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Abstract: With skeleton-based action recognition, it is crucial to recognize the dependencies among
joints. However, the current methods are not able to capture the relativity of the various joints among
the frames, which is extremely helpful because various parts of the body are moving at the same time.
In order to solve this problem, a new sequence segmentation attention network (SSAN) is presented.
The successive frames are encoded in each of the segments that make up the skeleton sequence. Then,
we provide a self-attention block that may record the associated information among various joints in
successive frames. In order to better recognize comparable behavior, a model of external segment
action attention is employed to acquire the deep interrelation information among parts. Compared
with the most advanced approaches, we have shown that the proposed method performs better on
NTU RGB+D and NTU RGB+D 120.

Keywords: human action recognition; skeleton data; self-attention; attention mechanism

1. Introduction

Human motion recognition can play a great role in a number of industries, including
intelligent video surveillance, virtual reality, and human–computer interaction. In contrast
to other methods, a lot of interest has been shown in skeleton-based action recognition
in recent years due to its strong robustness to complex environments and camera views.
When describing how the body moves, position information is usually used to help explain
the process of body movement. According to the actual situation, you can use 2D or 3D
coordinates to mark the joint position. It is simple to obtain the skeletal data using pose
estimating methods or depth cameras [1].

Most of the methods used in the past [2–4] are based on artificial features that do
not gain the temporal and spatial features of the skeletal structure. In recent years, deep
learning has been widely used in the field of convolutional neural networks (CNNs) [5–7]
and recurrent neural networks (RNNs) [8–10]. Despite their many successes over the
past few years, they cannot be used to uncover important connections between joints.
Rather, they can only be used to process routine data in Euclidean space. The joints in
the human skeleton act as vertices, and the body’s bones act as edges in a graph that is
formed according to natural rules. In recent years, graph convolutional networks (GCNs)
have been widely used in machine learning. A novel method named spatio-temporal
graph convolutional networks (ST-GCN) is suggested by Yan et al. [11]. The GCN and
one-dimensional temporal convolution are the two essential parts of the ST-GCN. Through
these two parts, we can obtain space and time information, respectively. GCN can extract
the position information and bone structure information of bones by using the graph
structure. One-dimensional time convolution mainly acts on adjacent frames and can
obtain joint motion information. Shi et al. [12] propose the two-stream adaptive graph
convolution network (2s-AGCN) that utilizes an adaptive adjacency matrix to capture the
mutual relationships of the nodes. Furthermore, by modeling the joint and bone data,
the 2s-AGCN can improve performance. Subsequently, many methods based on AGCN
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and ST-GCN have since been developed in order to obtain an action recognition level of
performance that has never before been attained.

While ST-GCN and its successors have demonstrated the capability of extracting
spatial and temporal features, the majority of GCN-based models are deficient. It is
observed that there is a correlation between the different joints in a number of successive
frames. In the “Wear a shoe” action, for example, the hand will drive the body downward
and close to the foot, and the joint will be displaced as a result of the overall motion.
As a result of the motion, joints that were not associated in the previous frame will be
connected in the next frame. As a result, it is helpful to obtain the relevant characteristics
of the neighboring frames from different joints. However, these approaches are not able to
capture this association efficiently. In the GCN-based approach, for example, Yan et al. [11]
construct a spatio-temporal graph that ignores the relationships between different joints
within the same frame and only propagates associated information between the same joints
in different frames.

We propose a new sequence segmentation attention network (SSAN) for skeleton-
based action recognition according to the foregoing. In particular, a skeleton sequence is
split into a number of mutually non-overlapping segments, each consisting of a number of
consecutive frames. Due to the correlation between the various joints in successive frames,
we propose an internal self-attention (ISA) block. Using this block, it is possible to easily
and efficiently extract the correlative information among the joints in every segment. Due
to the reduction in the temporal dimension by using segmentation, the computation cost of
the block is small. Moreover, a segment can be thought of as a decomposed action, whereas
a whole action is made up of several decomposed actions. On the basis of this, a module
called the external segment attention (ESA) block is proposed to group these sub-actions
and record important temporal and spatial information that occurs between segments. This
module improves the recognition accuracy of similar actions.

The contributions of this paper can be summarized as follows:

• In this paper, we propose a segmentation and encoding strategy for a skeleton se-
quence, which links joints in consecutive frames into a series of sequences and inserts
a position-coding module to obtain spatio-temporal features.

• We suggest using an internal self-attention block to record pertinent information
between various joints in adjacent frames and an external segment attention block to
merge all actions.

• The validity of each module was established by ablation experiments. On two large
datasets, NTU RGB+D and NTU RGB+D 120, our model performs superbly.

2. Related Work
2.1. Skeleton-Based Action Recognition

The development of depth sensing techniques (such as Kinect [13]) and pose estimation
algorithms [1,14] makes it possible to collect bone data in real-time by locating key joints.
The skeleton data are robust to the changes in the lighting, the changes in the scene, and
the complexity of the background. This robustness has been shown to be useful for data-
driven tasks such as skeleton-based action recognition. In the past, it was difficult to
extract useful information from skeleton sequences automatically in motion recognition.
Therefore, people need to manually and painstakingly collate the required characteristics of
the tag. Some conventional methods [3,15–17] rely on actions view-invariant characteristics.
Some examples of these characteristics are skeletal quads [3,15], cluster sparse vocabulary
encoding [16], and canonical representation of transform-based functions [17]. Several
methods in the past have combined data from the various 3D action datasets modes. To
increase performance, many works [18–20] have associated depth information with the
skeleton. HOG features [18] and Fourier temporal pyramids [20] are used to represent
the depth information, or they can use random decision forests for modeling [19]. Many
machine learning applications have been made possible by recent developments in deep
learning. RNN and CNN are the most popular models. RNN-based models [8,21–23]
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generally associate the coordinates of all the joints in each frame as vectors, then the
vector sequence is used as input to model the characteristics of the action. LSTM-IRN [24]
provides the Interaction Relational Network to assure proper learning of the interaction
mode. CNN-based models [6,25,26] generate a pseudo image by stacking a sequence of
vectors, which is then converted into an image classification task. In order to perform better
than a single network, the two-stream-based model [27] combines RNN and CNN, which
work on skeleton and RGB images.

Nevertheless, because a skeleton is not a vector or a two-dimensional grid, joint vector
sequence and semantic images are not suitable for representing the skeleton structure.
Zhou et al. [28] propose a new bottom-up mechanism for learning category-level human
semantic segmentation as well as multi-person pose estimation in a federated and end-
to-end manner. With compact, efficient and powerful properties, it exploits structural
information at different human granularities to alleviate the difficulties of human segmen-
tation. In recent years, Yan et al. [11] proposed ST-GCN, which is used to model skeleton
data directly as a graph and has improved performance. Obinata et al. [29] deal only
with the relation of the local joints among the frames. The high power of the adjacency
matrix can increase the perceptual field of the graph convolution, but it can result in node
weight bias and inefficient remote modeling. In order to address this issue, Liu et al. [30]
remove unnecessary dependencies between adjacent neighbors by using the proposed
neighborhood de-entanglement approach. Li et al. [31] proposed a spatial temporal graph
routing (STGR) network, which utilizes the framework of attention and the global self-
attention mechanism. Asymmetric correlation measurement and high-level representation
are used to calculate context information in the superior CA-GCN [32] approach proposed
by Zhang and Ye et al. [33] proposed Dynamic GCN for the automatic learning of skeleton
topology by using a new convolutional neural network. Cheng et al. [34] proposed a novel
shift graph convolutional network (Shift-GCN). To improve performance and decrease the
computational complexity of spatial graph convolution, this approach uses a unique shift
graph and lightweight point-wise convolutions. Liu et al. [30] deployed more efficient
spatio-temporal edges for 3D graph convolution.

2.2. Attention Mechanism

In recent years, attention mechanisms have shown great prospects in the wide ap-
plication of machine learning in various fields. The attention mechanism is designed to
concentrate on the key components or characteristics of the input that are important to
decision making. Self-attention [35] refers to the attention mechanism with the same input
and output dimensions, which can also be called intra-attention. The MATNet proposed
by Zhou et al. [36] designs an asymmetric attention module in the dual-stream encoder,
with the help of which the appearance features are transformed into a motion-focused
representation at each res stage, allowing for a tight hierarchical interaction between object
motion and appearance right during encoder encoding. There are many studies on the
importance of attention to graph structure. For example, Lee et al. [37] proposed the
graph attention model (GAM), which employs an RNN framework using a self-attention
mechanism to deal with the graph structural data. The graph attention networks (GAT)
framework was proposed by VeliBckovi et al. [38]. This method is equivalent to the combi-
nation of multiple self-attention modules, combining the characteristics of each head by
using a function called concatenation or averaging. Multiple attention mechanisms can
focus on a variety of different information. By paying attention to neighbors to calculate
the set of hidden representations of each node in the network, we can obtain the degree
of influence of neighbor nodes on themselves and assign different weights to distinguish
their degree of concern to other nodes. As a result, the model’s capacity is increased.
Zhang et al. [39] proposed a self-attention mechanism based on graph structure, which
computes an additional gating mechanism for each head, in contrast to GAT, which is based
on the premise that the contributions of the attention heads are equal. Since it has been
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shown that the self-attention mechanism can enhance the performance of classification, it is
worth incorporating the self-attention mechanism in our strategy.

3. Methods

In this section, we begin by summarizing the overall architecture of this approach. In
the next section, we propose a new method of spatial-temporal segment coding. Secondly,
an internal self-attention block is presented, which is used to model the relationship
between various joints. At last, it presents an external segment attention block, which can
be used to combine the movement information among sequence segments.

3.1. Overall Architecture

Figure 1 illustrates the overall architecture of our model. A skeleton sequence com-
posed of V0 node and T0 frame is input into the model, and it is transmitted to the segments
encoding module to obtain the corresponding format of data. In the segments encoding
module, the skeleton sequence is split into segments of the same number of frames, and
each frame is linked in each segment. Then, we input the encoded data into SSAN and
obtain the related information on spatial-temporal joints. The module consists of an ISA
block and an ESA block. The ISA block is used to model the relationship among the links
in consecutive frames, and the sub-action is assembled by using the ESA block. After
compressing and reducing the amount of feature data in the global average pooling layer
and the full connection layer, we achieve the goal of classification.

Figure 1. Illustration of the overall architecture of the proposed method. The segments encoding
module rejoins the skeleton sequence segments and encodes them into a data format that has been
added to the location ID. The ISA block is used to obtain the relationship of the node to different
nodes within adjacent frames. The ESA block is used to integrate all the decomposed actions.
Finally, the classification scores are obtained through the global average pooling layer and the full
connection layer.

3.2. Segments Encoding

We describe an approach for encoding the joints in order to model the relation between
different joints in successive frames. Figure 2 depicts the skeleton sequence segments
encoding process.

First, the original skeleton sequence X is fed into the feature mapping layer, and the
input channel is extended from C0 to the a set number C1. A single convolution layer
using the Leaky ReLU and BatchNorm makes up the feature mapping layer. The main role
of the feature mapping layer is to keep the input distribution of each layer of the neural
network the same during training, speed up convergence and prevent overfitting. In each
convolutional layer, the data are in three dimensions. It can be thought of as a number
of two-dimensional images stacked on top of each other, each of which is called a feature
map, and in the input layer, if it is a color image, there are typically three feature maps
(red, green and blue). There are a number of filters between the layers, the size (width,
height) and depth (length), which are set manually, commonly 3 × 3 or 5 × 5. In general,
the number of the next layer of feature maps depends on the number of convolution kernel,
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which results in a new channel number C1. The skeleton sequence is then separated into T
contiguous segments that do not overlap. There are n frames in each sequence segment.
Then, within each segment, the frame sequence is flattened. The spatio-temporal segment
encoding layer consists of a convolutional layer with a Leaky ReLU function, into which
X is fed to obtain the final segment encoding. Because the tensors generated by segment
coding do not include the sequence of the joints, and the identification of the joints can
not be differentiated so that the performance of motion recognition can be decreased [40].
In view of this problem, a location-coding module is adopted to mark every joint. It is
important to note that in order to model all the joints in a segment, the same joints from
different frames must be distinguished from each other in a section so that all the joints are
labeled with different IDs.

Figure 2. The process of segment encoding.

Position encoding is a secondary representation of each piece of sequence information
in a sequence using positional information. The attention model itself does not have the
ability to learn sequence positional information like an RNN, which has decided at the
time of model definition that the order of the input-by-input information is equivalent to
the order in which the information appears. The attention model needs to actively feed
the sequential information of the sequence to the model. Each length of sequence should
have a unique position code. For example, for sequences of lengths 600 and 6, the position
encoding from 1 to 6 should be the same. For the length of the untrained sequence, the
model should be easy to generalize. In addition, the encoding result should be bounded
and have a relatively appropriate range because if it is too large, it will override the weight
of the model. Therefore, the choice of the sine and cosine function for position encoding can
well achieve the above requirements. According to [41], the relative position information of
various joints is encoded utilizing periodic sine-cosine functions at various frequencies:

PE(np, 2i) = sin(np/10, 0002i/Cin), (1)



Electronics 2023, 12, 1549 6 of 13

PE(np, 2i + 1) = cos(np/10, 0002i/Cin), (2)

where n is the total of frames in each segment, p is the joint’s location, and i is the vector’s
dimension for position encoding. With the beginning of the sequence as the reference
position, p represents the position of the joint in the sequence. The value of p ranges from 0
to the length of the sequence.

3.3. Internal Self-Attention

In essence, self-attention is a mapping from a query to a collection of key-value pairs.
Following the skeleton sequence’s position-coding and spatial-temporal segment coding,
we can construct the relations among the input tags by means of multi-headed self-attention.
The ISA block is shown in Figure 3.

Figure 3. The structure of an internal self-attention block.

In particular, in the calculation of self attention, it is necessary to take into account
not only the effect of all the others but also the effect on the others. Thus, the encoding
sequence X is normally projected by means of a convolution layer to query Q, key K, and
value V:

X̂ = Conv2D(1×1)(X) ∈ R3C×T×V (3)

Q, K, V = Split(X̂) ∈ RC×T×V (4)

In this way, we can obtain Q, K, V by dividing the channel of X. The weight can then
be determined by calculating the similarity between query Q and the key K’s transposi-
tion. The dot-product is simply utilized as the similarity function, just like the ordinary
Transformer. The Tanh function is then used to normalize the weights that were acquired.
This research offers an optimal correlation matrix A to analyze the intrinsic topology of the
human body while taking into account the fixed relationship of human joints. Moreover,
the intensity of the attention map is further adjusted using an optimized parameter α. The
final attention is then calculated by multiplying the final attention weight by the matching
amount V:

Xdot = Tanh(
QKT
√

C
) ∈ RT×V×V (5)

Xattn = V(α× Xdot + A) ∈ RC×T×V (6)

where
√

C is used to prevent too much inner product and to increase the gradient’s stability
during training.
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A better performance can be attained by using a multiple-headed self-attention scheme,
which enables the model to learn the relevant information from a variety of sub-spaces.
In order to achieve a better performance, a multiple-headed self-attention scheme is used,
which enables the model to learn the relevant information from a variety of sub-spaces.
In particular, the self-attention calculation is carried out on a plurality of groups that
are projected with different learning parameters. Then, a plurality of attention groups
is connected.

A convolution layer with a 1 × 1 kernel size projects the learned attention into the
output space. To enhance the network’s performance, a feed-forward layer based on 1 × 1
2D convolutions is proposed:

XISA = Conv2D(1×1)(Xattn) ∈ RC×T×V (7)

3.4. External Segment Attention

A movement may be considered as a series of successive sub-movements, for example,
“Drinking water” consists of “holding the cup”, “raising the arm”, “opening the mouth”
and other actions. In our approach, a decomposed action is included in each segment, and
the ISA block is used to model a sequence of N frames. If the relationship between the
decomposed actions is established, it will assist in recognizing actions and distinguishing
similar actions. For this reason, it is proposed that an ESA block be used to bring together
these decomposed actions. As illustrated in Figure 4, the inter-segment motion information
is synthesized in this paper using a multi-scale convolution method.

Figure 4. The structure of the external segment attention block.

In particular, the XISA channel dimension is reduced by 1 × 1 convolutions to concen-
trate on more efficient features:

X1 = φ1(XISA) ∈ R
C
2 ×T×V (8)

X2 = φ2(XISA) ∈ R
C
4 ×T×V (9)

X3 = φ3(XISA) ∈ R
C
4 ×T×V (10)

After that, a 5 × 1 convolution layer with a dilation rate of 1 and a 3 × 1 maximum
pooling layer, respectively, receive the produced features X1 and X2. Time information X

′
1

is extracted by the convolution layer, and key features X
′
2 are acquired by the maximum

pooling layer. It is important to note that even if this convolution layer’s expansion rate is 1,
there are n frames per segment, making the implementation of the expansion convolution
over n frames equal. This saves on computing costs because the high expansion rate is
avoided. Finally, the branches are aggregated and connected to obtain the aggregation
feature XESA between segments:

XESA = Concat(X
′
1 + X

′
2 + X3) ∈ RC×T×V (11)
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The remaining connections are subsequently employed to stabilize network training.
It is important to note that all outputs associated with the remainder must be standardized.

4. Experimental Results and Discussion

In this section, we have performed a wide range of comparative experiments to
evaluate the effectiveness of the proposed method. First of all, the experiment setup and
datasets are introduced. The contribution of each component is assessed using SSAN based
on NTU RGB+D skeleton data in the section that follows. Finally, by contrasting SSAN
with the most advanced techniques on two datasets, NTU RGB+D and NTU RGB+D 120,
the superiority of SSAN is demonstrated.

4.1. Datasets

NTU RGB+D is one of the most popular data sets in this field. It consists of 56,880 video-
clips, with one action in each, and there are 60 classes in all. The Microsoft Kinect Depth
Sensor recorded the dataset. There were three cameras for each action, each positioned
at the same height but with a different horizontal angle: −45◦ , 0◦ , 45◦. A total of 40
participants, ranging in age from 10 to 35, carried out the tasks. Each subject contains 25 3D
coordinates, yet there are only two subjects in a single video clip. Two criteria are suggested
in the data set’s founding document [9]: (1) Cross-subject (X-sub): The data set consists
of a training set and a validation set. The training set consists of 40,320 video clips, and
the validation set contains 16,560 video clips, and the participants are not the same. Of
the 40 subjects, half will be used for testing and the other half for training. (2) Cross-view
(X-view): The training package consists of 7920 videos taken by the camera at 0◦, 45◦, and
the verification package includes 18,960 frames that are taken by the camera at −45◦.

NTU RGB+D 120 is an extension of NTU RGB+D. The data set consists of 114,480 ac-
tions, which are implemented by 106 different subjects. The dataset consists of 32 settings,
with each setting indicating a particular position and background. The original method [42]
suggested two criteria: (1) Cross-subject (X-sub120): 106 subjects are divided into training
and examination groups, with half of the 106 being used for training and the other half
for examination. (2) Cross-setup (X-set120) benchmark: Even setup IDs are used for the
training data, whereas odd setup IDs are used for the test data.

4.2. Experimental Setting

By playing back the actions, all skeletal sequences were padded to 60 frames. With a
weight decline of 0.0004 and a Nesterov momentum of 0.9, we train our model using an
SGD optimizer. The training time is 120 s, and the initial learning rate is 0.1. The batch size
is 64. Each segment consists of 3 successive frames. The output channels are 64, 64, 128,
128, 256, 256 and 256, and the spatial temporal segment attention block is set to 7.

4.3. Ablation Study
4.3.1. Ablation Study for SSAN

The validity of SSAN was examined on the NTU RGB+D dataset. With the exception of
the object being compared, all other conditions are the same to allow for a fair comparison.
The comparison tests in Table 1 show that SSAN is effective. In the table, SA means that the
self-attention is computed only in and among the frames. The parameter n is the number
of consecutive frames and acts on the internal self-attention block. Option n = 1 means
that only the relationship of joints within frames is modeled. Option n = 3 means that
the relationship of each joint between three consecutive frames is modeled at the same
time. PE means position encoding. Its function is to distinguish the joints in different
parts of the same frame and the joints in the same part of adjacent frames so as to obtain
more spatio-temporal information. ESA stands for the external segment attention (ESA)
block, and the purpose of this option is to explore the impact of the association information
between the segmented sub-actions on the model.
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Table 1. Using the NTU RGB+D dataset, the SSAN ablation research was conducted.

SA n = 1 n = 3 PE ESA X-Sub (%) X-View
(%)

yes yes - - - 89.7 94.6
- yes - yes yes 90.1 94.9
- - yes - yes 90.0 95.1
- - yes yes - 90.1 95.2
- - yes yes yes 92.9 96.7

From the above, we can find that the model using only the self-attention mechanism
obtains the worst result. The model choosing three frames as segmentation conditions,
adding the position encoding module and ESA block achieves the best results. Selecting
three successive frames as a sequence segmentation is more accurate than a single frame
because of the correlation between the different joints of adjacent frames. It confirms that
our ISA module is valid. Moreover, the precision of the model with no position coding
is inferior to that of the whole model. It is mainly due to the difference in the function of
space and time, and the rational utilization of the sequence information can enhance the
performance of the system. In addition, not using ESA blocks degrades model accuracy. The
reason is that this model can be used to build the relationship of each decomposition action
and catch the key parts of the motion, which is helpful to differentiate similar behavior and
increase the performance.

4.3.2. Impact of the Variable n

The influence of successive frames n is investigated, as illustrated in Figure 5. The
NTU RGB+D skeleton data set has an average frame length of 83 frames, and we take
60 frames per frame. The results show that when n = 3, our model accuracy achieves the
best value. It is impossible to effectively record the relationship between the successive
frames if n is too small. If n is too big, the coupling relation of the successive frames
becomes more complicated, and the correlation between the first frame and the last frame
of every section is very low.

Figure 5. The influence of the parameter n on the model based on the NTU RGB+D skeleton data set.
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4.3.3. Accuracy of Each Class

Figure 6 shows the accuracy of every category on the NTU RGB+D dataset. There
are 60 different activity classifications represented on the horizontal axis. Relative to the
ST-GCN baseline, we have made significant improvements in the majority of subjects,
especially the “clapping”, and “pointing to sth with finger” and “rub two hands together”.
Moreover, we have discovered that the precision of certain movements, such as “writing”,
“reading”, is still very low. The main cause of this problem is that the motion only happens
in a limited number of joints, and the effect magnitude is low. Therefore, this method can
not be used to model the key joints.

Figure 6. The influence of the number of consecutive frames n on the model based on the NTU
RGB+D skeleton data set.

4.4. Comparison with the Most Advanced Methods

The SSAN algorithm is compared with the most advanced methods in NTU RGB+D
and NTU RGB+D 120 datasets. The accuracy comparison is shown in Table 2. There are
approaches based on RNNs, CNNs, GCNs, and transformers. In contrast to RNN-based
and CNN-based approaches, we have a notable advantage in SSAN. The main cause of the
bad performance of CNN and RNN is that they cannot fully utilize skeleton data. On the
other hand, GCN-based approaches are able to utilize skeleton data in an efficient way and
achieve better recognition performance. Furthermore, the 3s-Cros SCLR is a non-supervised
approach, which can exploit cross-view consistency and obtain more advantages than other
supervisory approaches.

Our approach performs better than the majority of current approaches in both data
sets. The ISA block is able to benefit from the relative knowledge of various joints among
successive frames, and the ESA block is able to model the movement information among
segments and capture the sensitive critical sections. Compared with similar approaches,
such as ST-TR, we have a much smaller number of parameters, but we perform much better.

Table 2. On NTU RGB+D and NTU RGB+D120 skeleton datasets, the recognition accuracy and
parameter size are compared with the most advanced methods.

Methods Param (×106) X-Sub(%) X-View(%) X-Sub120(%) X-Set120(%)

3s-CrossSCLR [43] - 86.2 92.5 80.5 80.4
ST-LSTM [10] - 69.2 77.7 - -
ST-GCN [11] 3.1 81.5 88.3 - -

2s-AGCN [12] 6.9 88.5 95.1 82.9 84.9
Shift-GCN [34] - 90.7 96.5 85.9 87.6

Dynamic-GCN [33] 14.4 91.5 96.0 85.9 87.6
CTR-GCN [44] 5.8 92.4 96.8 88.9 90.6

SSAN(Ours) 5.7 92.9 96.7 88.9 90.8



Electronics 2023, 12, 1549 11 of 13

5. Conclusions

In this paper, a new sequence segmentation attention network approach is presented
in this paper. The algorithm includes three modules: segment coding, ISA block and ESA
block, in which a number of successive frames are coded into a sequence, the ISA block is
adopted to efficiently capture the relation between the successive frames, and the ESA block
is applied to sum up the movement between them. Ablative research has demonstrated
the validity of this approach. Based on the NTU RGB+D and NTU RGB+D 120 datasets,
the proposed SSAN is superior to existing state-of-the-art techniques. With the increase in
video dimension, it will limit the attention mechanism. The skeleton data itself contains
human body structure features. How to make better use of high-dimensional information
and human body structure features is the direction of future improvement.
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