
Citation: Yao, W.; Shafiq, M.; Lin, X.;

Yu, X. A Software Defect Prediction

Method Based on Program Semantic

Feature Mining. Electronics 2023, 12,

1546. https://doi.org/10.3390/

electronics12071546

Academic Editor: Andrei Kelarev

Received: 28 February 2023

Revised: 23 March 2023

Accepted: 23 March 2023

Published: 25 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Software Defect Prediction Method Based on Program
Semantic Feature Mining
Wenjun Yao 1, Muhammad Shafiq 1,2,* , Xiaoxin Lin 1 and Xiang Yu 3

1 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510000, China
2 School of Computer Science, Shenyang Normal University, Shenyang 110136, China
3 School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
* Correspondence: mshafiq@gzhu.edu.cn

Abstract: As the size and complexity of software systems grow, knowing how to effectively judge
whether there are defects in the programs has attracted extensive attention in research. However,
current software defect prediction methods only extract semantic information at the syntactic level and
lack features to mine defect manifestations at the semantic level of code, because defective software is
incomplete or defective in semantic representation. Defective software exhibits incomplete or flawed
semantic behavior. This paper proposes a software defect prediction method based on the program
semantics feature mining (PSFM) method. Specifically, the semantic information is first extracted
from the code grammatical structure information and code text information. Then, the defect feature
is mined through the semantic information. Finally, software defects are predicted by using the mined
defect features. The experimental results show that, compared with the existing software defect
prediction methods, the method in this paper (PSFM method) obtained a higher F-measure value.

Keywords: software defect prediction; abstract syntax tree; tree based on convolution neural network;
semantic extraction; feature mining

1. Introduction

Emerging computer technologies such as mobile Internet and cloud applications have
made great progress, and have promoted the rapid development of the computer software
industry. Software is applied in every aspect in people’s work and life. With the increased
development of software applications and the introduction of new technologies, the size
of software is also increasing, as well as the complexity of software. This results in higher
requirements for software quality assurance technology and security. The safety, quality,
and reliability of software not only affect the user experience and production activities, but
may even endanger people’s lives and property. The high quality of software depends on
the software defects. Software defects are common in programs, especially with the rapid
increase in the complexity and scale of software systems. Therefore, it is very important to
predict software defects so as to generate high-quality software.

In recent years, artificial intelligence technology has made great progress, and research
applying artificial intelligence technology to software defect prediction methods has also
made great progress [1]. The current software defect prediction method combined with
artificial intelligence technology has achieved good defect prediction results. It uses deep
learning and other methods to extract the features from the static attributes of the software
or the intermediate representation of the code. The research on software defect prediction
can be conducted after building a classifier [2]. However, many research works on the
application of deep learning methods to software defect prediction ignore the impact of
program semantics on software defects. Even though some research takes into account the
influencing factors of program semantics, the extracted program semantics are all based
on the syntax level, not on the understanding and analysis of the program, which is not

Electronics 2023, 12, 1546. https://doi.org/10.3390/electronics12071546 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071546
https://doi.org/10.3390/electronics12071546
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1909-9373
https://doi.org/10.3390/electronics12071546
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071546?type=check_update&version=1

Electronics 2023, 12, 1546 2 of 14

the semantic level. Program semantics is an important part of program understanding [3].
Therefore, research for software defect prediction based on program semantic feature
mining is of great significance.

In order to fully exploit the impact of program semantics on software defects, this
paper proposes a software defect prediction method based on the program semantic feature
mining (PSFM) method. Specifically, semantic information is first extracted from the code
grammatical structure information and code text information. Then, the defect feature
is mined through the semantic information. Finally, software defects are predicted by
using the mined defect features. The experimental results show that the PSFM method can
effectively improve the accuracy of software defect prediction.

The contributions of this paper are summarized as follows:

• First, this paper proposes a method for extracting code semantic information through
syntax structure information and code text information. This method first extracts the
syntax structure information and code text information, and then combines it to form
semantic information. The semantic information provides the basis platform for the
research on the influence of program semantics on software defects.

• This paper proposes a method for the influence of software defects on program
semantics, of which the research on the influence of program semantics in software
defects is completed by mining defect features in the program semantic information.

The rest of this paper is organized as follows. Section 2 introduces related work
in software defect research. Section 3 introduces code semantic extraction methods that
combine syntax structure information and code text information. Section 4 introduces the
software defect prediction method based on semantic information. Section 5 introduces the
experimental setup and analysis of the experimental results. Finally, this paper is concluded
and future work is discussed.

2. Related Work

The current software defect prediction methods are mainly divided into four categories
according to the software engineering catalog, namely: WPDP (Within Project Defect Predic-
tion), CPDP (Cross-Project Defect Prediction), CVDP (Cross Version Defect Prediction), and
HDP (Heterogeneous Defect Prediction). The current research is focused mainly on CPDP.

The research on code defect prediction methods mainly is divided into two methods:
one is mining software defect characteristics through the static properties in code, and
the other is mining software defect characteristics through machine learning [4]. Mining
software defect characteristics through the static properties in code mainly focuses on
the static properties in software features that are obtained manually. Radjenovic et al. [5]
completed code defect prediction by analyzing the complexity of the software modules
and the distribution of the software defects. Specifically, using the source code complexity
features as an input to predict software defects, which mainly includes based on operator
and operation number-based Halstead features and dependency-based McCabe features.
Wang et al. [6] firstly formally defined the attribute characteristics of software vulnera-
bilities, and then proposed a program intermediate representation of the vulnerability
executable path set. Finally, Wang completed the code vulnerability detection after de-
signing a software vulnerability static detection framework based on the vulnerability
executable path set. Liu et al. [7] used feature selection and machine learning algorithms
to perform feature dimensionality reduction and weight optimization on vectorized raw
data. Evaluating the severity of the software defect reports was completed with using
classification algorithms. The experiments showed that the AUROC (area under the re-
ceiver operating characteristic curve) value of the software defect report severity prediction
was improved to 0.767. Li et al. [8] proposed a CPDP-FSTr (Cross-Project Defect Predic-
tion method based on Feature Selection and TrAdaBoost) method for cross-item defect
prediction, which was based on TrAdaBoost with feature selection. The method used the
KPCA (Kernel Principal Component Analysis) algorithm to delete redundant data in the
source items, continuing to select the candidate source item data that were closest to the

Electronics 2023, 12, 1546 3 of 14

distribution of the target item. The experiments showed that compared with the FeCTrA
(Feature Clustering and TrAdaBoost) and CMKEL (Multiple Kernel Ensemble Learning)
methods, the CPDP-FSTr method had an improved F1-score. However, the method for
mining software defect characteristics through the static properties in code cannot com-
pletely cover all of the features in the code. It may ignore other features in code defects,
which cannot cope with the continuous increase in the scale of software. It may incur
a problem, in that the accuracy and coverage in the defect prediction model cannot be
effectively improved. Finally, the defect prediction performance is not acceptable.

Mining software defect characteristics through machine learning refers to mining the
code features in the source code through machine learning methods, thereby improving the
performance of software defect prediction [9]. Wang et al. [10] used a Deep Belief Network
(DBN) to extract symbolic vectors from the AST of the program to learn code features,
which is superior to traditional feature-based methods in effect. However, the structural
features of the program are not taken into account with software defect prediction. M.
Shafiq et al. [11] proposed a new framework model and a hybrid algorithm that selected
an effective machine learning algorithm for the identification of malicious and anomaly
traffic. The experimental results show that the proposed model with the algorithm was
effective. In order to fully consider the structural features of the program code, Li et al. [9]
mapped the representative nodes in AST, combined with the traditional defect features
in order to train the classifier, and they achieved better results than DBN. Dam et al. [12]
mapped each node in the AST, and input each AST branch into the tree-based LSTM unit
to train the model. This method can fully take into account the structural features in AST,
and is also very helpful for discovering specific sequence patterns. It is worth mentioning
that this method uses an unsupervised method to train LSTM units. So, it does not require
a large number of expensive dataset labels. J. Qiu et al. [13] aimed to provide theoreti-
cal, methodological, and technical guidance for IoT search access control mechanisms in
large-scale dynamic heterogeneous environments. Z. Tian et al. [14] proposed a web attack
detection system that takes advantage of analyzing URLs, which was designed to detect
web attacks and could be deployed on edge devices. The experimental results showed
99.410% for accuracy, 98.91% for TPR, and 99.55% for DRN, demonstrating that the system
is competitive when detecting web attacks. Pan et al. [15] proposed the Improved-CNN
method, which achieved better results and explored the instability of hyperparameters in
the defect prediction model. Huang et al. [16] proposed a defect prediction method based
on the heavy son-based abstract syntax tree (HSAST). By marking the nodes on the AST
and dividing the HSAST, the code defect prediction model was trained by CNN and RNN.
The experiments showed that compared with the DFS method, HSAST improved F1 by
3% on average and AUC by 4% on average. Dong et al. [17] proposed a software defect
prediction framework based on feature fusion. By parsing the program into two different
program representations, AST and Token sequence, the tree convolutional neural network
and text convolutional neural network were used to extract the program structure and
semantic features. The experimental results show that this framework could obtain an
excellent F1-score. X Cheng et al. [18] proposed a ContraFlow software defect detection
framework by selecting and retaining feasible value flow (aka program dependency) paths,
using a self-supervised pre-trained path embedding model with comparative learning for
path-based vulnerability detection. When making real item predictions, the ContraFlow
model achieved a better recall value. M. Shafiq et al. [19] built a framework model with a
novel feature selection metric approach, which was based on the wrapper technique to filter
the features accurately and select effective features for the selected ML algorithm by using
the area under the curve (AUC) metric. The experimental results analysis showed that our
proposed method was efficient and could achieve >96% results on average. Z. Tian et al. [20]
proposed a secure digital evidence framework using blockchain (Block-DEF) with a loose
coupling structure in which the evidence and the evidence information were maintained
separately. The experimental results showed that Block-DEF is a scalable framework, it
guarantees the integrity and validity of evidence, and balances privacy and traceability

Electronics 2023, 12, 1546 4 of 14

well. Kovačević et al. [21] introduced a multi-threaded approach, which accelerated the
evaluation process by over 9.5 times, while the number of fitness evaluations using the
improved Long-Term Memory Assistance (LTMA) was reduced by up to 7.3%. Xie et al. [22]
proposed Semantic-Guided Pixel Contrast (SePiCo), a novel one-stage adaptation frame-
work that highlights the semantic concepts of individual pixels to promote the learning of
class-discriminative and class-balanced pixel representations across domains, eventually
boosting the performance of self-training methods. The experiments show that SePiCo can
make progress on both synthetic-to-real and daytime-to-nighttime adaptation scenarios.
Yang, D. et al. [23] considered the LF Contextual Feature (LFCF) and LF Geometric Feature
(LFGF) for occluded area perception and segmentation edge refinement. The experimental
results for both the real-world and synthetic datasets proved the state-of-the-art perfor-
mance of our method. Sheng, H. et al. [24] proposed a high-quality and challenging urban
scene dataset, containing 1074 samples composed of real-world and synthetic light field
images, as well as pixel-wise annotations for 14 semantic classes, showing that the proposed
dataset presented new challenges and supported detailed comparisons among different
methods. Shi, K. et al. [25] proposed a new AST path pair-based source code represen-
tation method (PathPair2Vec) and applied it to software project defect prediction. The
experiments showed that PathPair2Vec could improve the F1 score. Khalilian, A. et al. [26]
proposed leveraging the common components that constitute the APR techniques and tools,
and developed a principled method for the application of components. Khalilian, A. et al.
concluded that knowledge accumulation and characterization through literature reviews
could thus be facilitated through the identified suite of components. Fu, W. et al. [27]
repeated and refuted these results, stating there was too much variability in the efficacy of
the Yang et al. [28] predictors, so their approach and Yang’s findings were grouped across
N projects. Kovačević et al. [29] described a research work on Semantic Inference, which
can be regarded as an extension of Grammar Inference. The results show that the authors
were able to infer the semantics only from the samples and their associated meanings for
several simple languages, including the Robot language.

However, most of the machine learning methods above ignored the impact of program
semantics on defects, or the extracted semantics were based on the grammatical level, not
on an understanding and analysis of the program. Furthermore, program semantics is an
important part of program understanding [3].

In summary, the current software defect prediction methods only extract semantic
information at the syntactic level and lack features to mine defect manifestations at the
semantic level of the code. The performance of the semantic information in detecting
codes is extremely important. Therefore, using the method proposed in this paper (PSFM
method), the influence of program semantics on defective software will be explored, and
the prediction of software defects will be completed based on mining defect features from
semantic information.

3. Component Design

In this section, the overall framework of the PSFM method will be described in detail.
The flow of the PSFM method is as follows: (a) code semantic extraction, (b) defect feature
mining, and (c) performing defect prediction. Figure 1 illustrates the overall framework of
the PSFM method.

Electronics 2023, 12, 1546 5 of 14Electronics 2023, 11, x FOR PEER REVIEW 5 of 14

Figure 1. The overall framework of the PSFM method: (a) code semantic extraction, (b) defect feature
mining, and (c) performing defect prediction.

3.1. Code Semantic Extraction
In this section, this paper introduces the code semantic extraction method of combin-

ing syntactic structure and code text information in detail. This method first extracts the
syntax structure information and code text information, and then combines it to form the
semantic information. The semantic information provides a basis for the research on the
influence of program semantics on software defects. The flow of code semantic extraction
includes the following: (1) parsing AST, (2) parsing token sequence, (3) extracting the code
syntax information, (4) extracting code text information, and (5) combining code seman-
tics.

3.1.1. Parsing AST
The program code contains plenty of feature information, such as syntax structure

information, function information, and so on. However, it is difficult to directly extract
feature information from the code. On the one hand, the amount of information is rela-
tively large because the code content is the realization of the overall function of the soft-
ware; on the other hand, the distribution of the feature information of the code is relatively
sparse. It is often difficult to be directly extracted. For software defect prediction methods,
not all of the feature information contained in the code is valuable for defect prediction,
such as commented code and so on. Therefore, it is necessary to parse the program code
into an intermediate form, which can save all the information in the code file as much as
possible, and can facilitate the feature mining of the code. As an intermediate form of code
representation, AST (Abstract Syntax Tree) can reflect the characteristic information of the
code well. In this paper, an open source Python package called javalang was used to com-
plete the task of code module parsing to AST. Based on the recognized Java language
specification, javalang supports parsing Java code [30]. Another reason for choosing java-
lang was to compare the performance with a baseline method that uses javalang to parse
Java codes. The package can be obtained through the javalang tool [31], which can parse
Java source code into the corresponding AST.

Figure 1. The overall framework of the PSFM method: (a) code semantic extraction, (b) defect feature
mining, and (c) performing defect prediction.

3.1. Code Semantic Extraction

In this section, this paper introduces the code semantic extraction method of combining
syntactic structure and code text information in detail. This method first extracts the syntax
structure information and code text information, and then combines it to form the semantic
information. The semantic information provides a basis for the research on the influence
of program semantics on software defects. The flow of code semantic extraction includes
the following: (1) parsing AST, (2) parsing token sequence, (3) extracting the code syntax
information, (4) extracting code text information, and (5) combining code semantics.

3.1.1. Parsing AST

The program code contains plenty of feature information, such as syntax structure
information, function information, and so on. However, it is difficult to directly extract
feature information from the code. On the one hand, the amount of information is relatively
large because the code content is the realization of the overall function of the software;
on the other hand, the distribution of the feature information of the code is relatively
sparse. It is often difficult to be directly extracted. For software defect prediction methods,
not all of the feature information contained in the code is valuable for defect prediction,
such as commented code and so on. Therefore, it is necessary to parse the program code
into an intermediate form, which can save all the information in the code file as much
as possible, and can facilitate the feature mining of the code. As an intermediate form of
code representation, AST (Abstract Syntax Tree) can reflect the characteristic information of
the code well. In this paper, an open source Python package called javalang was used to
complete the task of code module parsing to AST. Based on the recognized Java language
specification, javalang supports parsing Java code [30]. Another reason for choosing
javalang was to compare the performance with a baseline method that uses javalang to
parse Java codes. The package can be obtained through the javalang tool [31], which can
parse Java source code into the corresponding AST.

According to the AST object parsed by the javalang tool, AST is composed of nodes,
and each node contains type information and value information. The type information

Electronics 2023, 12, 1546 6 of 14

includes (1) declared nodes, including method definitions, class definitions, variable defini-
tions, etc.; (2) called nodes, including method calls, etc.; and (3) other data nodes, including
control flow nodes (such as loops, branches, exception capture, etc.). Value information
Value refers to the information in the code content. Such as the statement “i = 1”, in
the node, whose type information is VariableDeclarator, and its value information is the
number 1.

After obtaining all of the nodes, building a tuple {V, C} will represent the whole AST.
Among the tuple, V represents the information of the node, including the type information
and value information, and C represents the parent−child relationship of all child nodes.
The tuple can be represented as the AST of a piece of code. The representation style of a
tuple is as follows: {

V =
{

nodetype, nodevalue
}

C = {child0, child1, . . . , childm}
(1)

Among the representation style, nodetype indicates the type information in the node,
nodevalue indicates the value information in the node, and childm indicates the child node
of the current node.

3.1.2. Parsing Token Sequence

According to the research on related methods [32], the programming language has
the characteristics of natural language. The content of the program can be regarded as
natural language in order to extract the features of the text information. The nodes on the
AST retained the content information of the code to the greatest extent, that is, the value
information of the nodes. Therefore, AST could be traversed and extracted to obtain the
token sequence representing the code content.

Algorithm 1 describes a method for parsing token sequences. Its input is AST, and its
output is a sequence of tokens.

Algorithm 1 parsing token sequence algorithm

Input: AST
Output: token seq
1: Initialize queue = {AST}, seq = {}
2: while queue not empty do
3: node = queue.pop(0)
4: seq.append(node.value)
5: if node is not leaf node then
6: queue.append(node.children)
7: end if
8: end while
9: return seq

Specifically, AST was first put into the queue, and then the head element of the queue
was dequeued. AST was traversed through the breadth-first traversal method, thereby
extracting the value information of all of the nodes. The time complexity of the whole
algorithm was O(n).

3.1.3. Extracting Code Syntax Information

As the program code has a standardized syntax structure, it is difficult to directly
extract the features of syntax information by using the code content. AST is an intermediate
form of code representation. Furthermore, the type information of the nodes on AST
can preserve the syntax structure information of the code well. Therefore, the syntax
information of the code can be extracted on the AST. As AST is a tree structure, the TBCNN

Electronics 2023, 12, 1546 7 of 14

(Tree-based CNN) method [33] was used for information extraction for the tree structure
information. The process for extracting the code syntax information is shown as follows:

Wconv,i = nt
i ∗Wt

conv + nr
i ∗Wr

conv + nl
i ∗W l

conv (2)

where Wconv,i is a convolution kernel for the TBCNN model. It is a linear combination
of Wt

conv, Wr
conv, and W l

conv matrices. These three matrices use dynamic pooling [33] to
construct them.

Then, the output of the syntax information is:

y = tanh(∑n
i=1Wconv,i ∗ xi + bconv) (3)

where n is the number of nodes with vector representations x1, . . . , xn. y,bconv∈RNc (Nc is
the number of feature detectors).

Specifically, a convolution kernel window was designed. The convolution calculation
was performed by sliding on AST to complete the information extraction. The input of
the TBCNN module was the type information in the nodes on the AST. The output was
the information following the fully connected layer. Finally, the syntax information for the
code was extracted.

3.1.4. Extracting Code Text Information

Extracting code text information directly from the code content may incur the prob-
lem of not being able to extract key information, because the content of the code file is
cumbersome. There was plenty of invalid information, such as comment statements and
function description statements. For mapping to the code content, the token sequence
had the characteristics of compact information and clear content. Therefore, the extraction
information for code text could be completed by using the token sequence.

As a method for text key feature mining, the attention module had the advantage of
automatically identifying key features of the text information. So, the attention module has
been widely used in natural language processing. Therefore, using the attention module
could complete the extraction work of text information in the token sequence. The process
for the attention module to extract text information is as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (4)

where Q is a set of query, K is keys, and V is values.
Specifically, tokens were first mapped to a high-dimensional space. Then key−value

pair was created to represent the vector value of the token, which was the input for the
attention model. The attention score was obtained by calculating the similarity between
the query and the key. After Softmax function processing, the attention module output the
vector representation of the code text information.

3.1.5. Combining Code Semantics

The code syntax information and code text information extracted from AST were
high-dimensional, so they were abstract. They focused on different points. Code syntax
information focused on the structural features of the program, while text information
focused on the code content features. In natural language, its structure was composed of
the syntax and content of the sentences. It is necessary to combine the syntax structure and
the text content to extract the semantics of the sentence. Therefore, similar to extraction for
natural language processing, the extraction for the semantic information of the program
should combine the code syntax information and code text information.

There are many common ways to combine information, such as concatenation, cross
multiplication, and so on. As the weights of code syntax information features and code
text information features were unknown, this paper chose cross multiplication as the
combination method. Specially, the combination method first mapped the code syntax

Electronics 2023, 12, 1546 8 of 14

information and code text information into the same dimension space. Then, the cross-
multiplication method was used to process the code syntax information and code text
information. Finally, the work for combining the code semantic was completed, where the
output was the extracted code semantic.

3.2. Defect Feature Mining

The semantic information of programs cannot be directly applied to software defect
prediction. Further defect feature mining is necessary to accurately predict whether the
software has defects in terms of semantic information.

As the CNN network has been proven in a wide range of fields, it is very effective
for hidden feature mining. Therefore, this paper used the CNN network to mine the key
feature information of the software defects in semantic information. The process is shown
in Figure 2.

Electronics 2023, 11, x FOR PEER REVIEW 8 of 14

There are many common ways to combine information, such as concatenation, cross
multiplication, and so on. As the weights of code syntax information features and code
text information features were unknown, this paper chose cross multiplication as the com-
bination method. Specially, the combination method first mapped the code syntax infor-
mation and code text information into the same dimension space. Then, the cross-multi-
plication method was used to process the code syntax information and code text infor-
mation. Finally, the work for combining the code semantic was completed, where the out-
put was the extracted code semantic.

3.2. Defect Feature Mining
The semantic information of programs cannot be directly applied to software defect

prediction. Further defect feature mining is necessary to accurately predict whether the
software has defects in terms of semantic information.

As the CNN network has been proven in a wide range of fields, it is very effective for
hidden feature mining. Therefore, this paper used the CNN network to mine the key fea-
ture information of the software defects in semantic information. The process is shown in
Figure 2.

Figure 2. The process for the CNN network to mine a defect feature.

The input layer was semantic information. The hidden layer included convolutional
layers, pooling layers, and fully connected layers. The convolutional layer slid in a one-
dimensional direction on the semantic information through the randomly initialized con-
volution kernel, as the following formula shows: y = 𝑓(𝑤 𝑥 + 𝑏) (5)

where y is the output for the convolutional layer. 𝑤 is the convolution kernel. 𝑥 is
the output for the last layer. 𝑏 is the input for bias. is convolution operation. 𝑓(.) is
activation function.

The pooling layer uses max pooling. After processing for max pooling, the pooled
vectors are fully connected, as the following formula shows: y = 𝑓(𝑤 ∗ 𝑦 + 𝑏) (6)

where y is the output for the full connected layer. 𝑓(.) is activation function. 𝑤 is the
weight matric. 𝑦 is the output for the last layer. 𝑏 is the input for bias.

After obtaining the numbers of epochs for the iteration, the CNN module finally out-
put important features for defect prediction.

3.3. Performing Defect Prediction
In the field of software defect prediction, the logistic regression algorithm has become

an important machine learning method to predict whether there are defects in the soft-
ware [34]. Therefore, logistic regression was used as the final classifier. This paper put the

Figure 2. The process for the CNN network to mine a defect feature.

The input layer was semantic information. The hidden layer included convolutional
layers, pooling layers, and fully connected layers. The convolutional layer slid in a one-
dimensional direction on the semantic information through the randomly initialized convo-
lution kernel, as the following formula shows:

yl = f
(

wl ⊗ xl−1 + bl
)

(5)

where yl is the output for the convolutional layer. wl is the convolution kernel. xl−1 is
the output for the last layer. bl is the input for bias. ⊗ is convolution operation. f (.) is
activation function.

The pooling layer uses max pooling. After processing for max pooling, the pooled
vectors are fully connected, as the following formula shows:

yr = f
(

wr ∗ yr−1 + br
)

(6)

where yr is the output for the full connected layer. f (.) is activation function. wr is the
weight matric. yr−1 is the output for the last layer. br is the input for bias.

After obtaining the numbers of epochs for the iteration, the CNN module finally
output important features for defect prediction.

3.3. Performing Defect Prediction

In the field of software defect prediction, the logistic regression algorithm has become
an important machine learning method to predict whether there are defects in the soft-
ware [34]. Therefore, logistic regression was used as the final classifier. This paper put the
mining feature obtained by the CNN network into the logistic regression classifier, then

Electronics 2023, 12, 1546 9 of 14

obtained the final prediction result. The prediction result was buggy or clean. Buggy means
that there was defect in the software. Clean means there was no defect in the software.

4. Experiment

This section presents the related work of the experiment and evaluates the software
defect prediction method based on the program semantic feature mining. The effectiveness
of this paper’s method is evaluated by comparing its accuracy with other state-of-the-art
methods in software defect prediction. In this experiment, a device with a Windows 10
operating system, i7-9850H, 2.60 GHz processor, and 32 G memory was chosen to run the
method code.

4.1. Research Question

The purpose of the software defect prediction method based on program semantic
feature mining was to complete the prediction task when the target project had certain
historical labeled data. This method first extracted semantic information from the source
code, then mined the key features of the software defects from the semantic information,
and finally used the key information to complete the prediction of software defects. In
order to verify the effectiveness of the method in this paper (PSFM method), the following
two research questions were proposed:

• RQ1: Compared with other deep learning methods, does the method in this paper
have a better performance?

• RQ2: Can the semantic information extracted by the method in this paper be directly
applied to software defect prediction?

4.2. Experiment Dataset

This paper used the Promise project in the Apache open source project as the exper-
imental dataset. This dataset is accepted by researchers. It is widely used in the field of
software defect research. It is written with java code. The projects used in this experiment
contained two versions of files: the first version was the training data set and the second
version was the test dataset. The dataset details of the Promise project are shown in Table 1.

Table 1. The details in the Promise project dataset.

Project Description Version Total Number
of Files

Ratio in Defect
Files (%)

Camel
Enterprise integration

framework

1.0 339 3.8
1.2 590 36.6
1.4 840 17.3
1.6 926 20.3

Lucene
Text search

engine library

2.0 186 48.9
2.2 234 61.1
2.4 329 61.4

Xalan
A library for

transforming XML files

2.4 667 15.9
2.5 754 50.3
2.6 875 47.0

Synapse Data transport adapters
1.0 16 10.2
1.1 55 26.8
1.2 86 33.6

Poi Java library to access
Microsoft format files

2.0 307 11.4
2.5 380 65.3
3.0 438 64.2

log4j Record for logs
1.0 114 28.1
1.1 100 34.0
1.2 188 95.7

Electronics 2023, 12, 1546 10 of 14

4.3. Performance Indicators

After the sample was predicted, it produced four kinds of prediction results: the
buggy sample was predicted to be buggy, that is, TP (true positive); the clean sample was
predicted to be clean, that is, TN (true negative); the clean sample was predicted to be
buggy, namely FP (false positive); and the buggy sample was predicted to be clean, FN
(false negative). In this paper, the F-measure evaluation index was selected to evaluate
the generalization ability of the software defect prediction model. Before defining the
F-measure evaluation index, this paper defined the precision index and the recall index.

Precision: The ratio of the number of files correctly classified as being buggy to the
number of files classified as buggy.

Precision = TP/(TP + FP) (7)

Recall: The ratio of the number of files correctly classified as buggy to the number of
truly buggy files.

Recall = TP/(TP + FN) (8)

F-measure: The traditional F-measure is the harmonic mean of precision and recall.

F-measure = 2 ∗ Precision ∗ Recall/(Precision + Recall) (9)

The value of the F-measure was between 0 and 1. The higher its value, the better the
prediction performance of the model.

4.4. Performance Indicators

To verify the performance of the PSFM method, this paper chose several software
defect prediction methods. The process for this comparison firstly chose one version of files
to build a classifier for software defect prediction, then picked another version of files in
the same project to complete the prediction for the software defect.

This paper used the following software defect prediction method for comparison with
the method proposed by this paper (PSFM method):

2T-CNN method [17]: The method of combining the CNN and TBCNN networks. Its
performance was better than only using the TBCNN network.

DP-CNN method [9]: The CNN method was combined with manually defined tradi-
tional features. Its performance was better than the CNN method alone.

Improved-CNN method [15]: The improved CNN method discarded the features that
relied on manual definition. The prediction result was better than the existing CNN method.

DBN method [10]: The first attempt to use deep learning methods for software defect
prediction. The effect was better than all of those relying on artificial feature definitions.

Sem method: The semantic information extracted in this paper was directly used for
software defect prediction. Compared with the PSFM method, it lacked the software defect
feature mining work.

The input of the model used the method of word2vec. Specifically, the type value of
the token was mapped to a high-dimensional (30-dimensional in this article) matrix space
through the method of word embedding. The output of the model was the software defect
prediction result. The defective code was marked as buggy, and the non-defective code
was marked as clean.

The results of different software defect prediction methods when conducting experi-
ments are shown in Tables 2 and 3.

Electronics 2023, 12, 1546 11 of 14

Table 2. F-measure comparison of the different methods.

Project Train Dataset Test Dataset 2T-CNN DP-CNN Improved-CNN DBN PSFM

Camel 1.0 1.2 0.396 0.497 0.487 0.346 0.533
Lucene 2.2 2.4 0.723 0.756 0.701 0.694 0.762
Xalan 2.5 2.6 0.643 0.696 0.780 0.540 0.669

Synapse 1.1 1.2 0.624 0.556 0.655 0.533 0.503
Poi 2.0 2.5 0.518 0.703 0.444 0.745 0.790

log4j 1.0 1.1 0.618 0.462 0.400 0.535 0.507
average F-measure - - 0.587 0.612 0.579 0.566 0.627

Table 3. F-measure comparison of the Sem method and PSFM method.

Project Train Dataset Test Dataset Sem Method PSFM Method

Camel
1.0 1.2 0.523 0.533
1.4 1.6 0.475 0.498

Lucene
2.2 2.4 0.752 0.762
2.0 2.2 0.755 0.759

Xalan
2.5 2.6 0.641 0.669
2.4 2.5 0.613 0.625

Synapse 1.1 1.2 0.512 0.503
1.0 1.1 0.497 0.501

Poi
2.0 2.5 0.741 0.790
2.5 3.0 0.780 0.782

log4j 1.0 1.1 0.511 0.507
1.1 1.2 0.496 0.505
- - 0.608 0.619

Table 2 lists the results of predicting the F-measure using different software defect
prediction methods. The bold font indicates that the method achieved the highest F-measure
value in this project. It can be seen from Table 2 that different code defect predictions had
their own advantages.

Table 3 lists the results of predicting the F-measure using the Sem method and PSFM
method. It can be seen from Table 3 that most of the F-measure results of the PSFM method
were better than the Sem method.

4.5. Analysis

• Compared with other deep learning methods, did the method in this paper have a
better performance (RQ1)?

This paper used 2T-CNN, DP-CNN, Improve-CNN, DBN, and four other software
defect prediction methods for comparison with the PSFM method proposed in this paper.
This comparison was made to illustrate that the software defect results predicted by the
PSFM method were a more common phenomenon than the other four methods. Experi-
ments were performed using the item projects in Table 2. Each item project was divided
into the training dataset and the testing dataset. The training dataset was used to train
the software defect prediction model. The test dataset was used to test the performance of
the software defect prediction model. The software defect prediction result was obtained
after putting the test dataset into the trained software defect prediction model. Finally, the
parameter results after evaluating the software defect prediction model were achieved by
comparing the prediction results with the real defects in the test data.

Table 2 lists the F-measure results of the defect prediction using all of the software
defect prediction methods. Taking the Lucene item project as an example, 2T-CNN, DP-
CNN, Improved-CNN, DBN, and PSFM achieved F-measure values of 0.723, 0.756, 0.701,
0.694, and 0.762, respectively. This shows that using the PSFM method was better than the
other four defect prediction methods when performing defect prediction for the Lucene
item projects.

Electronics 2023, 12, 1546 12 of 14

When performing defect prediction on all of the items in Table 2, the average value
of the F-measure predicted by the PSFM method was higher than that of the other four
defect prediction methods. This shows that the defect features mined by PSFM were more
universal and more conducive to the discovery of software defects. However, the F-measure
value of the software defects predicted by the PSFM method were not higher than that of
the other four methods in all of the projects. For example, in the Xalan item project, the
F-measure value predicted by the PSFM method was lower than that of the Improved-CNN
method. This may be because the features of the software defects mined on the Xalan
project using the PSFM method were not sufficient enough.

In summary, the PSFM method proposed in this paper could mine the defect feature
on program semantic well when predicting the software defects. Compared with the other
four software defect prediction methods, PSFM had the best performance.

• Can the semantic information extracted by the method in this paper be directly applied
to software defect prediction (RQ2)?

Compared with the PSFM method, the Sem method lacked the process of mining
software defect features on the semantic information. The Sem method directly trained
the software defect model with the extracted program semantic information, completing
the defect prediction work according to the model. In order to verify the performance of
the Sem method, this paper selected different software versions in the same project for
software defect prediction. For example, in the Camel item project, version 1.0 was used as
the training dataset, while version 1.2 was used as the test dataset. Furthermore, version
1.4 was used as the training dataset, and version 1.6 was used as the test dataset, which
verified the performance of the Sem method.

In Table 3, the average value of F-measure predicted by Sem method was lower than
that of the PSFM method. This shows that the performance of the PSFM method was better
than that of the Sem method. However, the Sem method also had certain advantages. In
the software defect prediction of different versions in all of the projects, the F-measure
value predicted by the Sem method also reached 0.608. Compared with the PSFM method,
the gap value was also within 0.05, which further shows that the software defect results
predicted by the Sem method also had certain reference.

In summary, although the performance of the software defect prediction using the
Sem method was lower than that of the PSFM method, its prediction results were also
useful. This shows that the extracted semantic information could be directly applied to the
software defect prediction. However, it is still recommended to use the PSFM method for
software defect prediction.

5. Conclusions

This paper proposes a new software defect prediction method based on program
semantic feature mining, through extracting the semantics from the code and then mining
the features of software defects on the semantics. Finally, software defects are predicted
by using the mined defect features. This method can effectively extract the semantic
information of the code, and can further mine the impact of the defect features on semantics.
However, this method uses AST to perform an intermediate representation of the code.
Its semantic information may not be complete enough. In addition, the PSFM method
is applicable to Java code and javalang can be used for parsing. In future work, more
intermediate representations of code, such as program graphs, will be investigated to
improve the performance of software defect prediction. Additional, choosing a non-Java
public dataset and more parse tools can be done to verify the PSFM performance.

Author Contributions: W.Y. and M.S. were in charge of conceptualization; W.Y., M.S., X.L. and X.Y.
were in charge of methodology; W.Y., M.S. and X.L. were in charge of software; W.Y. was in charge
of preparing the original draft; X.L. and X.Y. were in charge of writing the review and editing; M.S.
was in charge of funding acquisition; W.Y. and M.S. handled project administration; W.Y., M.S.,

Electronics 2023, 12, 1546 13 of 14

X.L. and X.Y. supervised the study. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No.
62250410365) and Guangzhou Higher Education Innovation Group 202032854.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All of the codes and datasets to reproduce our experimental results
are open source, at https://github.com/AuroraHuan/SIFD-adversrial-detection, and we hope they
facilitate future research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pachouly, J.; Ahirrao, S.; Kotecha, K.; Selvachandran, G.; Abraham, A. A systematic literature review on software defect prediction

using artificial intelligence: Datasets, Data Validation Methods, Approaches, and Tools. Eng. Appl. Artif. Intell. 2022, 111, 104773.
[CrossRef]

2. Fan, G.; Diao, X.; Yu, H.; Yang, K.; Chen, L. Software Defect Prediction via Attention-Based Recurrent Neural Network. Sci.
Program. 2019, 2019, 6230953. [CrossRef]

3. Jin, Z.; Liu, F.; Li, G. Program comprehension: Present and future. Ruan Jian Xue Bao/J. Softw. 2019, 30, 110–126. (In Chinese)
4. Qiu, S.; Cai, Z.; Lu, L. Cost-sensitive Convolutional Neural Network Module for Software Defect Prediction. J. Comput. Sci. 2019,

46, 156–160. (In Chinese)
5. Radjenović, D.; Heričko, M.; Torkar, R.; Živkovič, A. Software fault prediction metrics: A systematic literature review. Inf. Softw.

Technol. 2013, 55, 1397–1418. [CrossRef]
6. Wang, T.; Han, L.; Fu, C.; Zou, D.; Liu, M. Static Detection Model and Framework for Software Vulnerability. J. Comput. Sci. 2016,

43, 80–86+116. (In Chinese)
7. Liu, W.; Jiang, H. Severity Assessment of Software Defect Reports Based on Feature Selection. J. Comput. Eng. 2019, 45, 80–85.

(In Chinese)
8. Li, L.; Shi, K.; Ren, Z. Cross-project defect prediction method based on feature selection and TrAdaboost. J. Comput. Appl. 2022,

42, 1554–1562. (In Chinese)
9. Li, J.; He, P.; Zhu, J.; Lyu, M.R. Software defect prediction via convolutional neural network. In Proceedings of the 2017 IEEE

International Conference on Software Quality, Reliability and Security (QRS), Prague, Czech, 25–29 July 2017.
10. Wang, S.; Liu, T.; Tan, L. Automatically learning semantic features for defect prediction. In Proceedings of the 2016 IEEE/ACM

38th International Conference on Software Engineering (ICSE), Austin, TX, USA, 14–22 May 2016.
11. Shafiq, M.; Tian, Z.; Sun, Y.; Du, X.; Guizani, M. Selection of effective machine learning algorithm and Bot-IoT attacks traffic

identification for internet of things in smart city. Future Gener. Comput. Syst. 2020, 107, 433–442. [CrossRef]
12. Dam, H.K.; Pham, T.; Ng, S.W.; Tran, T.; Grundy, J.; Ghose, A.; Kim, C.J. A deep tree-based model for software defect prediction.

arXiv 2018, arXiv:1802.00921.
13. Qiu, J.; Tian, Z.; Du, C.; Zuo, Q.; Su, S.; Fang, B. A Survey on Access Control in the Age of Internet of Things. IEEE Internet Things

J. 2020, 7, 4682–4696. [CrossRef]
14. Tian, Z.; Luo, C.; Qiu, J.; Du, X.; Guizani, M. A Distributed Deep Learning System for Web Attack Detection on Edge Devices.

IEEE Trans. Ind. Inform. 2019, 16, 1963–1971. [CrossRef]
15. Pan, C.; Lu, M.; Xu, B.; Gao, H. An Improved CNN Model for Within-Project Software Defect Prediction. Appl. Sci. 2019, 9, 2138.

[CrossRef]
16. Huang, X.; Fan, G.; Yu, H.; Yang, X. Software Defect Prediction via Heavy Son-based Abstract Syntax Tree. J. Comput. Eng. 2021,

47, 230–235+248. (In Chinese)
17. Dong, Y.; Li, H.; Wei, X.; Tang, D. Software Defect Prediction based on the Features Fusion of Program Structure and Semantics.

J. Comput. Eng. Appl. 2022, 58, 84–93. (In Chinese)
18. Cheng, X.; Zhang, G.; Wang, H.; Sui, Y. Path-sensitive code embedding via contrastive learning for software vulnerability

detection. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual, 18–22
July 2022.

19. Shafiq, M.; Tian, Z.; Bashir, A.K.; Du, X.; Guizani, M. CorrAUC: A Malicious Bot-IoT Traffic Detection Method in IoT Network
Using Machine-Learning Techniques. IEEE Internet Things J. 2020, 8, 3242–3254. [CrossRef]

20. Tian, Z.; Li, M.; Qiu, M.; Sun, Y.; Su, S. Block-DEF: A secure digital evidence framework using blockchain. Inf. Sci. 2019, 491,
151–165. [CrossRef]

21. Kovačević, Z.; Ravber, M.; Liu, S.-H.; Črepinšek, M. Automatic compiler/interpreter generation from programs for Domain-
Specific Languages: Code bloat problem and performance improvement. J. Comput. Lang. 2022, 70, 101105. [CrossRef]

https://github.com/AuroraHuan/SIFD-adversrial-detection
http://doi.org/10.1016/j.engappai.2022.104773
http://doi.org/10.1155/2019/6230953
http://doi.org/10.1016/j.infsof.2013.02.009
http://doi.org/10.1016/j.future.2020.02.017
http://doi.org/10.1109/JIOT.2020.2969326
http://doi.org/10.1109/TII.2019.2938778
http://doi.org/10.3390/app9102138
http://doi.org/10.1109/JIOT.2020.3002255
http://doi.org/10.1016/j.ins.2019.04.011
http://doi.org/10.1016/j.cola.2022.101105

Electronics 2023, 12, 1546 14 of 14

22. Xie, B.; Li, S.; Li, M.; Liu, C.H.; Huang, G.; Wang, G. SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic
Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 1–17. [CrossRef]

23. Yang, D.; Zhu, T.; Wang, S.; Wang, S.; Xiong, Z. LFRSNet: A robust light field semantic segmentation network combining
contextual and geometric features. Front. Environ. Sci. 2022, 10, 1443. [CrossRef]

24. Sheng, H.; Cong, R.; Yang, D.; Chen, R.; Wang, S.; Cui, Z. UrbanLF: A Comprehensive Light Field Dataset for Semantic
Segmentation of Urban Scenes. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7880–7893. [CrossRef]

25. Shi, K.; Lu, Y.; Chang, J.; Wei, Z. PathPair2Vec: An AST path pair-based code representation method for defect prediction.
J. Comput. Lang. 2020, 59, 100979. [CrossRef]

26. Khalilian, A.; Baraani-Dastjerdi, A.; Zamani, B. APRSuite: A suite of components and use cases based on categorical decomposition
of automatic program repair techniques and tools. J. Comput. Lang. 2019, 57, 100927. [CrossRef]

27. Fu, W.; Menzies, T. Revisiting unsupervised learning for defect prediction. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, ACM, New York, NY, USA, 4–8 September 2017; pp. 72–83.

28. Yang, Y.; Zhou, Y.; Liu, J.; Zhao, Y.; Lu, H.; Xu, L.; Leung, H. Effort-aware just-in-time defect prediction: Simple unsupervised
models could be better than supervised models. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Seattle, WA, USA, 13–18 November 2016; pp. 157–168.

29. Kovačević, Ž.; Mernik, M.; Ravber, M.; Črepinšek, M. 2020: From Grammar Inference to Semantic Inference—An Evolutionary
Approach. Mathematics 2020, 8, 816. [CrossRef]

30. Elbosaty, A.T.; Abdelmoez, W.; Elfakharany, E. Within-Project Defect Prediction Using Improved CNN Model via Extracting the
Source Code Features. In Proceedings of the 2022 International Arab Conference on Information Technology (ACIT), Abu Dhabi,
United Arab Emirates, 22–24 November 2022.

31. Available online: https://github.com/c2nes/javalang (accessed on 1 July 2014).
32. Hindle, A.; Barr, E.T.; Gabel, M.; Su, Z.; Devanbu, P. On the naturalness of software. Commun. ACM 2016, 59, 122–131. [CrossRef]
33. Mou, L.; Li, G.; Jin, Z.; Zhang, L.; Wang, T. TBCNN: A tree-based convolutional neural network for programming language

processing. arXiv 2014, arXiv:1409.5718.
34. He, Z.; Peters, F.; Menzies, T.; Yang, Y. Learning from open-source projects: An empirical study on defect prediction. In Proceedings

of the 2013 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Baltimore, MR, USA, 10–11
October 2013.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TPAMI.2023.3237740
http://doi.org/10.3389/fenvs.2022.996513
http://doi.org/10.1109/TCSVT.2022.3187664
http://doi.org/10.1016/j.cola.2020.100979
http://doi.org/10.1016/j.cola.2019.100927
http://doi.org/10.3390/math8050816
https://github.com/c2nes/javalang
http://doi.org/10.1145/2902362

	Introduction
	Related Work
	Component Design
	Code Semantic Extraction
	Parsing AST
	Parsing Token Sequence
	Extracting Code Syntax Information
	Extracting Code Text Information
	Combining Code Semantics

	Defect Feature Mining
	Performing Defect Prediction

	Experiment
	Research Question
	Experiment Dataset
	Performance Indicators
	Performance Indicators
	Analysis

	Conclusions
	References

