamRPN [44], SiamFC [4] and DeepSRDCF [45]. Figure 5 illustrates that our tracker
outperforms existing state-of-the-art trackers, achieving results of 0.694 and 0.903 on the
success plot and precision plot, respectively.

VOT2016 [36]. As shown in Table 1, SiamFFN achieves the best EAO (0.501) and
Robustnes (0.131) on the VOT2016 dataset while PrDiMP achieves the best Accuracy.
Compared to the SiamBAN, our tracker has a reduction of 0.13 on Robustnes. This shows
that our tracker is able to have better robustness compared to the previous tracker while
maintaining good tracking accuracy.

Table 1. Tracking results on VOT2016 dataset.

Tracker EAO Accuracy Robustness

SiamFC [4] 0.277 0.549 0.382
SiamRPN [5] 0.344 0.560 1.12

SiamRPN++ [6] 0.370 0.580 0.240
ECO [46] 0.374 0.546 11.67

ATOM [47] 0.424 0.617 0.190
SiamR-CNN [48] 0.461 0.645 0.173

PrDiMP [49] 0.476 0.652 0.140
SPM [50] 0.481 0.610 0.206

SiamBAN [7] 0.491 0.627 0.144
Ours 0.501 0.625 0.131
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Figure 5. Tracking results on OTB-2015.

UAV20L [37]. Our tracker is compared to the nine best-performing trackers on
UAV20L, including HiFT [51], SiamAPN++ [52], SiamAPN [53], SiamBAN [7], SiamRPN [5],
SiamFC [4], BACF [54], ECO [46] and STRCF [55]. As shown in Figure 6, our tracker out-
performs most other state-of-the-art trackers, achieving scores of 0.575/0.747 on the success
plot and precision plot, respectively. HiFT borrows a idea of transformer and adds posi-
tion encoding in the process of feature fusion, so the effect is better than our tracker on
precision plot.

Figure 6. Tracking results on UAV20L.

Overall, our tracker outperforms the competition on several tracking benchmark
datasets, including the traditional target tracking datasets OTB-2015 and VOT2016, as well
as the UAV aerial photography datasets UAV20L. To show our tracker’s superiority, we
compare its performance on several datasets with that of the baseline tracker. As shown
in Figure 7, we perform validation on OTB-2015 and UAV20L dataset. In the visualiza-
tions, the ground truth bounding boxes are shown in green, while the tracking results
generated by previous methods, SiamBAN and our proposed SiamFFN, are represented
by blue and red bounding boxes, respectively. We have also conducted a computational
complexity analysis, which is summarized in Table 2. Compared with other result fusion
trackers, our proposed SiamFFN has a smaller number of parameters and requires less
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computational effort. Furthermore, SiamFFN demonstrates comparable speed to SiamBAN,
but outperforms SiamRPN++ in terms of processing time.

Figure 7. Visualization of tracking results on videos from different datasets.

Table 2. Analysis of Computational Complexity.

Trackers Flops (G) Params (M) FPS

SiamFC 5.05 3.1 100
SiamRPN 9.23 22.63 160

SiamRPN++ 59.56 53.95 35
SiamBAN 59.59 53.9 40
SiamFFN 57.02 47.64 40

4.5. Ablation Study

We conduct an ablation study on the SiamFFN and baseline tracker. To conduct better
ablation experiments, we will not be utilizing the model provided by the authors of the
research. Instead, we will be reproducing SiamBAN using the four training datasets that
we used. Finally, we evaluate its performance on the UAV20L dataset.

As shown in Table 3, SiamBAN achieves 0.543/0.713 on success plot and precision plot.
Our proposed SiamFFN achieves 0.561/0.720 on success plot and precision plot, which
improves by 0.018/0.019. This is a good proof that SiamFFN using feature fusion is better
than SiamBAN using result fusion. In addition, we train SiamBAN and SiamFFN using
Classification Supervised Regression Loss, respectively. As shown in Table 3, SiamBAN’s
performance on the UAV20L dataset improved by 0.014/0.007 with the help of CSRL.
After training SiamFFN with CSRL, it improves to 0.575/0.747 on success plot and pre-
cision plot. In addition, we evaluate these four trackers in terms of each attribute of the
UAV20L dataset. As shown in Figure 8, our tracker exhibits superior performance across
multiple attributes, suggesting the remarkable robustness of our model in tackling diverse
challenges.
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Figure 8. Tracking output of attribute analysis on UAV20L.
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Table 3. Ablation study on UAV20L.

Tracker Success Rate Precision Rate

SiamBAN 0.543 0.713
SiamFFN 0.561 0.732

SiamBAN + CSRL 0.557 0.720
SiamFFN + CSRL 0.575 0.747

Improvement of Classification Supervised Regression loss (CSRL): CSRL optimizes
both the classification and regression branches together, resulting in more consistent classi-
fication scores and regression bounding boxes. We use CSRL to train SiamBAN, and the
tracking results are improved, reaching 0.557/0.720 on success plot and precision plot.
As shown in Table 4, CSRL helps to improve the success rate of 0.014 and the precision
rate of 0.007. We also apply it to the training process of multiple trackers. As shown in
Table 4, training SiamFFN and SiamRPN++ with CSRL can further improve their perfor-
mance. The success rate of SiamFFN improved by 0.014, and the precision rate improved by
0.015. The success rate of SiamRPN++ improved by 0.013, and the precision rate improved
by 0.038.

Table 4. Ablation study of CSRL.

Tracker Success Rate Precision Rate

SiamBAN 0.543 0.713
SiamBAN + CSRL 0.557 0.720

SiamFFN 0.561 0.732
SiamFFN + CSRL 0.575 0.747

SiamRPN++ 0.528 0.696
SiamRPN++ + CSRL 0.541 0.734

5. Conclusions

In this paper, we present a Siamese network framework for efficient object tracking.
Specifically, we introduce a feature fusion head that fully takes into account multi-level
semantic features and merges them based on their significance. Furthermore, we use a
Classification Supervised Regression Loss to optimize both classification and regression
branches. Experimental results on three tracking benchmarks shows that our proposed
Siamese Feature Fusion Network (SiamFFN) achieves state-of-the-art performance, running
at 40 fps on a Nvidia RTX 3090, confirming its effectiveness and efficiency.
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Abbreviations
The following abbreviations are used in this manuscript:

SiamFFN Three Siamese Feature Fusion Network
DW-Xcorr Depth-wise crosscorrelati
CSRL Classification Supervised Regression Los
IoU Intersection over Union
CARL Classification-Aware Regression Loss
EAO Expected Average Overlap
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