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Abstract: The remote sensing image caption can acquire ground objects and the semantic relationships
between different ground objects. Existing remote sensing image caption algorithms do not acquire
enough ground object information from remote-sensing images, resulting in inaccurate captions. As a
result, this paper proposes a codec-based Dual Feature Enhancement Network (“DFEN”) to enhance
ground object information from both image and text levels. We build the Image-Enhancement module
at the image level using the multiscale characteristics of remote sensing images. Furthermore, more
discriminative image context features are obtained through the Image-Enhancement module. The
hierarchical attention mechanism aggregates multi-level features and supplements the ground object
information ignored due to large-scale differences. At the text level, we use the image’s potential
visual features to guide the Text-Enhance module, resulting in text guidance features that correctly
focus on the information of the ground objects. Experiment results show that the DFEN model can
enhance ground object information from images and text. Specifically, the BLEU-1 index increased by
8.6% in UCM-caption, 2.3% in Sydney-caption, and 5.1% in RSICD. The DFEN model has promoted
the exploration of advanced semantics of remote sensing images and facilitated the development of
remote sensing image caption.

Keywords: remote sensing image caption; image context features; text guidance features

1. Introduction

Image captioning [1] enables the computer to automatically generate a caption based
on a specified image, allowing image data to be converted to text data and providing a
more advanced understanding of the image. Blind navigation, image translation, voice
assistants, and image retrieval all use this technique. Because of advances in remote sensing
technology, computer vision tasks such as scene classification and object detection [2]
can now obtain scene categories and ground objects from remote sensing images, but
not semantic relationships among ground objects. Remote sensing image caption [3] can
recognize semantic relationships between ground objects and generate accurate and natural
captions. The remote sensing image caption is critical in many scenarios, including remote
sensing image retrieval, disaster reports, and urban change reports.

CNN (Convolutional Neural Network) can extract rich and discriminative image
features in computer vision. Qu et al. [4] were the first to use CNN combined with sequence
models in the remote sensing image caption. Lu et al. [5] first used the attention mechanism
to align the image and caption. To obtain more robust remote sensing image captions,
Zhang et al. [6] proposed using the fully connected layer as image attribute information to
bridge the “semantic gap” between low and high-level semantics. Huang et al. [7] proposed
image feature denoising to aggregate multiscale image features. These methods use CNN
to obtain visual features of the image. However, the CNN will lose some ground object
information after multiple pooling. Moreover, the large-scale change of remote sensing im-
ages makes it difficult for CNN to recognize ground objects correctly. These are the reasons
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for insufficient information acquisition of ground objects. Furthermore, the remote sensing
image caption requires not only visual information but also text information. Inaccurate
ground object information results in incorrect semantic expression and misinterpretation of
remote sensing images.

To address the abovementioned limitations, the DFEN model proposes using the
Image-Enhance module’s hierarchical attention to obtain more discriminative image context
features. Moreover, based on the ground objects in the image, the Text-Enhance module’s
gating mechanism is used to obtain the text guidance features of the whole interaction
between images and texts and guide the DFEN to pay attention to the text information
of the ground objects correctly. The problem of inaccurate captioning of remote sensing
images caused by the insufficient acquisition of ground object information is solved using
the dual features of ground object information.

In summary, the following are the paper’s contributions:

• This paper proposes a DFEN model accurately representing ground object information
in remote sensing images. DFEN is the first model to improve ground objects from
image and text levels;

• The Image-Enhance module is used in this paper to obtain more discriminative image
context features in order to enrich the visual representation of image ground objects
from an image level. The Image-Enhance module facilitates the representation of
visual features of the remote sensing images;

• The Text-Enhance module is used in this paper to obtain text guidance features
with high graphical interaction to guide the model to focus on the correct ground
object information and achieve accurate ground object information focus from a text
perspective. The Text-Enhance module combines remote sensing image caption and
multi-label classification tasks.

2. Related Work

Remote sensing image caption generates captions based on the semantic information
in remote sensing images. An important aspect of remote sensing image captioning is
obtaining sufficient ground object information. Many researchers at this stage provide
information for remote sensing images by performing other visual tasks. Anderson et al. [8]
used an object detection technique to obtain an “attention region”, which allows the at-
tention mechanism to focus on the image’s corresponding object. Wang et al. [9] used
the Faster RCNN model to obtain the object, patch, and global features of remote sensing
images to achieve the global representation of image ground objects to obtain the semantic
information of tiny ground objects. Although the combination of object detection [10–13]
and remote sensing image captioning can acquire visual features of the image adequately,
visual features of the image acquired using object detection techniques contain much
repetitive information. Zhao et al. [14] built structured attention mechanisms using se-
mantic segmentation [15] techniques. Structured information can build local information
effectively, but the selective search in semantic segmentation methods limits the number
of region proposals. Lu et al. [16] thought sound can represent the attention of different
observers and describe images more precisely. Although sound is a direction for mul-
timodal development, there is little correlation between sound and image content. The
RTRMN [17] model extracts semantic topics from the captions corresponding to remote
sensing images as additional information about the images. Although topics can help the
model generate detailed captions, the topics searched during testing were too fixed, and
the visual consistency was poor. The SD-RSIC [18] model used summaries to provide more
detailed information. The summary is another kind of complex textual information, and
the time and space consumption by introducing complex text is also a waste.

Extensive experiments on remote sensing image captions reveal that the captions
mainly comprise nouns, the names of ground objects in remote sensing images. The
image multi-label classification task labels are similar to this noun information. As a result,
this paper proposes using a pre-trained image multi-label classification model to obtain
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entity features of image ground objects and complementing them with more discriminative
image context features to enhance ground object information jointly. This also encourages
interaction between remote sensing image caption and another fundamental task.

3. Proposed Method

This paper proposes the Dual Feature Enhancement Network (DFEN) that employs
Image-Enhance and Text-Enhance modules to achieve the feature of ground object enhance-
ment in both the image and text perspectives.

The remote sensing image caption task generates a caption composed of ordered word
sequence Y = [y0, y1, y2, ...yL] according to the given image I, L is the sentence length, θ is
the model parameter, which maximizes the probability p(Y|I; θ) of the caption:

θ∗ = argmaxθ ∑
(I,Y)

logp(Y|I;θ) (1)

The overall structure of the model is shown in Figure 1. The encoding part consists
mainly of the ResNet model to obtain global features of the image. The obtained image
features are fed into the Image-Enhance module to obtain sufficient visual features. The
decoding part consists mainly of a Text-Enhance module and a two-layer LSTM module,
which generates captions that match the semantic information of the image. Xt is the
input to the Attention-LSTM, which mainly consists of the average ν of the global semantic
features v1 of the image, the word to be input at the current moment wt and the hidden
states h1

t−1, h2
t−1 of the two LSTMs at the previous moment, i.e., Xt = [ν, wt, h1

t−1, h2
t−1]. The

global semantic information v1 of the image is obtained from the different visual features fi
of the image through pooling and concatenation operations, respectively. The Text-Enhance
and Language-LSTM modules process the Attention-LSTM output to generate words up to
the end-of-word flag <BOS>.

Figure 1. Overview of the proposed method—DFEN. The duality of DFEN is most visible in the
visual feature of image acquisition and text information enhancement. The Image-Enhance module,
in particular, captures global image context features using multiscale image features and the hidden
state. The Text-Enhance module captures the image potential ground objects using the multi-label
image classification module to achieve text information enhancement.

3.1. Image-Enhance Module

This paper proposes the Image-Enhance module for displaying more ground object
information of remote sensing images. The Image-Enhance module extracts the image
visual features of conv3, conv4 and conv5 in the ResNet model, respectively, and models
the attention mechanism for the different visual features fi using a hierarchical attention
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mechanism. Each image’s visual feature contains unique information due to the different
convolutional kernels. Using the hierarchical attention mechanism, the Image-Enhance can
fuse multiple features to obtain the image context feature v. Figure 2 depicts the module’s
structure. The specific procedure is as follows:

vi = f a
i × δ(WqRelu(Wqv f a

i + Wqhh1
t )) (2)

v = [vi] (3)

f a
i is the ith visual feature filtered by the self-attention mechanism, and h1

t is the output
hidden state of the Attention-LSTM; δ, Relu denotes the activation function of the model;
Wq,Wqv,Wqh denotes the learned parameters; [; ] denotes the concatenation operation.
Through the hierarchical attention mechanism, Equation (1) generates image features vi
containing different ground object information, and Equation (2) concatenates different
image features vi. Both large and small ground object information in remote sensing images
are included in v via the Image-Enhance module.

Figure 2. Overview of the Image-Enhance module. This module’s hierarchical attention mechanism
is primarily made up of two distinct attention mechanisms. The self-attention mechanism is the first
layer of the attention mechanism, and it uses pixels at all positions in different visual features fi to
obtain detailed information f a

i , as shown in the first dotted box. The second layer of the attention
mechanism is additive attention to aggregate image information related to text, as shown in the
second dotted box. The two attention mechanisms work together to implement the concept of
hierarchical attention.

3.2. Text-Enhance Module

After extensive experimentation with remote sensing image caption tasks, this paper
discovered that the captions revolve around nouns. If the noun information is incorrect
during the caption generation process, the semantics of the entire caption will be changed.
In addition, most of the labels for multi-label classification of remote sensing images
are the ground object information contained in remote sensing images. Therefore, this
paper chooses to enhance the ground object representation of remote sensing images using
a multi-label classification task for remote sensing images. This paper uses the word
separation tool nltk to separate and lexically annotate reference captions and extract the
corresponding nouns in each reference caption. Because each remote sensing image caption
corresponds to five reference captions, we use the nouns extracted from the five reference
captions as remote sensing image classification labels. In addition, we create a multi-label
remote sensing image classification dataset from the entire remote sensing image caption
dataset and train a ResNet network-based multi-label image classification model. The entity
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features fattr of image ground objects used in this paper are obtained from a pre-trained
multi-label image classification model. The specific extraction process is shown in Figure 3:

Figure 3. Overview of the proposed entity feature acquisition of remote sensing image fattr.

The entity features of the image ground object contain much ground object information,
but the text information fed into the model changes constantly. Semantic noise will be
generated if we use the entity features of the image ground object. This prevents the ground
object from obtaining the correct text information and reduces the model performance. The
Text-Enhance module employs a gating mechanism to enrich the acquired entity features
of the image ground object fattr with the ground object information. In this paper, we
calculate the weights between entity features of the image ground object fattr and the
current hidden state h1

t to control the enhancement of ground object information by image
ground object features. When ft is greater than zero, it indicates that the correlation between
the entity features of the ground object and the current text information is robust. The
model should use more entity features of the ground object to improve the ground object
information. Figure 4 shows the Text-Enhance module’s structure. The specific process of
text guidance features st is defined as follows:

ft = (W f [ fattr; h1
t ]) (4)

st = ft(W f a ftr) + (1− ft)tanh(Wwwt) (5)

W f , W f a, Ww represents the parameters of the model to be learned, and tanh represents
the activation function. The model can quickly display the corresponding text information
of ground objects using st, demonstrating the expression ability of text information of the
ground object from the text perspective.
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Figure 4. Overview of the Text-Enhance module. fattr represents the entity features of the image
ground object. wt represents the word to be input at t times. The Text-Enhance module uses the
correlation between fattr and wt to achieve enhancement of the ground object text information.

4. Experiments
4.1. Remote Sensing Image Caption Datasets and Evaluation Metrics
4.1.1. Remote Sensing Image Caption Datasets

The UCM-caption dataset [4] contains 2100 images, each with five reference captions.
There are 21 scenes in total. This dataset’s image size is 256 × 256 pixels, and the reference
captions are relatively simple, with a slightly monotonous syntax. The Sydney-caption
dataset [4] contains 613 images, each with five reference captions. Seven scenes are covered
in total. This dataset’s image size is 500 × 500 pixels, and the reference captions have a
longer average length and a more appropriate and richer vocabulary. The RSICD dataset [5]
contains 10,921 images, each with up to five reference captions. There are 30 scenes in total.
This dataset’s image size is 224 × 224 pixels. The RSICD dataset captions are relatively
complex compared to the UCM-caption and Sydney-caption datasets.

4.1.2. Remote Sensing Image Caption Evaluation Metrics

Five evaluation metrics are commonly used for remote sensing image caption tasks to
assess the degree of similarity between model-generated captions and human-annotated
captions: BLEU, METEOR, ROUGE, CIDEr, and SPICE.

The BLEU evaluation metric [19] employs n-gram matching, which examines how
many n-gram phrases appear in the reference caption in the generated caption. The general
maximum value of n-gram is 4. The specific formula is shown below:

BP =

{
1 i f c > r
e(1−r/c) i f c ≤ r

(6)

BLEU = BP · exp(
N

∑
n=1

wn logpn) (7)

N is the length of the n-gram; wn is its weight, typically 1/N; pn is its accuracy rate;
BP is the short penalty factor; c is the length of the reference caption; and r is the length of
the shortest generated caption. BLEU is implemented based on the accuracy rate, and the
larger the value of BLEU, the better.

The METEOR evaluation metric [20] employs WordNet to calculate specific sequence
matches, matching relationships between synonyms, roots, and affixes, and paraphrases to
create a stronger correlation with manual captions, and is based on a harmonic average of
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unit group accuracy and recall, with higher METEOR values being better. The particular
formula is shown below:

Fmean =
PR

αP + (1− α)R
, P =

m
t

, R =
m
r

(8)

m is the number of n-grams that can be matched in the generated caption; t is the length
of the generated caption; and r is the number of reference captions. P and R represent
accuracy and recall, respectively. A penalty factor Pen is added to penalize cases where the
generated caption does not match the reference caption’s word order to ensure that more
extended utterance matching is performed. The penalty factor is described below:

Pen = γ · f lagβ, f lag =
ch
m

(9)

The word order is based on chunks, and each chunk’s matching single words are
adjacent and ordered between two strings. The number of chunks is ch, and the correlation
coefficient is γ, β. The final METEOR score is calculated. The particular formula is shown
below:

score = (1− Pen) · Fmean (10)

The longest common subsequence is denoted by L in the ROUGE-L evaluation met-
ric [21]. The accuracy and recall of the longest common subsequence between the reference
caption and the generated caption are calculated to achieve sequential matching of sentence-
level word order. The particular formula is shown below:

Rlcs =
LCS(X, Y)

m
(11)

Plcs =
LCS(X, Y)

n
(12)

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
(13)

m, n are the lengths of the reference caption X and the generated caption Y, respectively;
LCS(X, Y) is the longest common subsequence of the reference and generated captions; the
larger the value of ROUGE-L, the better.

The CIDEr evaluation metric [22] uses TF-IDF (term frequency-inverse document
frequency) to assign weights to different n-grams. The basic idea is to treat each sentence
as a document and then compute the cosine angle of the TF-IDF vector, which yields the
similarity between the generated and reference captions. The following is the specific
calculation formula:

CIDErn(c, S) =
1
M

M

∑
i=1

gn(c) · gn(Si)

‖gn(c)‖ × ‖gn(Si)‖
(14)

c denotes the generated caption; S denotes the set of reference captions; n denotes the
evaluated n-gram; and M denotes the number of reference captions, typically five. gn(.)
represents the TF-IDF vector based on the n-gram.

The SPICE evaluation metric [23] was chosen to measure the similarity of two captions
using the scene graph. It uses the semantic representation of the graph to encode a caption of
the objects, attributes, and relationships between them in the utterance and then computes
the F-score value of the objects, attributes, and relationships in the generated utterance.
The following is the precise formula:
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SPICE(c, S) = F1(c, S) =
2 · P(c, S) · R(c, S)
P(c, S) + R(c, S)

(15)

P(c, S) =
|T(G(c))⊗ T(G(S))|

|T(G(c))| (16)

R(c, S) =
|T(G(c)) ⊗ T(G(S))|

T(G(S))
(17)

c is the generated caption; S is the set of reference captions; G(.) denotes the conversion of
a piece of text into a scene graph using some method; T(.) converts a scene graph into a set
of tuples; the ⊗ operation is similar to the intersection, differing from the intersection in
that it is not strict matching, but similar to matching in METEOR.

4.2. Experimental Environment and Parameter Settings

All experiments in this paper were carried out on an NVIDIA GeForce RTX 2080
Ti device. The ratio of data in the training, validation and test sets is 8:1:1 in all three
public datasets. In this paper, we acquire ground object information of images using
ResNet18, a pre-trained image multi-label classification network. Because the UCM-caption
dataset extracts 120 nouns, the Sydney-caption dataset extracts 75 nouns, and the RSICD
dataset extracts 1102 nouns, the fully connected layers of the pre-trained image multi-label
classification network have dimensions of 120, 75, and 1102. Before being fed into the
model, all images are flipped horizontally with a 50% probability. The maximum length of
the generated captions is the same as that of the dataset’s reference captions. The model
employs a pre-trained ResNet18 for the ground object entity of image extraction, with a
learning rate of 1 × 10−4 and a batch size of 16, and a learning rate decrease of 0.8 every
five epochs for a total of 30 epochs. The batch size of the Sydney-caption dataset is set to 8
to avoid overfitting.

4.3. Comparison Experiment and Result Analysis

For comparison, we use the following models as comparison models:

• CSMLF [24] model proposes a collective semantic metric learning approach in which
five reference captions are transformed into a collective caption.

• Sound-a [16] model uses sound as an additional input to guide the generation of
remote sensing image captions. Different sounds of the same image are fed into the
trained model, resulting in different captions.

• RTRMN [17] model generates captions with the help of topic word information.
During training, the model extracts topic words from captions for remote sensing
images.

• SD-RSIC [18] model uses a summary-driven mechanism and an enhanced word
vocabulary to provide more detailed captions for semantically complex remote sensing
images.

• CapFormer [25] model uses the Swin transformer model as the visual feature pro-
cessing model and the decoding part of the transformer model as the text generation,
avoiding the loss of information from multiple pooling operations.

Tables 1–3 compare the DFEN model to other remote sensing image caption models
on various datasets. The best results are highlighted in bold, and the evaluation metrics are
taken directly from their papers. The table shows that the current model outperforms the
comparison model across all evaluation metrics.
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Table 1. Results of different models on the UCM-caption dataset.

METHOD BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

CSMLF 0.436 0.273 0.186 0.121 0.132 0.393 0.223 0.076
Sound-a 0.783 0.728 0.676 0.633 0.380 0.686 2.906 0.420
RTRMN 0.803 0.732 0.682 0.639 0.426 0.773 3.127 0.453
SD-RSIC 0.748 0.664 0.598 0.538 0.390 0.695 2.132 -
DFEN (Ours) 0.851 0.784 0.728 0.677 0.459 0.805 3.177 0.501

Table 2. Results of different models on the Sydney-caption dataset.

METHOD BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

CSMLF 0.600 0.458 0.387 0.343 0.248 0.502 0.756 0.262
sound-a 0.716 0.632 0.547 0.466 0.313 0.604 1.803 0.387
SD_RSIC 0.761 0.666 0.586 0.517 0.366 0.657 1.690 -
DFEN (Ours) 0.798 0.697 0.614 0.542 0.373 0.723 2.009 0.449

Table 3. Results of different models on the RSICD dataset.

METHOD BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

CSMLF 0.576 0.386 0.283 0.222 0.213 0.446 0.530 0.200
sound-a 0.620 0.482 0.390 0.320 0.273 0.514 1.638 0.360
RTRMN 0.620 0.462 0.364 0.297 0.283 0.554 1.515 0.332
SD_RSIC 0.644 0.474 0.369 0.300 0.249 0.523 0.794 -
CapFormer 0.661 0.499 0.400 0.326 - 0.498 0.912 -
DFEN (Ours) 0.766 0.636 0.538 0.463 0.373 0.685 2.605 0.477

The CSMLF [19] model has the lowest evaluation metrics of the models discussed
above, particularly CIDEr, which are 0.223, 0.756, and 0.530, respectively. The CSML model
employs retrieval to obtain captions that correspond to the image’s semantic information.
While this method reduces syntactic errors in captions, it cannot generate information
that does not exist in the retrieval database. The DFEN model fully utilizes deep learning
models’ inferential learning capability to explore completely new image captions using
historical image and text information. The consistency of the captions generated by the
DFEN model is improved when compared to the CSMLF model.

The Sound-a [16], RTRMN [17], and SD-RSIC [18] models use sound, topic words,
and summary information to enhance ground object information. External information is
sound and slightly less relevant to visual information than topic words and summaries.
Although the summary information contains more textual content than the topic word
information, it is only textually enhanced and contains less useful information. Therefore,
the sound-a [16] and the SD-RSIC [18] models have the lowest evaluation metrics among
the three models mentioned above that use additional information. Remote sensing images
contain much information about ground objects. The semantic information expressed by a
single topic word is slightly weaker than multiscale image context features and image multi-
labeling information. The DFEN model uses multiscale image information to enhance the
visual semantic information of remote sensing image ground objects and enriches ground
object text information using an image multi-label classification task and a gated fusion
mechanism. This reinforces the need for additional information to be added to ground
object information. The DFEN model improves ground object information from image and
text perspectives, resulting in better performance than the previous models, which only
consider image or text information. Furthermore, the CapFormer [25] model’s evaluation
metrics in the RSICD dataset are significantly lower than those of the DFEN model. The
characteristics of the transformer model and CNN models’ characteristics are primarily
responsible for this. The Transformer model does not consider the images’ inductive bias
information but compensates for it by training a large amount of data. The remote sensing
image caption dataset, on the other hand, contains fewer data. As a result, the CapFormer
model’s evaluation metrics are significantly lower than those of the DFEN model for the
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same dataset. As a result, we can conclude that DFEN improves the images and text
information of ground objects. Furthermore, the image context vector proposed by the
DFEN model contains information about the image’s multiscale ground object features,
which gives the model an excellent inductive bias.

4.4. Ablation Experiment and Result Analysis

We created the ablation model to demonstrate the superiority of the model’s key
components. The Baseline model represents the baseline model, the Baseline-v model
represents the Baseline model with the Image-Enhance module added, and the Baseline-st
model represents the Baseline model with the Text-Enhance module added. Table 4 displays
the ablation model’s performance on the three datasets. The visual characteristics obtained
by the two ablation models are too abstract. As a result, we conducted experimental
analysis by evaluation metrics for the ablation model’s caption. According to the results,
both the Image-Enhance and the Text-Enhance modules proposed in this paper improve
model performance. First, v is image context features produced by Image-Enhance that
incorporates multiscale image features. Each evaluation metric is slightly improved after
using v compared to the Baseline. However, the improvement of BLEU1-4 is less than 1%,
indicating that the model is ineffective in generating the same n-grams as the reference
captions. Furthermore, the Baseline-v model obtains more ground object information
from remote sensing images than the Baseline model, which only uses single-layer image
semantic features by using multiscale image features generated by different convolutional
layers. This results from the image context feature enhancing ground objects’ visual features
in remote sensing images and making it easier for the model to generate diverse captions.
Second, st is Text-Enhance generated text guidance features that incorporate additional
visual information from remote sensing images. The evaluation metrics on each dataset are
improved after using st. This implies that the additional entity features of the image ground
object supplement the visual information and broaden the textual information space. This
is primarily because the additional entity features of the image ground object supplement
the visual features of the ground object information in the remote sensing image. They also
filter out irrelevant visual features by fusing them with textual information. Table 4 and
Figure 5 show that the DFEN model’s dual features can achieve a more accurate remote
sensing image caption.

Table 4. Results of ablation experiment based on different remote sensing image caption datasets.

DataSet METHOD BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

UCM Baseline 0.765 0.678 0.619 0.573 0.394 0.724 2.678 0.444
Baseline-v 0.770 0.685 0.627 0.579 0.406 0.735 2.736 0.472
Baseline-st 0.833 0.759 0.701 0.651 0.456 0.800 3.168 0.494
DFEN 0.851 0.784 0.728 0.677 0.459 0.805 3.177 0.501

Sydney Baseline 0.775 0.663 0.578 0.506 0.358 0.700 1.862 0.415
Baseline-v 0.784 0.673 0.583 0.508 0.356 0.713 1.939 0.438
Baseline-st 0.780 0.683 0.610 0.553 0.368 0.715 1.979 0.450
DFEN 0.798 0.697 0.614 0.542 0.373 0.723 2.009 0.449

RSICD Baseline 0.715 0.576 0.477 0.402 0.343 0.646 2.133 0.427
Baseline-v 0.727 0.584 0.484 0.410 0.334 0.643 2.184 0.422
Baseline-st 0.758 0.626 0.526 0.45 0.359 0.679 2.566 0.478
DFEN 0.766 0.636 0.538 0.463 0.373 0.685 2.605 0.477

In order to demonstrate the effectiveness of the method proposed in this paper more
visually, we show the generated results of some of the test data. To emphasize the experi-
ments’ effectiveness, we highlighted the words in the Baseline model captions that do not
match the semantic information of the remote sensing images in bold blue font and the
differences between the DFEN model and the Baseline model in bold red font.
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Figure 5. Comparison of experimental results.

Figure 5 shows the test results of the remote sensing images under the DFEN model.
From the third, fourth, fifth, sixth, and eighth subfigures, we can see that the captions
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generated by the Baseline model all show words that do not match the semantic information
of the remote sensing images. For example, in the airplane scene, we can see that the
plane is blue or yellow rather than purple; in the storage tank scene, the Baseline model
misidentifies the white house as a car due to the small scale of the feature; and in the
building scene, the Baseline model misidentifies the grey object as a plant because the grey
feature is closer to the plant in the remote sensing image. This is because the Baseline
model only considers the single-scale features of the image. In contrast, the Image-Enhance
module of the DFEN model employs a hierarchical attention mechanism to obtain richer
multiscale features, which not only supplement the neglected small-scale ground object
information but also alleviate the problem of inaccurate ground object identification due
to variable ground object scales. As a result, any incorrect semantic information in the
Baseline model’s captions is corrected in the DFEN model.

Furthermore, in the first, second, seventh, and ninth subfigures of Figure 5, we can
see that the captions generated by the DFEN model have added some new content in
line with the semantic information of the remote sensing images when compared to the
captions generated by the Baseline model. For example, in the tennis scene, the DFEN
model generates captions with more detail for “tennis”, “plants” and “arranged nearly”;
in the boat scene, the DFEN model generates more detailed “Lots of”; in the beach scene,
the DFEN model generates “white sand” and “Over and over again with white foams’.
These are the results of ground object information enhancement by text-guided vectors in
the Text-Enhance module of the DFEN model. The entity features of the image ground
object fattr enrich the relevant ground object information in the remote sensing image by
fusing it with textual information. As a result, the DFEN model generates captions that
contain more information about the ground objects of remote sensing images. The Image-
Enhance module generates image context features v sing multiscale image information to
supplement neglected ground object information. The Text-Enhance module generates
text-guided features classification labels of remote sensing images to direct attention to
more text-related ground object information. This allows the improved ground object
information to be more closely related to semantic information, resulting in more accurate
remote sensing image captions. This results from the DFEN model’s Image-Enhance and
Text-Enhance modules working together.

4.5. Setting and Analysis of Experimental Parameters

The batch size determines the model training’s computational efficiency. Due to this
paper’s complexity of the model structure, we chose to train the model with batch sizes
of 8, 16, and 32 to achieve optimal model performance. Table 5 displays the training time
of the model with various batch sizes. Figure 6 depicts the model’s training results with
various batch size settings. When batch size is increased from 8 to 32, the DFEN model
gradient decreases faster and converges better. When the batch size was 8, the value of
bleu1 was higher in the first 15 epochs. When the batch size was 16, the value of bleu1 was
higher in the previous 15 epochs. Furthermore, at batch size 16, the DFEN model has the
shortest training time. As the batch size increases, the time required to train each epoch is
minimized, and the loss value decreases more slowly. The optimal time is reached when
the batch size is increased to a specific value. In order to balance the different evaluation
metric values with the training time, we finally set the batch size to 16.

Table 5. Training time of DFEN with different batche_size in UCM-caption dataset.

DataSet Batch_Size Training Time

UCM 8 15.37
16 13.87
32 15.93
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Figure 6. Convergence and Bleu-1 values of DFEN Model with different batch_size in UCM-caption
dataset.

The DFEN model was chosen to use the ResNet model as the backbone model for
image visual feature extraction and multi-label classification of remote sensing images.
Therefore, the network structure and the number of parameters of the ResNet model
also affect the experimental results of the DFEN model. In this paper, we choose to use
ResNet18, ResNet34, ResNet50 and ResNet101 models, which are commonly used in image
classification tasks, for training. Table 6 shows the comparison of the evaluation metrics of
different ResNet models on the UCM dataset. Through the experiments we can find that the
evaluation metrics of the DFEN model gradually improve with the increase of the Resnet
network model parameters as well as the network depth in the models of ResNet18-50,
especially the evaluation metric SPICE. By calculating the similarity between the reference
and the generated caption, the SPICE evaluation metric compares the differences between
the reference and the generated caption. This implies that the ResNet model’s unique
residual structure not only mitigates the problem of model degradation, but also generates
more detailed local features that enrich the ground object information in the captions.
However, when compared to the ResNet50 model, the evaluation metrics produced by
the ResNet101 model do not improve. The images in the UCM dataset are mostly airport
scenes. In the airport scenes, the image features have less information. This results in the
ResNet101 model, which has more network depth and a higher number of parameters,
being less effective than ResNet50. In addition, the increase in the number of network
layers and network parameters also generates a large amount of computation, resulting
in slow training and loading of the model. Therefore, in order to balance the network
parameters and computational cost, the Resnet18 model is chosen as the visual feature
extractor and label acquisition model for the DFEN model.

Table 6. Evaluation metrics results of DFEN with different ResNet in UCM-caption dataset.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

ResNet18 0.851 0.784 0.728 0.677 0.459 0.805 3.177 0.501
ResNet34 0.856 0.786 0.727 0.671 0.458 0.813 3.176 0.510
ResNet50 0.865 0.803 0.746 0.700 0.462 0.807 3.224 0.524
ResNet101 0.862 0.797 0.742 0.694 0.453 0.805 3.194 0.498

Image understanding and the interaction between images and text are critical to the
current remote sensing image caption. Image understanding involves not only using image
representation features but also using underlying information to enrich the visual represen-
tation of the image. Image and text are two different vector spaces. The interaction between
image and text determines the expression ability of text. To fuse features of different
scales of ground objects, Image-Enhance employs a hierarchical attention mechanism. The
image multi-label classification task extracts the potential information of the image. These
make the visual representation of ground object information adequate. The Text-Enhance
module’s gating mechanism uses image interaction to enrich ground object information.



Electronics 2023, 12, 1547 14 of 15

The DFEN model improves the performance of the DFEN by improving remote sensing
image information in terms of image understanding and graphical interaction.

5. Conclusions

To address the problem of inadequate ground object information acquisition, this
paper proposes a dual feature enhancement network model DFEN that enhances ground
object information from both image and text perspectives. To supplement the neglected
ground object information, the DFEN model employs a hierarchical attention mechanism to
obtain multi-scale semantic information from remote sensing images. To obtain additional
ground object entity features, the DFEN model employs a pre-training model for multi-
label classification of remote sensing images, which is combined with a gating mechanism
to obtain correct ground object information. The DFEN model improved the BLEU by
at least 10.5%, the ROUGE-L by 18.7%, and the CIDEr by 1.09 when compared to the
CapFormer and RTRMN models. This indicates that the DFEN model’s multi-scale semantic
information and the additional visual information from remote sensing images improved
the accuracy of remote sensing image caption generation. In future work, we will explore
the impact of more additional visual information and multi-scale visual backbone on
remote sensing image caption tasks in order to obtain more semantic information of remote
sensing images and generate more accurate remote sensing image captions. Furthermore,
the remote sensing image caption dataset is small and biased. In future work, we may
choose to use simulated data [26,27] to create remote sensing image caption datasets for
different regions and scenarios, thereby improving the model’s generalisation capability.
Furthermore, manual confirmation of the condition of high-resolution remote sensing
images captured by UAVs is still required in the field of UAV inspection. In the future,
we will be able to automatically generate inspection reports for high-resolution remote
sensing images captured by UAV inspections, freeing up manual labor and improving UAV
inspection efficiency.
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