
Citation: N. Sangeeta; Nam, S.Y.

Blockchain and Interplanetary File

System (IPFS)-Based Data Storage

System for Vehicular Networks with

Keyword Search Capability.

Electronics 2023, 12, 1545. https://

doi.org/10.3390/electronics12071545

Academic Editor: Hamed Taherdoost

Received: 17 February 2023

Revised: 22 March 2023

Accepted: 22 March 2023

Published: 24 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Blockchain and Interplanetary File System (IPFS)-Based Data
Storage System for Vehicular Networks with Keyword
Search Capability
N. Sangeeta and Seung Yeob Nam *

Department of Information and Communication Engineering, Yeungnam University,
Gyeongsan 38541, Republic of Korea
* Correspondence: synam@ynu.ac.kr

Abstract: Closed-circuit television (CCTV) cameras and black boxes are indispensable for road safety
and accident management. Visible highway surveillance cameras can promote safe driving habits
while discouraging moving violations. According to CCTV laws, footage captured by roadside
cameras must be securely stored, and authorized persons can access it. Footages collected by CCTV
and Blackbox are usually saved to the camera’s microSD card, the cloud, or hard drives locally but
there are concerns about security and data integrity. These issues may be addressed by blockchain
technology. The cost of storing data on the blockchain, on the other hand, is prohibitively expensive.
We can have decentralized and cost-effective storage with the interplanetary file system (IPFS) project.
It is a file-sharing protocol that stores and distributes data in a distributed file system. We propose
a decentralized IPFS and blockchain-based application for distributed file storage. It is possible to
upload various types of files into our decentralized application (DApp), and hashes of the uploaded
files are permanently saved on the Ethereum blockchain with the help of smart contracts. Because
it cannot be removed, it is immutable. By clicking on the file description, we can also view the file.
DApp also includes a keyword search feature to assist us in quickly locating sensitive information.
We used Ethers.js’ smart contract event listener and contract.queryFilter to filter and read data from
the blockchain. The smart contract events are then written to a text file for our DApp’s keyword
search functionality. Our experiment demonstrates that our DApp is resilient to system failure while
preserving the transparency and integrity of data due to the immutability of blockchain.

Keywords: blockchain; Ethereum blockchain; decentralized application (DApp); interplanetary file
system (IPFS); smart contracts

1. Introduction and Background

CCTV camera images are a valuable source of traffic surveillance that supplements
other traffic control measures. CCTV is aimed at helping in the detection and prevention of
criminal activity. It can be helpful in protecting the citizens in the community. It is placed in
public areas to provide evidence to appropriate law enforcement agencies. CCTV cameras
can be found on busy roads, atop traffic lights, and at highway intersections. Operators
detect and monitor traffic incidents using images from CCTV cameras. It may be possible
to predict the duration of a traffic incident based on prior experience and traffic modeling
techniques. Cameras are used to observe and monitor traffic, as well as to record traffic
pattern data. Moving violation tickets are even issued using cameras.

The vehicle’s event data recorder is constantly recording information in a loop while
we are driving, at least until a collision occurs. Black boxes save data collected at the time
of impact, as well as 5 s before and after the event. The black boxes will record all human
contact with the vehicle. The data collected helps us understand the reasons for collisions
and prevent them from happening again.

Electronics 2023, 12, 1545. https://doi.org/10.3390/electronics12071545 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071545
https://doi.org/10.3390/electronics12071545
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8249-4742
https://doi.org/10.3390/electronics12071545
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071545?type=check_update&version=3


Electronics 2023, 12, 1545 2 of 23

CCTV footage is being used in crime investigations by police officers and insurance
companies [1] all over the world. Recorded footage is typically used by investigators to
locate or confirm the identity of a suspect. Real-time surveillance systems allow employees
or law enforcement officials to detect and monitor any threat in real time. Then, there’s the
archival footage record, which can be reviewed later if a crime or other issue is discovered.
In these cases, the recorded footage must be securely deposited and kept for future use,
making video storage a critical component of any video camera security system.

The vast majority of information collected by surveillance cameras and dashboard
cameras is securely kept on hard drives as well as memory cards. The amount of storage on
the MicroSD card of our security camera, on the other hand, is determined by the amount
of activity recorded by our camera. This type of storage necessitates a large amount of
storage space and exposes our data to risk if the device’s hard drive fails or is damaged. It
is critical to securely store CCTV and black box footage in order for it to be available and
unaltered at all times. In many cases, the introduction and popularity of IP camera cloud
storage have reduced the importance of local storage to a secondary option.

Cloud systems are an extremely good tool that offers us many advantages and func-
tionalities. Cloud storage systems, on the other hand, have flaws such as problems with
data safety [2,3], centralized data storage, and the requirement for trusted third parties.
Owners are reassured of the burden of maintaining local data storage, but they end up
losing direct control over storage reliability and protection. Every year, large database
hacks cost millions of dollars. Furthermore, because the data is kept on an external device,
the owners have no power over it; if the service provider disconnects or limits access, they
will not be able to access it.

Due to the centralized nature of cloud storage data, an intruder to servers is able to
view and alter it. Cloud data is untrustworthy and can be altered or removed at any time.
As a result, making sure data security [4] and safeguarding users’ privacy [5] are critical.
Users are usually needed to cover the cost of any storage plan they select, even if they only
use a portion of it.

Even the finest cloud service providers can face such a challenging problem while retaining
strong maintenance standards. Centralized storage service providers occasionally fail to deliver
the security service as agreed. For example, a hack on Dropbox [6] which is among the world’s
largest online storage companies, did result in the leak of 68 million usernames and passwords
on the dark web. Well-known cloud services have started experiencing blackouts and security
breaches. The mass email deletion event of Gmail [7], Amazon S3’s latest shutdown [8], and the
post-launch interruption of Apple MobileMe’s [9] are other examples.

Blockchain technology may be able to address these issues. A blockchain is made up
of a cryptographic algorithm, a timestamp, and transaction information that connects it to
the preceding block. As a result, every block links to the next, forming a “chain” of blocks
and producing safe and immutable records. In comparison, the blockchain is not designed
for the purpose of file storage. The cost of keeping data on the blockchain is exorbitantly
high. We can have decentralized as well as low-cost storage with the IPFS project [10].
Peer-to-peer networks provide greater security than centralized networks. As an outcome,
they are ideal for protecting sensitive information from malicious actors.

We propose an IPFS-based distributed and decentralized storage application that
offers more storage space compared to solely blockchain-based systems in this paper. Using
distributed storage, information is kept on different nodes or servers on the Internet. To
upload files, we use the Geth [11] software client to operate an Ethereum node and an IPFS
Daemon server to operate our own IPFS node. Users will link to the DApp through the
use of one‘s web browser as well as a blockchain wallet, Metamask [12], to connect to a
blockchain in our proposed scheme. Since it is powered by Ethereum smart contracts, the
decentralized application will interact with the blockchain, which will keep all the code
of the application in addition to the data. The smart contracts keep track of all sources of
information in IPFS files. A DApp can receive any kind of information. The hash value of
the uploaded file is permanently saved on the Ethereum blockchain via smart contracts and



Electronics 2023, 12, 1545 3 of 23

it cannot be changed or deleted. Whenever a file is uploaded, the DApp hears the event
“File Upload” and updates the DApp’s user interface. We retrieve all of the smart contract
events and reveal them on our DApp, which is called the “smart contract event log”. The
smart contract event log contains data such as the file name, file summary (including the
event and location of the file), file type, size of the file, time and date of upload, Ethereum
account information of the user, and the hash value of the file once it has been uploaded to
IPFS. Users can also view the file by clicking on its description. The user does not need to
remember and save the hash value independently, which could be dangerous if another
individual has access to it. Our DApp also includes a keyword search feature to assist you
in quickly locating sensitive information. Figure 1 shows an example scenario where our
proposed system can be applied. When an accident occurs, our proposed system might be
used to save the video taken by the dashboard camera on IPFS and the hash value of the
video on the blockchain to prevent the manipulation of the video using the immutability
property of blockchain.

Figure 1. Example scenario to illustrate the application of the proposed system in the presence of
accidents on the road.

The key contributions of our paper can be summarized as follows:

• Our proposed distributed storage application supports the storage of various file
types since uploaded files are stored on IPFS and their hash values are stored in smart
contracts on the Ethereum blockchain. Users need not remember the hash values since
they can be retrieved from the blockchain later.

• DApp provides a keyword search feature to help users quickly find the necessary files
based on Ethers.js’s smart contract event listener and contract.queryFilter.

• Our experiment shows that our DApp is resilient to system failure, and our system
provides better transparency than is possible with centrally managed applications.

The rest of our paper is structured as follows: Section 2 contains related work. Section 3
contains preliminary information. The proposed scheme is described in Section 4. Section 5
goes over implementation. The performance evaluation results are described in Section 6.
Finally, Section 7 brings the paper to a close.



Electronics 2023, 12, 1545 4 of 23

2. Related Work

Hao, J. et al. [13] studied a blockchain and IPFS-based storage scheme for agricultural
product tracking. During the manufacturing, processing, and logistics processes, sensors
collect real-time data on product quality as well as video and picture data, according to
this study. The server parses and encapsulates the data before writing it to IPFS, and the
hash address is then stored in the blockchain to complete the data storage. The collected
data is not directly written to an IPFS. The authors employ a private data server, and data
collected by sensors is first stored on the private data server before being directly stored
on the IPFS. If the server experiences problems, such as server failure, the collected data is
lost, and the server is unable to write data to IPFS. There is no keyword search function for
quickly finding agricultural product information.

Rajalakshmi et al. [14] proposed a framework for access control methods in research
records that manages to combine blockchain, IPFS, as well as other traditional encryption meth-
ods. The system stores the verification metadata information acquired from the IPFS on the
blockchain network using Ethereum smart contracts, resulting in tamper-proof record-keeping
for further auditing. There is no keyword search functionality for searching information re-
lated to research records in this proposed scheme, which only stores PDF files.

Vimal, S. et al. [15] proposed a method to improve the efficiency of the P2P file-sharing
system by incorporating trustworthiness and proximity awareness during file transfer
using IPFS and blockchain. Any of these hashed files can be retrieved by simply calling the
hash of the file. Miners who collaborate to ensure the successful transfer of resources are
compensated. This study discusses the file transfer service, as well as the security strength
and some of the IPFS-based incentives.

This system is built around IPFS and Blockchain. Yongle Chen et al. [16] proposed
a more efficient P2P file system scheme. The authors pointed out the high-throughput
problem for individual IPFS users by incorporating the responsibility of content service
providers. A novel zigzag-based storage model is utilized to improve the IPFS block storage
model by taking data reliability and availability, storage overhead, and other issues for
service providers into account.

Rong Wang et al. proposed a video surveillance system relying on permissioned
blockchains (BCs) and edge computing in their paper [17]. Convolutional neural networks
(CNN), edge computing, and permissioned BCs, as well as IPFS technology, were used in
this system. Edge computing was utilized to collect and process large amounts of wireless
sensor data, while the IPFS storage solution was utilized to enable huge video data storage.
CNN technology was applied to real-time monitoring, and Edge computing was utilized to
gather and analyze large amounts of wireless sensor data.

Sun, J. et al. [18] proposed a blockchain-based secure storage and access scheme for
electronic medical records in IPFS, which ensures necessary access to electronic medical data
while preserving retrieval efficiency. IPFS is a file system used in order to store encrypted
electronic medical data. After receiving the hash value and encrypted hash address, the
physician needs to be encrypted using the hash value and encoded hash address with a random
number, hash the health information and index with the SHA256 hash function, and broadcast
the hash value and encoded hash address to the blockchain. Furthermore, the system offers
targeted defense against relevant keyword attacks. Medical data is not directly stored on IPFS,
and electronic health data is encrypted before being stored on IPFS. It also takes time for the
IPFS value to be encrypted before even being kept on the blockchain.

Most of the previous works lack a keyword search functionality for quickly locat-
ing relevant information. They do not mention how to retrieve the metadata from the
blockchain. It is not possible to retrieve data from IPFS without the hash value of the file.
Table 1 compares our proposed system with existing approaches.



Electronics 2023, 12, 1545 5 of 23

Table 1. Comparison of existing approaches with the proposed scheme.

Constraints Hao, J. et al. [13] Rajalakshmi A. [14] Sun, J. et al. [18] Our Proposed Scheme

Delay
High delay Collected

data is not directly
written to an IPFS

Low delay High delay Encryption
of medical data

Low delay in
uploading files to IPFS

and file hash is
automatically stored on
BC with help of Smart

contract

Tampering on the
stored data

Possibilities of data
tampering No tampering No tampering

No tampering of data
as data is stored on
IPFS and hash on

Blockchain

Storage capacity Less Storage capacity
Stored on data server More storage capacity

More storage capacity
as the data stored on

IPFS

More storage capacity
as the data stored on

IPFS

Heterogeneous data Uploading only video
and images on IPFS Uploading only PDF’s Only electronic medical

record
Heterogeneous data

upload

Keyword Search
function

No Keyword search
function

No Keyword search
function

No Keyword search
function

Supports Keyword
search function

3. Preliminaries
3.1. IPFS

The interplanetary file system is a distributed file system protocol developed by Joan
Bennett in 2015 and managed by Protocol Labs. The IPFS network consists of computers
running the IPFS client software. Anyone can join the IPFS network, either as an IPFS node
running the IPFS client or as a network user storing and retrieving files. Any type of file can
be stored, including text, music, video, and images, which is especially useful for non-fungible
tokens (NFTs). In contrast to HTTP, data in IPFS is identified by content rather than location.
When we upload a file to IPFS, a hash of the content is generated. This hash identifies the
content uniquely and can be used to retrieve the file. If we upload a different file, the hash
will be completely different, but we can always recompute the file’s hash locally to ensure
it matches the original IPFS hash. We selected the IPFS protocol in our proposed scheme
because it is a well-known and working decentralized file storage protocol.

3.2. Ethereum

Ethereum [19] is, at its core, a decentralized global software platform that utilizes
blockchain technology. It is most well-known for its native cryptocurrency, ether, abbrevi-
ated as ETH. Anyone can use Ethereum to start creating any protected digital technology. It
has a token intended to be utilized by the blockchain network, but it may also be employed
to pay participants for blockchain work. It is a platform for various DApps that can be
deployed through smart contracts. An Ethereum Private Network is a blockchain that is
completely separate from the main Ethereum network. The Ethereum Private Network is
primarily used by organizations to limit blockchain read permissions.

3.3. Web3.js

Web3.js [20] is a set of libraries that allows developers to communicate with a remote
or local Ethereum node via HTTP, IPC, or WebSocket. You can use this library to create
websites or clients that communicate with the blockchain.

3.4. Ethers.js

Ethers.js [21] connects to Ethereum nodes using Alchemy, JSON-RPC, Etherscan,
Infura, Metamask, or Cloudflare. Developers can use ethers. js to take advantage of full
functionality for their various Ethereum needs.



Electronics 2023, 12, 1545 6 of 23

3.5. Smart Contract

Smart contracts are programs that are implemented and stored on a blockchain when
certain requirements are fulfilled. They are frequently used to automate agreement execu-
tion so that all groups have instant surety of the results even without the involvement of an
additional party. They also can automate a workflow by automatically performing the next
action if certain requirements are fulfilled.

3.6. Smart Contract Events

When a transaction is mined, smart contracts could also emit events and logs to the
blockchain, which the front end can then process. Events are essential on any blockchain
because they make connections between smart contracts, which are self-executing software
programs that have the terms of the buyer’s and seller’s agreement straight integrated into
lines of code for response with user interfaces. To use a smart contract, a user must first
manually sign a transaction and interact with the blockchain. This is where automation
can help users by simplifying things. Event-driven automation initiates processes without
requiring human intervention. An automation tool can start a predefined process or
workflow of smart contracts after detecting an event.

3.7. Decentralized Applications (DApp)

A decentralized application [22] is an application that can run autonomously, typically
using smart contracts and running on a decentralized computing, blockchain, or other
distributed ledger system. DApps, like traditional applications, provide some function or
utility to their users.

3.8. React.js

React.js [23], also known as simply React, is a free and open-source JavaScript library. It is
best to create user interfaces by combining code sections (components) into complete websites.
We can use React as much or as little as we want. React enables developers to use separate
software components across the client and server sides, which also speeds up development.

3.9. Dependencies
3.9.1. Node Package Manager (NPM)

The node package manager (NPM) is a command-line tool for installing, updating,
and removing Node.js packages from our application. It also serves as a repository for
open-source Node.js packages. A package manager is essentially a set of software tools
that can be used by a developer to automate and standardize package management.

3.9.2. Node.js

Node.js is a simple programming language that can be used for prototyping and agile
development, as well as to create extremely fast and scalable services.

3.9.3. MetaMask

MetaMask is a non-custodial Ethereum-based decentralized wallet that also lets users
save, buy, send, transform, and swap crypto tokens, as well as sign transactions. Using
Metamask in conjunction with Web3.js in a web interface simplifies communication with
the Ethereum network.

3.9.4. Truffle Framework

Truffle is a set of tools that allows us to create smart contracts, write tests against
them, and deploy them to blockchains. It also provides a development console and allows
us to create client-side applications within our project. Truffle is the most widely used
framework for creating smart contracts. It supports Solidity and Viper as smart contract
languages. Truffle has three main functions: it compiles, deploys, and tests smart contracts.



Electronics 2023, 12, 1545 7 of 23

4. Proposed Data Storing Scheme

Our proposed scheme divides data storage, retrieval, and searching into four steps.
The system uploads a file, file hash is stored on the blockchain, monitors smart contract
events, and searches for relevant information.

4.1. File Uploading

The main concept of the file uploading process is depicted in Figure 2. The file is
selected from the DApp (browser) (1), and when the DApp form’s submit button is clicked,
the uploaded file is stored on IPFS (2). The hash of the file uploaded is returned to the
DApp (3); this hash is the file’s location. The file’s hash is saved to a smart contract (4),
which is subsequently kept on the blockchain (5), and the hash and other information of
the uploaded file were also listed on the DApp (6), from which we can obtain all of the files
we have uploaded to IPFS.

Figure 2. File Upload.

To connect to an Ethereum wallet Metamask, we used a web browser as a front end
which will communicate with the blockchain and store the smart contract on it.

We will upload the file directly to an IPFS, and then IPFS will return to us a hash. We
will then store this hash on the smart contract, and it will store that hash on the blockchain,
allowing us to access all of the files we have created when we list them on the DApp.

A smart contract stores the hash value on the blockchain, and another smart contract
lists the uploaded files on the DApp. The smart contract handles file uploading, file storage,
and file listing.

Figures 3 and 4 show our smart contract. Our project’s smart contract is responsible for
four tasks. Define a data structure for file management, upload the files, store the file hash
in the blockchain, and display the uploaded files on the DApp. We use a struct to manage
the files inside Solidity. Solidity structs allow us to create more complex data types with
multiple properties. By creating a struct, we can define our own type. They are useful for
organizing related data. Structures can be declared outside of one contract and imported
into another.



Electronics 2023, 12, 1545 8 of 23

Figure 3. Solidity code for creation of a blockchain register and events to facilitate interoperability (1/2).

Figure 4. Solidity code for creation of a blockchain register and events to facilitate interoperability (2/2).

The following steps show the tasks of a smart contract:

(i) Define data structure for the management of files:

Figure 3 shows step one in modeling the file (6). We created a file object, and inside we
defined a unit id, which will be the unique identifier for the file inside our smart contract.
The string will be the hash of the file, and this will be its location on IPFS, and a description
of the file, which contains the location of the file and events related to the uploaded file.
The address-payable uploader is the person who uploads the file, and it is the Ethereum
address of that person’s wallet address as they are connected to the blockchain; it is like
their username on the blockchain.

(ii) Store and list the files:

Step two is to store the file on IPFS, and step three is to list the event logs on the DApp.
We used mapping inside of Solidity to store the files, as shown in Figure 3. Mapping is
another data structure. It can be utilized to store data as key-value pairs, with the key
being any of the built-in data types but just not reference types, as well as the value being
any type. We created mapping (5) as shown in Figure 3. A mapping inside of Solidity is



Electronics 2023, 12, 1545 9 of 23

just a key-value store. We can give it a key and a value. The data type of the key in our
smart contract is an unsigned integer, and the return value is file struct (6), as shown in
Figure 2. When we place a file with an id within this mapping, it will write and store it on
the blockchain. Mapping is also going to give us the ability to list the files because mapping
is public, and thus it gives us a function called “files” (5) that we can call, pass in the id,
and fetch out each individual file. We can get back a file with all the data, such as the id,
hash, file name, description, and uploader.

(iii) Upload File:

The solidity code has a function called fileUpload (8). “fileUpload” takes the following
arguments: fileHash, fileSize, fileType, fileName, fileDescription. Whenever we upload a new
file, we will just add a new file to the mapping. We created a new file (6) and put it inside the
file’s mapping (5). We are going to store the file based on the id inside the mapping, as shown
in (5). We stored the file onto the blockchain as shown in (11).

Inside the smart contract, Solidity has a global variable called “msg” or “message”
that has many different attributes, one of which is the person calling the function, “message
sender” is the Ethereum address of the person uploading the file. We created a video struct
and saved it inside the “files mapping”, which we simply say “files”, pass in the id, and it
will be equal to a new file (11).

fileCount (4) is a variable that stores the number of files that have been created.
Whenever we create the smart contract, the counter value will be zero, but we can change
this value inside the function (11) as fileCount anytime the function is called. We could
write fileCount ++ (10) and then pass in fileCount in (11). fileCount keeps track of all the
files; it is basically our ID management system, and we save it inside the file mapping,
which acts like our database.

(iv) Creating an Event:

The event allows us to know when the file was uploaded. We can create events
from the Solidity code. We define an event called “fileUpload” and we pass in the same
arguments as the struct (7); this is going to allow us to subscribe to the event whenever it
is triggered from our application. We can trigger the upload event (12). We use the emit
keyword, then FileUploaded which has the same name as the event (7) and we pass in
the arguments file count, fileHash, fileSize, fileType, filename, file description, and now,
msg.sender.

Next, we added some requirements to the function to make it robust. We can use Solidity’s
require function (9). The require function checks that a set of parameters is true before the rest
of the function executes. Table 2 shows the list of variables used in our smart contract.

Table 2. Smart Contract variables.

Variables Why It Is Used

fileCount Keeps track of how many files have been
added to the current smart contract.

mapping File key value store and lists the files
struct Manage the files

event FileUploaded Allows us to know when the file was uploaded
function fileUpload Uploads new file
emit FileUploaded Trigger an event

Recently, diverse types of formal methods are investigated to enhance the security
of smart contracts, since the compromise of smart contracts can lead to a catastrophic
monetary loss [24]. However, our smart contract codes have not been analyzed using those
formal methods yet, and we will verify our codes in our future work.

Our first project element is a private Ethereum blockchain that will act as the back end
for our DApp. Ethereum nodes maintain an archive of the blockchain’s code. The informa-
tion is dispersed throughout the network. The Geth is utilized to run an Ethereum node.



Electronics 2023, 12, 1545 10 of 23

By running a node on the Ethereum network, we could also perform transactions as well
as communicate with smart contracts. The uploaded file’s hash is saved in a smart contract,
and then immutably stored also on the Ethereum blockchain.

The next component is IPFS, which enables us to keep files in a distributed fashion.
Because files are large, storing megabytes and gigabytes of files on the blockchain may not
be feasible. This is where IPFS comes into play. It has nodes, just like Ethereum, and we
distribute files that cannot be tampered with across the network. IPFS uses hashes. When
you upload a file to IPFS, it will be stored somewhere and identified by its hash. We run
our own IPFS node, which supports an IPFS gateway for file retrieval and storage and runs
the IPFS Daemon server. We cannot store or retrieve data unless the Daemon server is up
and running, or unless we link to public gateways such as Infura [25].

When a user uploads CCTV footage to our DApp, they can specify the location as well
as event details such as whether it was an accident or a traffic violation. This information is
fed into the DApp as a file description. This information is critical when uploading a video
to the DApp because users can quickly search for location and event information using the
DApp’s keyword search function.

We first must import and link our Ethereum blockchain account to Metamask before
we can use the DApp. Our web browser now supports blockchain networks, and we can
upload files to IPFS using our custom-designed DApp user interface (UI). First, we must
select the file, enter its description (such as file event and location), and then click the
submit button. When we click the submit button, the file is sent to IPFS and we receive
the IPFS result, which contains the hash value and path of the file. Metamask directs us to
accept the transaction, save the hash in a smart contract, and store the smart contract on
the blockchain via a confirmation pop-up. To store the hash on the blockchain, we should
pay some gas in the manner of ethers. When we confirm the Metamask transaction, the
hash of the uploaded file is preserved on the Ethereum blockchain.

The DApp monitors the “file upload” event and updates the DApp’s User interface
automatically. The event log of the smart contract is generated by retrieving and displaying
all events from the smart contract within our DApp. The smart contract event log includes
the file no, file description, type of file, file size, timestamp, Ethereum information of the
uploaded person, and the hash value of the file after it has been stored in IPFS. By clicking
on the file description, individuals may view the uploaded files in their web browser. The
hash value does not need to be remembered or stored separately by the user.

4.2. Keyword Searching

Users of the blockchain network can view transaction details but cannot identify the
individuals who made the transactions. On our DApp, we can see the transactions and use
the data for keyword searching.

(i) Read information from the blockchain:

When events occur in the smart contract, the smart contract emits events in order to
communicate with DApps and other smart contracts. When we invoke a smart contract
function, it has the ability to generate an event. It is critical for us to be able to listen to
these events in real time when developing DApps.

To listen for smart contract events, we used Ethers.js smart contract event listener. To
communicate with a smart contract using Ethers.js, we must first create a new contract
object with Ethers as shown in step (1) of Figure 5.



Electronics 2023, 12, 1545 11 of 23

Figure 5. Ethers.js filter to read events from blockchain.

As shown in steps (2), (3), and (4) of Figure 5, we need the blockchain address for
the smart contract, the ABI of the smart contract, and the signer or provider (4). The ABI
is a JSON object that describes how the smart contract works; it describes the interface,
which essentially means what functions the smart contract has, what function arguments it
accepts, and what it responds to when we try to read data from it. Ether.js allows us to store
ABIs as an array and only pull in the parts we want when we are setting up a smart contract
object. We require file upload information for our project, so we included ABI, which is
related to the file upload event. Then, we need a provider or a signer; in our project, we
have a provider. A provider is an abstraction of an Ethereum network connection that
provides a concise, consistent interface to standard Ethereum node functionality. We take
our smart contract ABI and create a new contract address ABI, and then we provide all of
the required information as shown in step (5) of Figure 5.

We used contract.queryFilter to filter the information, as shown in step (6) of Figure 5.
Using this command, we will examine every single FileUploaded event that has ever
occurred on our blockchain. We include this filter to reduce the search space inside the
Ethereum blockchain. Ethers.js allows us to examine the FileUploaded events and specify
which blocks we want to examine as shown in step (7) of Figure 5.

(ii) Keyword search text file creation:

We can create a text file for keyword searches once the events are retrieved from
the blockchain. The smart contract events are written into a text file. We store only
necessary information in the text file, e.g., information such as file name, event type,
location, Ethereum account number, and smart contract.

Figure 6 shows how to retrieve data from the blockchain and conduct keyword
searches. To listen to smart contract events, we used a command prompt to send re-
quests to the blockchain (1). Blockchain responded with a filtered smart contract event
log containing all of the information about the uploaded file, including the smart contract
address, file name, file hash and description, Ethereum address of the uploaded file, and so
on (2). When we received a smart contract event log, we saved some of the event logs in a
text file (3). We wrote code in react.js to filter the results and search for keywords on the
DApp. When a user searches for a keyword on the DApp, the request is sent to a text file
containing smart contract events, which is then filtered, and the result is returned to the
DApp (4). Users can look up a word or an alphabet.



Electronics 2023, 12, 1545 12 of 23

Figure 6. Keyword Search Function of the proposed DApp.

5. Implementation

On the Windows 10 operating system, we used a private Ethereum blockchain to imple-
ment a proposed scheme. The Ethereum core network is not connected to a private Ethereum
network. Organizations primarily use it to limit blockchain read permissions. Installing
geth/parity allows the current node to join the Ethereum network and download the blockchain
to local storage. We used Go Ethereum to create our Ethereum blockchain (Geth).

5.1. Steps to Create Private Ethereum Network

The following steps show how we built our private Ethereum network:

5.1.1. Download “Geth”

Go Ethereum (Geth) can be directly downloaded and installed from geth.ethereum.
org, accessed on 16 February 2023. Because Geth is a command line interface, we execute
all commands from the command line. After installing Geth on our system, we typed geth
and pressed enter in a command prompt and obtained the output as shown in Figure 7.

Figure 7. Geth command.

We used the geth command to connect to a blockchain, and the geth command will
run in fast sync mode. Fast sync is Geth’s current default sync mode. Fast Sync nodes
download the headers of each block and retrieve all the nodes beneath them until they

geth.ethereum.org
geth.ethereum.org


Electronics 2023, 12, 1545 13 of 23

reach the leaves. Instead of reprocessing all transactions that have ever taken place, fast
sync downloads the blocks but only validates the affiliated proof-of-works (which could
take weeks). When we stop and restart the geth, it will operate in full sync mode. Full sync
needs to download all blocks and incrementally generate the blockchain state by running
each block since genesis. The data size of the Ethereum blockchain is currently around
800–1000 gigabytes, and we do not need to download the entire Ethereum blockchain on
our system.

5.1.2. Make a Folder for Our Private Ethereum Network

For the private Ethereum network, we created a separate folder called “Private Ethereum”.
This folder separates the Ethereum private network files from the public files.

5.1.3. Construct a Genesis Block

In blockchain, all transactions are recorded in the form of blocks in sequential order.
There are an infinite number of blocks, but there is always one distinct block that gives rise
to the entire chain, known as the genesis.

The genesis block, also known as Block 0 or Block 1, is the first block ever recorded
on its respective blockchain network. There are no transactions. The genesis block is used
to initialize the blockchain, as shown in Figure 8. A genesis block is required to create a
private blockchain. The genesis block can be created with any text editor and saved with
the JSON extension in the Private Ethereum folder. Figure 9 shows the genesis block file.

Figure 8. Genesis block in a blockchain.

Figure 9. Genesis block file.

5.1.4. Run the Genesis File

To extract the genesis file, we open the Private Ethereum folder in Visual Studio Code
and run the command geth init ./genesis.json -datadir eth. Eth is the name of a folder.
Geth is connected to the genesis file after running the above command.



Electronics 2023, 12, 1545 14 of 23

5.1.5. Set Up the Private Network

We created a private network in which multiple nodes can add new blocks. We must
use the command geth –datadir ./eth/ –nodiscover to accomplish this. When–nodiscover
is used to start a geth node, it prevents the node from being discovered by the network’s
bootnode. Every time the private network chain is needed, commands in the console must
be executed to connect to the genesis file and the private network. A private Ethereum
network and a personal blockchain are now available. Figure 10 shows the running status
of a private Ethereum network.

Figure 10. Private Ethereum network.

5.1.6. Make Externally Owned Account (EOA)

EOAs are controlled by users who have access to the account’s private keys. These
accounts, which can both send transactions and trigger contract accounts, are typically used
in conjunction with a wallet. To manage the blockchain network, EOA is required. To make
it, we launched Geth in two windows. One terminal to run Geth as shown in Figure 10 and
another terminal to create EOA. We entered the command geth attach \\.\pipe\geth.ipc in
the second terminal (console window). This will connect the second terminal to the private
Ethereum network established in Figure 10. We used the command personal.newAccount()
to create a new account. After executing this command, we entered our password to obtain
our account number and saved it for future use as shown in Figure 11.

Figure 11. Externally owned account, Mining Start and Stop.

5.1.7. Ethereum Mining on Our Private Chain

If we mine on the Ethereum main chain, we will need expensive equipment with
powerful graphics processors. ASICs are typically used for this but high performance is not



Electronics 2023, 12, 1545 15 of 23

required in our private network, and we can begin mining with the command miner.start ()
as shown in Figure 11.

After a few seconds, some ether was found in the default account if the balance
status is checked as shown in Figure 11. To check the balance, we used the command
eth.getBalance(eth.accounts[0]). Figure 12 shows the mining process. We used the com-
mand miner.stop() to stop mining as shown in Figure 11.

Figure 12. Mining Process.

5.1.8. Connecting the Private Ethereum Network to Metamask

We closed the terminal in which our private network was running and opened a new
terminal and typed the command geth –datadir ./eth/ –nodiscover –http –http.addr “local-
host” –http.port “8545” –http.corsdomain=“*” –http.api web3,eth,debug,personal,net –
ws.api web3,eth,debug,personal,net –networkid 7777 –allow-insecure-unlock, as shown
in the Figure 13 and now our private Ethereum is connected to Metamask.

Explanation of the used commands as follows:

– http.addr value:
Listening interface for HTTP-RPC servers (default: “localhost”).

– http.port value:
Listening port for HTTP-RPC server (default: 8545).

– http.corsdomain value:
A list of domains separated by commas that will accept cross-origin queries (browser
enforced). Because the HTTP server can be accessed from any local application, the
server includes additional safeguards to prevent API abuse from web pages. The
server must be configured to accept Cross-Origin requests in order to allow API
access from a web page. The —http.corsdomain flag is used to accomplish this. The
—http.corsdomain command accepts wildcards, allowing access to the RPC from any
location: —corsdomain ’*’.

– http.api value:
APIs accessible via the HTTP-RPC protocol.

– ws.api value: APIs accessible via the WS-RPC interface.
– nodiscover:

The peer discovery mechanism is disabled.
– networkid value:

Sets network id explicitly.
– allow-insecure-unlock:

When account-related RPCs are exposed via http, this allows for insecure account unlocking.



Electronics 2023, 12, 1545 16 of 23

Figure 13. Importing Ethereum account in Metamask.

We launched Metamask and added the Network “Local Host 8545” with the Chain
ID “2022”. It is the chain ID we specified in our private Ethereum network’s genesis
block. By importing a JSON file from our private Ethereum folder, we imported a private
Ethereum account. The JSON file can be found in the keystore’s Private Network folder.
Figure 13 depicts how to add a Private Ethereum account to Metamask.

5.2. Running Our Own IPFS Node

To store information on IPFS, we must run an IPFS Daemon server on our own IPFS
node. To use IPFS, we must first download and install the Go language from the golang
website, then go to the IPFS command line install page and download “install go-ipfs”. We
navigate to the download path, extract the files to C drive, and then run ipfs.exe to start the
Daemon server, as shown in Figure 14.

Figure 14. IPFS Execution and Daemon server.

5.3. Deploying Smart Contract

A smart contract stores the hash of the uploaded file. To make smart contracts in
the Solidity programming language, the Truffle framework is used. The Truffle Suite is a
collection of tools specifically designed for Ethereum blockchain development. The suite
includes three pieces of software. Truffle is capable of helping compile and deploy smart
contracts in addition to injecting them into web apps and building DApp front ends. Truffle
is now a popular Ethereum Blockchain IDE.



Electronics 2023, 12, 1545 17 of 23

5.4. File Uploading and Retrieving

After writing the smart contract, deploying, and publishing it to our Ethereum
blockchain, we then utilize Metamask to connect our DApp to the Ethereum blockchain.
A Metamask is required to communicate with the blockchain. The client-side application,
which is also going to communicate with IPFS, was built with React.

Figures 15 and 16 show how we initially deployed the smart contract to Ethereum,
then launched the DApp with the command npm run start, imported an Ethereum account
into Metamask, and linked Metamask to our DApp. Figures 17 and 18 show how to submit
a file to IPFS, deposit the file’s hash in a smart contract, record the smart contract on the
Ethereum blockchain, and successfully retrieve the file using our DApp.

Figure 15. Smart contract deploy.

Figure 16. Connecting Metamask to the DApp.

We chose the file and entered the location as well as the location of the file in the
user interface of DApp after logging into Metamask, then clicked the submit button also
confirmed the transaction of Metamask, as shown in Figure 17. To deploy the smart contract,
upload files, and store hash values on the blockchain, we start and maintain mining.



Electronics 2023, 12, 1545 18 of 23

Figure 17. Choosing a file and confirming Metamask transaction.

As the transaction is confirmed, the DApp listens for the event “File Upload” and
updates the DApp’s user interface automatically. Whenever a transaction has been mined,
smart contracts generate events and logs to the blockchain, which can then be processed by
the front end. Our DApp retrieves and displays all smart contract events. It is referred to as
a “smart contract event log”. The event log of the smart contract contains the file number,
file description (which includes an event and location of the file), type of the file, file size,
date and time, the uploader’s Ethereum account details, and the hash of the file. By having
to click on the file’s file details, users are able to view the uploaded files through their web
browser. Figure 18 depicts a smart contract event log and various file types retrieved.

Figure 18. Event log and file retrieve.

5.5. Keyword Searching

Our DApp supports the keyword search method. In order to conduct keyword
searches, we obtain event information from Blockchain. Smart contracts could even emit
logs as well as events to the blockchain whenever an Ethereum transaction is mined, which
the front end can then process. An event broadcasts information about a file upload, and
we could have access to all of the events so that we could listen to them in real time, or we
could just use them to obtain all of the most recent file uploads on the blockchain.

We can read smart contract events outside of the DApp’s user interface by using
Web3.js or Ethers.js. In our implementation, Ethers.js is used to read smart contract events.
We only have one event in our smart contract, so we use a filter to retrieve information
from that event, which is File Upload. A smart contract event log is shown in Figure 19.



Electronics 2023, 12, 1545 19 of 23

Figure 19. Smart contract events.

The smart contract events are then written to a text file, allowing our DApp to conduct
keyword searches. We store only necessary information in the text file, e.g., information
such as file name, event type, location, Ethereum account number, and smart contract.
When looking for sensitive information on the DApp, keyword searching is essential.
Entering an alphabet or a keyword into keyword searching will filter the results to show
only the keyword we entered. In the case of an alphabet search, the DApp will display all
events that include the letter we typed into the search box. This method makes navigating
an event easier and more efficient. Keyword searching is shown in Figure 20.

Figure 20. Keyword Searching.

6. Performance Evaluation

The majority of applications we use today are centralized, which means they are
managed by a single authority. Google [26] and Facebook [27], for example, retain complete
ownership of their respective products, running their apps and storing user data on private
servers and databases. While this gives Google and Facebook control over their applications
and user experiences, it can also be discouraging to users. Users of centralized apps have
little control over their data or experience within the app. They must have faith in the
app’s developer to listen to their feedback, provide product services, and treat them and
their data with dignity. However, with other centralized applications facing backlash over
privacy and the monetization of user data, many users are wary of relying on them.

Centralized applications run programs and store critical user information on central-
ized servers. The entire application may fail if a single, central server is compromised.
DApps enable users to complete transactions, verify claims, and collaborate in real time
without relying on a centralized intermediary.

Our DApp operates on a peer-to-peer network, similar to a distributed ledger, with each
network member contributing to the program. Each of the roles that a central server would
normally provide, from computing power to storage, is distributed across the network. We
do not need to keep and secure a central server, and users can directly participate in the app’s
operation. Our system is robust to system failure. There is no single point of failure in our DApp
and is distributed across a network of public nodes, with copies of critical information distributed



Electronics 2023, 12, 1545 20 of 23

among them. The application is unaffected if one or more IPFS nodes are compromised. Even if
there is a virus attack, a hardware failure, or the system is turned off, the user can still retrieve
the uploaded files and perform keyword searches.

When a user uploads data to IPFS, it is chopped into smaller chunks, hashed, and
assigned a unique content identifier (CID), which serves as a fingerprint. This makes it
faster and easier to store small amounts of data on the network. A cryptographic hash
(CID) is generated for each piece of data, making each upload to the network unique and
resistant to security breaches or tampering.

The experiment we conducted demonstrates that our DApp is resistant to system
failure, robust, and transparent.

The experiments we carried out are listed below.

Scenario 1:

In Scenario 1, the system unexpectedly shuts down, and when it is restarted, the
DApp’s event log vanishes, as illustrated in Figure 21. We can retrieve the event log outside
of the DApp using smart contract event listeners. In Figure 19, we used Ethers.js to retrieve
the event log. The data associated with the uploaded file is included in the event log. As a
result, system failure has no effect on the uploaded data.

Figure 21. No event log listed on the DApp.

Scenario 2:

The information in the keyword search text file was accidentally deleted in Scenario 2
as shown in Figure 22, and we were unable to perform the keyword search on the DApp.
As demonstrated in Scenario 1, we recreated the keyword search text file using information
retrieved from the smart contract event log and performed a keyword search as illustrated
in Figure 23. Table 3 summarizes the scenarios of performance evaluation.

Table 3. Performance Evaluation Scenario Summarization.

Scenario # Description

1 The system unexpectedly shuts down. When the system restarted, the DApp’s
event log vanished. We used ether.js to retrieve the event log.

2
The information in the keyword search text file was accidentally deleted. We

recreated the keyword search text file by using information retrieved from the smart
contract event log and performed a keyword search.



Electronics 2023, 12, 1545 21 of 23

Figure 22. Text file with no data.

Figure 23. Keyword Search.

If a malicious actor manages to compromise the blockchain network, any changes
are visible on a public network, allowing both users and developers to respond quickly.
Our DApp operates on a public ledger, which means that anyone with internet access can
participate in the application and network. As a result, anyone can view the transaction
record and any changes made to those records. Therefore, this system can provide better
transparency than centralized applications can provide. On a publicly distributed ledger,
no central entity can revoke transparency, limit viewership, or censor participation.

7. Conclusions

In this paper, we present the design and implementation of a decentralized application
that uses Ethereum blockchain and IPFS to store CCTV and black box footage securely and
efficiently. The DApp allows users to easily manage their storage. For scalability, only hashes
of the files are stored on the blockchain via smart contracts. Our proposed scheme works in
a decentralized manner. When a file is uploaded, the DApp listens for the event File Upload
and automatically updates the DApp’s user interface. All smart contract events are fetched and
displayed on our DApp. The extracted information is called a smart contract event log, and it
includes information about the file, timestamp, the uploader’s account information, and the
hash of the IPFS file returned. By clicking on the file’s description, users can gain access to it.
The selected file is then displayed in the web browser. DApp also includes a keyword search



Electronics 2023, 12, 1545 22 of 23

feature to help us find any information quickly. To filter and read data from the blockchain,
we used ether.js’ smart contract event listener and contract.queryFilter. We used the smart
contract address as well as the smart contract’s ABI. The smart contract events are then written
into a text file. The text file only contained necessary information, such as the file name, event
type, location, Ethereum account number, and smart contract. Our experiment shows that our
DApp is not affected by system failure. We can secure an application by managing the data in a
decentralized manner. Because our DApp runs on a public ledger, anyone with internet access
can participate in the application and network. As a result, anyone can view and modify the
transaction record. As a result, unlike centrally managed applications, this system provides
greater transparency. We anticipate that our DApp can be used in a variety of fields, such as for
keeping records of student research securely at universities, the medical information of patients
at hospitals, and customer information at banks due to its ability to store various file types.

In our current system, the access control function is not included in the smart contract
yet, and thus, the hash values of one’s files can be exposed to anyone who knows his or her
smart contract address. We will investigate the access control scheme for the smart contract
to resolve this issue in our future work. In addition, we will also verify the source code of
our smart contract using well-known formal methods.

Recently, Ethereum has been upgraded by changing its consensus mechanism from
proof-of-work (PoW) to proof of stake (PoW), and this new version is also known as
Ethereum 2.0. However, this new consensus mechanism has not been verified intensively
compared to the PoW mechanism, and thus, we used an old version of Ethereum and
its corresponding Ethereum Virtual Machine (EVM) environment in this paper. We will
implement and investigate our proposed system on the new version of Ethereum in our
future work.

Author Contributions: Conceptualization, N.S. and S.Y.N.; data curation, N.S.; formal analysis, N.S.;
methodology, N.S.; project administration, N.S. and S.Y.N.; resources, N.S.; software, N.S.; supervision,
S.Y.N.; validation, N.S.; visualization, N.S.; writing—original draft, N.S.; writing—editing and review, N.S.
and S.Y.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the National Research Foundation of Korea (NRF),
with a grant funded by the Korean government (MSIT) (2020R1A2C1010366). This research was
supported in part by Basic Science Research Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (2021R1A6A1A03039493).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mateen, A.; Khalid, A.; Nam, S.Y. Management of Traffic Accident Videos using IPFS and Blockchain Technology. KICS Summer

Conf. 2022, 1, 1366–1368.
2. Singh, A.; Chatterjee, K. Cloud security issues and challenges: A survey. J. Netw. Comput. Appl. 2017, 79, 88–115. [CrossRef]
3. Shin, Y.; Koo, D.; Hur, J. A survey of secure data deduplication schemes for cloud storage systems. ACM Comput. Surv. 2017, 49, 1–38.

[CrossRef]
4. Yinghui, Z.; Dong, Z.; Deng, R.H. Security and privacy in smart health: Efficient policy-hiding attribute-based access control.

IEEE Internet Things J. 2018, 5, 2130–2145.
5. Zhang, Y.; Chen, X.; Li, J.; Wong, D.S.; Li, H.; You, I. Ensuring attribute privacy protection and fast decryption for outsourced data

security in mobile cloud computing. Inf. Sci. 2017, 379, 42–61. [CrossRef]
6. Dropbox. Available online: https://www.theguardian.com/technology/2016/aug/31/dropbox-hack-passwords-68m-data-

breach (accessed on 17 February 2023).
7. Arrington, M. Gmail Disaster: Reports of Mass Email Deletions. December 2006. Available online: https://techcrunch.com/2006

/12/28/gmail-disaster-reportsof-mass-email-deletions/ (accessed on 17 February 2023).
8. Amazon. Amazon s3 Availability Event: 20 July 2008. Available online: https://simonwillison.net/2008/Jul/27/aws/ (accessed

on 17 February 2023).
9. Krigsman, M. Apple’s MobileMe Experiences Post-Launch Pain. July 2008. Available online: https://www.zdnet.com/article/

apples-mobileme-experiences-post-launch-pain/ (accessed on 17 February 2023).

http://doi.org/10.1016/j.jnca.2016.11.027
http://dx.doi.org/10.1145/3017428
http://dx.doi.org/10.1016/j.ins.2016.04.015
https://www.theguardian.com/technology/2016/aug/31/dropbox-hack-passwords-68m-data-breach
https://www.theguardian.com/technology/2016/aug/31/dropbox-hack-passwords-68m-data-breach
https://techcrunch.com/2006/12/28/gmail-disaster-reportsof-mass-email-deletions/
https://techcrunch.com/2006/12/28/gmail-disaster-reportsof-mass-email-deletions/
https://simonwillison.net/2008/Jul/27/aws/
https://www.zdnet.com/article/apples-mobileme-experiences-post-launch-pain/
https://www.zdnet.com/article/apples-mobileme-experiences-post-launch-pain/


Electronics 2023, 12, 1545 23 of 23

10. Benet, J. Ipfs-Content Addressed, Versioned, p2p File System. 2014. Available online: https://arxiv.org/abs/1407.3561 (accessed
on 17 February 2023).

11. Geth. Available online: https://geth.ethereum.org/ (accessed on 17 February 2023).
12. Metamask. Available online: https://metamask.io/ (accessed on 17 February 2023).
13. Hao, J.; Sun, Y.; Luo, H. A Safe and Efficient Storage Scheme Based on BlockChain and IPFS for Agricultural Products Tracking.

J. Comput. 2018, 29, 158–167.
14. Rajalakshmi, A.; Lakshmy, K.V.; Sindhu, M.; Amritha, P. A blockchain and IPFS based framework for secure Research record

keeping. Int. J. Pure Appl. Math. 2018, 119, 1437–1442.
15. Vimal, S.; Srivatsa, S.K. A new cluster P2P file sharing system based on IPFS and blockchain technology. J. Ambient. Intell Hum.

Comput. 2019, 1–8. [CrossRef]
16. Chen, Y.; Li, H.; Li, K.; Zhang, J. An improved P2P file system scheme based on IPFS and Blockchain. In Proceedings of the 2017

IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 2652–2657. [CrossRef]
17. Wang, R.; Tsai, W.-T.; He, J.; Liu, C.; Li, Q.; Deng, E. A Video Surveillance System Based on Permissioned Blockchains and Edge

Computing. In Proceedings of the 2019 IEEE International Conference on Big Data and Smart Computing (BigComp), Kyoto,
Japan, 27 February–2 March 2019; pp. 1–6. [CrossRef]

18. Sun, J.; Yao, X.; Wang, S.; Wu, Y. Blockchain-Based Secure Storage and Access Scheme For Electronic Medical Records in IPFS.
IEEE Access 2020, 8, 59389–59401. [CrossRef]

19. Ethereum. Available online: https://ethereum.org/ (accessed on 17 February 2023).
20. Web3. Available online: https://web3js.readthedocs.io/en/v1.8.0/ (accessed on 17 February 2023).
21. Ethers. Available online: https://docs.ethers.io/v5/ (accessed on 17 February 2023).
22. Cai, W.; Wang, Z.; Ernst, J.B.; Hong, Z.; Feng, C.; Leung, V.C.M. Decentralized Applications: The Blockchain-Empowered Software

System. IEEE Access 2018, 6, 53019–53033. [CrossRef]
23. React. Available online: https://reactjs.org/ (accessed on 17 February 2023).
24. Krichen, M.; Lahami, M.; Al-Haija, Q.A. Formal Methods for the Verification of Smart Contracts: A Review. In Proceedings of the

15th International Conference on Security of Information and Networks (SIN), Sousse, Tunisia, 11–13 November 2022; pp. 1–8.
25. Infura. Available online: https://infura.io/ (accessed on 17 February 2023).
26. Google. Available online: https://www.google.com/ (accessed on 17 February 2023).
27. Facebook. Available online: https://www.facebook.com/ (accessed on 17 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://arxiv.org/abs/1407.3561
https://geth.ethereum.org/
https://metamask.io/
http://dx.doi.org/10.1007/s12652-019-01453-5
http://dx.doi.org/10.1109/BigData.2017.8258226
http://dx.doi.org/10.1109/BIGCOMP.2019.8679354
http://dx.doi.org/10.1109/ACCESS.2020.2982964
https://ethereum.org/
https://web3js.readthedocs.io/en/v1.8.0/
https://docs.ethers.io/v5/
http://dx.doi.org/10.1109/ACCESS.2018.2870644
https://reactjs.org/
https://infura.io/
https://www.google.com/
https://www.facebook.com/

	Introduction and Background
	Related Work
	Preliminaries
	IPFS
	Ethereum
	Web3.js
	Ethers.js
	Smart Contract
	Smart Contract Events
	Decentralized Applications (DApp)
	React.js
	Dependencies
	Node Package Manager (NPM)
	Node.js
	MetaMask
	Truffle Framework


	Proposed Data Storing Scheme
	File Uploading
	Keyword Searching

	Implementation
	Steps to Create Private Ethereum Network
	Download “Geth”
	Make a Folder for Our Private Ethereum Network
	Construct a Genesis Block
	Run the Genesis File
	Set Up the Private Network
	Make Externally Owned Account (EOA)
	Ethereum Mining on Our Private Chain
	Connecting the Private Ethereum Network to Metamask

	Running Our Own IPFS Node
	Deploying Smart Contract
	File Uploading and Retrieving
	Keyword Searching

	Performance Evaluation
	Conclusions
	References

