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Abstract: Wearable medical devices (WMDs) for healthcare applications have become ubiquitous,
allowing remote, at-home, and real-time chronic monitoring that have significantly decongested
clinics. These WMDs permitted the monitoring of several physiological parameters, such as heart
and respiration rates, SPO,, temperature, and energy expenditure during activities of daily living
(ADLs) or fitness activities. While the measurement of these parameters has become common, full
noninvasive, unobtrusive, and real-time blood pressure (BP) monitoring remains elusive owing to
BP’s complex dynamics. To bring this into fruition, several works have been conducted combining
different biosignals to indirectly extract BP by using PTT. Unlike previous works, we considered PTT
variability by averaging it over discrete durations to account for BP variability for a more accurate
estimation. PTTs were obtained using electrocardiograph (ECG) and reflective photoplethysmograph
(rPPG) signals extracted by a wearable device attached to a single site on the upper arm. Our results
show a significant correlation between average PTT and the BP measured using auscultation in a trial
study. The developed system has potential for chronic, noninvasive, and cuff-less blood pressure
monitors (BPMs) for localized and single-site implementations. Meanwhile, real-time data from the
wearable device may be accessed via a remote desktop or a mobile phone application.

Keywords: wearable devices for healthcare; physiological signs monitor; electrocardiography;
photoplethysmography; pulse transit time; blood pressure monitoring

1. Introduction
1.1. Wearable Medical Devices

For the past decade, there has been a big boost in the wearable market for healthcare
technologies. The global wearable medical device (WMD) market size was valued at USD
21.3 billion in 2021 and is expected to expand at a compound annual growth rate (CAGR)
of 28.1% from 2022 to 2030 [1]. Meanwhile, the market size of cardiac WMDs exceeded
USD 1.5 billion in 2020 and is anticipated to grow at a CAGR of over 24.7% between 2021
and 2027 [2]. Commercially available WMDs include fitness trackers, smart health watches,
smart wearable systems incorporating sweat-based biosensors, etc. Such devices permit the
real-time monitoring of several physiological biomarkers, including heart rate, temperature,
SpO;, respiration rate, step count, amount of energy expended, sweat analytes, etc.

Although it seems that such WMDs have become commonplace in personalized
healthcare and fitness applications, issues such as accuracy and reliability remain avenues
for research and development initiatives. A systematic review conducted by Fuller and
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colleagues (2020) [3], showed that commercial wearable devices are accurate for measuring
steps and heart rate in laboratory-based settings but vary depending on the manufacturer
and device type. Meanwhile, in the strictest context of health and clinical decision making,
it remains unusual to use the information from such WMDs. Furthermore, there is a need
for the continued evaluation of the efficacy of WMDs to accurately and reliably measure
purported outcomes [3].

To understand the accuracy and reliability issues that come with WMDs, one should
be considering the various noise and interferences that are coupled at the interface of
the tissue and the sensing electronics. These interface nonidealities constitute sensor
offset and drift, lead migration, signal attenuation due to weak coupling, electromagnetic
interference, power supply hum, and motion artifacts. Meanwhile, the level of signal
attenuation is affected by the location of the sensor or the respective transduction media
(e.g., light and vibration). Several sites tend to result in various signal-noise ratios for
various biomedical signals.

1.2. Physiological Biomarkers

For the assessment of the health condition of an individual, diagnostic information
is taken from these so-called physiological biomarkers, which come in a variety of forms,
namely biopotential, biomechanical, and biochemical. The main bioelectrical signals are
generated by the heart, the brain, and the muscles, producing electrocardiographs (ECGs),
electroencephalographs (EEGs), and electromyographs (EMGs), respectively. These signals
are characterized by low amplitudes typically in the microvolts (1V) to millivolts (mV)
range and low bandwidths, from Hz to a few kHz ranges, as shown in Figure 1 [4]. Biome-
chanical signals originate from the mechanical function of the biological system. Examples
of such signals include cardiac dynamics affecting blood pressure and cardiac output,
which may be recorded via sonography and ballistocardiography (seismocardiography),
and gait, which may be assessed by using data obtained from inertial measurement units
(IMUs) or movement cameras. Finally, biochemical signals constitute variations in chemical
concentrations of physiological analytes undergoing internal or external reactions, such as
levels of glucose, sodium, potassium, etc.
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Figure 1. Biopotential signals signal level and bandwidth.

Electrocardiography signals have been thoroughly used in the assessment of heart
conditions looking into the spatial characteristics of the PORST waves from where heart
rate (HR) and HR variability (HRV) are extracted. ECG signal acquisition has evolved from
the conventional clinical device incorporating a desk-type or portable (e.g., Holter and
handhelds) instrument with over 6 to 12 leads that are strategically positioned over the chest
and wrists into the WMDs that come in the form of watches, arm bands, head gears, ear
phones, etc., which are now part of everyday living. These WMDs can provide information
on HR and HRYV oftentimes used for fitness-tracking purposes. Research studies have even
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sprung up exhibiting so-called smart textiles that permit chronic ECG monitoring, where
the electrodes and sensing electronics are embedded in the clothing. Developments of these
textiles are summarized in the review paper of Nigusse et al. (2021) [5]. Meanwhile, ECG
electrodes on polyethylene glycol terephthalate (PET) surfaces may also be customized
using a facile technique of developing metal patterns [6] or using graphene on flexible
substrates [7].

While HR is measured clinically from the R-R interval of an ECG signal, concurrent
technologies involving blood-flow variations (plethysmography) using light transmission
or reflection, termed “photoplethysmography”, or simply PPG, have offered a less in-
trusive approach. PPG systems use incident light having red, IR, or green wavelengths
whose photons interact with the targeted tissue, causing either transmission, absorption,
or reflection.

Commercially available WMDs use reflectance-mode PPG. Here, the intensity of
reflected light is modulated by the blood-flow volume. The PPG signal comprises pulsatile
(AC) and superimposed (DC) components. The AC component is provided by the cardiac
synchronous variations in blood volume that arise from heartbeats. The DC component is
shaped by respiration, sympathetic nervous system activity, and thermoregulation [8]. The
AC component consists of systolic and diastolic peaks over a DC level. Various sites may
be identified for obtaining good SNR for PPG measurements, as determined by the work of
Longmore et al. (2019) [9]. Some of these potential sites for discernable rPPG signals are
the wrist and shoulders. PPGs suffer from optical coupling and attenuation. Furthermore,
ambient light cancelation is imperative for such systems to prevent them from saturating
the photosensor.

Another biomedical signal for assessing heart function is based on the measurement
of body motion generated by the ejection of the blood at each cardiac cycle, called ballisto-
cardiography (BCG). It is one of the many methods relying on the detection of cardiac and
cardiovascular-related mechanical motions, along with phonocardiography (recording of
cardiovascular sound), apexcardiography (beat recording in the apex region of the heart
through movements in the nearby wall of the chest), seismocardiography (recordings of
the body vibrations induced by heart beats), and kinetocardiography (recordings of the
absolute displacement of several points of the precordium) [10]. A common method to
extract BCG signals is to use 3D accelerometers positioned on sites where pulsations may
be felt. However, using such accelerometer sensors would require rigorous offset reduction,
noise filtering, and motion-artifact reduction.

1.3. Methods of Extracting Pulse Transit Time (PTT)

The three biomedical signals (ECG, PPG, and BCG) may be used in tandem to extract
the so-called pulse transit time (PTT), which directly correlates to the mean arterial pressure
(MAP) [11]. PTT is the time delay for the arterial pressure wave (APW) to travel between
two arterial sites and can be estimated simply from the relative timing between proximal
and distal arterial waveforms [11]. The speed at which this APW travels was previously
shown to have a strong relationship with BP. The work by Mukkamala and colleagues
(2015) [11] have detailed the theory and practical implementation of PTT as a BP monitor.
An acute rise in BP causes vascular tone to increase, and hence, the arterial wall becomes
stiffer, causing the PTT to shorten. Conversely, when BP falls, vascular tone decreases and
PTT increases [12]. A mathematical representation of the relation between BP and PTT is
shown in Equation (1) [13]:

]n(erLz)
_ 2 hEg
BP = — ZInPTT + — 0 1)
04 X



Electronics 2023, 12, 1538

40f12

where « is a constant, Ej is the zero-pressure modulus of the vessel wall, L is the vessel
length, p is the blood density, r is the inner radius of the vessel, and h is the vessel wall
thickness. A simplified mathematical model for this relation is shown in Equation (2) [14]:

MAP = A — B x In(PTT) + Pydro @)

where MAP is the mean arterial pressure and A is a constant dependent on the elastic
properties of the vasculature and the distance the pulse wave has traveled. B is also a
constant dependent on elastic properties of the vasculature, and Phyqyo is the hydrostatic
pressure caused by gravity. These constants are experimentally obtained and are propor-
tional to the elastic indices of the vasculature, which normally are 14.7 £ 5.2 (mL/mm
Hg) x 10) for large arteries and 4.9 &+ 2.1 ((mL/mm Hg) x 100) for small arteries [15].
Meanwhile HR information may also be used to improve on the estimation of BP, as shown
in Equation (3) [13]:

BPn=a -InPTT+b-HR+c-BP,_1+d 3)

where BP;,_; is the previous BP estimate, and the four coefficients (a, b, ¢, and d) can be
calculated by applying the least squares method.

Extracting BP through the PTT offers several advantages, such as unobtrusive moni-
toring because the inflatable cuff is unnecessary, noninvasiveness because no catheter is
involved, and ubiquitous and continuous real-time BP monitoring. The challenge, however,
is where to get enough signal with relatively high SNR and is least affected by motion
artifacts. Furthermore, the PTT extraction mechanism should be attached to the area where
signals are taken, to reduce the effect of interface nonidealities that causes such signals to
drift, to be attenuated, and to be corrupted.

PTT may be extracted from a combination of ECG and PPG, measured as the time
difference between the ECG’s R-wave and the peak of the first running derivative of the
PPG (see Figure 2a). Other methods utilize a pair of PPG signals located at two regions
of the body, where the PTT is the time difference between the peaks of the corresponding
signal derivatives [16], or the time interval between two pulse peaks of the PPG within
the same cardiac cycle [17] (see Figure 2b). One work suggested the use of pulse intensity
ratio (PIR) to account for the low-frequency (LF) variations in BP due to vasomotor tone,
which is not accurately detected when using PTT systems [18]. Another method for PTT
extraction is to use a combination of BCG and PPG, where the BCG sensor permits proximal
arterial pulse waveform detection while the PPG is used to capture the distal pulse. PTT is
the time difference between the proximal and distal pulse arrival times [19] (see Figure 2c).
PTT may also be derived from using combination of ECG and BCG, where PTT is the time
interval between the ECG’s R-wave and the BCG's J-wave (see Figure 2c) [20]. Finally, the
PTT may also be derived from the instance of the aortic opening through the BCG signal
and the tangent of diastolic min from the PPG signal (see Figure 2d) [21].

1.4. Work Contribution

This work was able to demonstrate a viable wearable health monitor combining ECG
and rPPG for the extraction of mean arterial pressure localized on a single arm. Blood
pressure is extracted by using the pulse transit time (PTT) taken as the time difference
between the appearance of the ECG R waves and the peak of the first derivative of the PPG
signal. This work furthermore observed a correlation between the simultaneously measured
blood pressure using standard cuff-based digital monitors and the various average PTTs
over various constant duration time windows. By taking the average PTT (aPTT) over
certain time windows, such measurements will have a higher correlation to BP because
it takes into account the apparent variabilities of PTT, BP, and HR, which have nonlinear
relationships. This work, however, was not able to correlate BP variability, because of
limited access to clinical equipment. This work did not utilize commercially available
WMDs that render real-time measurements of BP for its ground truth, as these are not the
gold standards and are based mainly on mathematical estimations and approximations.
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Figure 2. Methods for extracting PTT using combinations of biomedical signals: (a) using a combina-
tion of ECG and dPPG, (b) a combination of two PPGs, (c) a combination of ECG and BCG, and (d) a
combination of BCG and PPG.

2. System Overview
2.1. Biomedical Signal Analog Front-End Design Considerations

Biomedical signals such as ECG and PPG have low amplitudes and frequencies.
Typical ECG signals have an amplitude in the range of 0.5-4 mV with a bandwidth of
0.01-250 Hz; PPG signals have a pulse-wave frequency in the range of 0.5-4.0 Hz [22].
However, these frequency ranges are coincidental with the bandwidth of noise sources,
namely flicker noise generated by circuit components (feorner ~ 1 kHz), other interfering
biopotential signals (e.g., sEMG), and motion artifacts (freq ~ 0.1 Hz). Hence, for such
signals to be extracted, significant filtering and postprocessing must be performed. Mean-
while, PPG front ends must be able to attenuate ambient lighting as well as be very sensitive
to weak changes in blood-flow volumes while rejecting other interfering signals. For PPG
applications, normally red and IR are sufficient. However, for more-robust implementa-
tions, the green wavelength is used because it is the least affected by motion artifacts, when
compared to red and IR.

2.2. Physiological Signs Monitoring System

For extracting the mean arterial pressure (MAP), a combination of electrocardioagram
(ECG) and photoplethysmogram (PPG) signals has been used. The readout circuits are
localized on a single site attached to the upper arm. For extracting the ECG, a three-
electrode readout circuit was used on the basis of the AD8232 module. This is a low-
power analog front end (AFE) with a typical current consumption of 170 uA at 2.5 to
3.0 V supply rail and high common-mode rejection (CMRR = 80 dB) suitable for in situ
biopotential readout applications (e.g., wearable devices). The MAXREFDES117 dual-
wavelength (red and IR) optical readout was used for extracting PPG (PPG) via reflection.
It consists of the MAX30102 pulse oximeter and heart rate sensor that operates on 1.8 V
supply rail with I?C-compatible interface. Both readout circuits are driven by the Arduino
Nano IOT 33 microcontroller unit (MCU) serving as a data logger and wireless interface.
The MCU’s main processor is a low-power Arm Cortex-M0 32-bit SAMD21 from Arm
(Cambridge, UK). The Wi-Fi and Bluetooth connectivity is performed using the NINA-W10
module which is a low-power chipset operating in the 2.4 GHz range from u-blox (Thalwil,
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Switzerland). On top of these, secure communication is ensured through the ATECC608B
crypto chip from Microchip Technology Inc. (Arizona, USA). The MCU module also
incorporates the LSM6DS3 3D inertial measurement unit (IMU) from STMicroelectronics
(Geneva, Switzerland), which may be used for movement compensation or the extraction
of BCG signals or for timing purposes. The fabricated system is shown in Figure 3 with the
corresponding functional block diagram in Figure 4.

PPG Readout |
Maxrefdes117 |

- (ololai)

8

Q | \

,

SRRl ECG Readout
(AD8232)

Figure 3. Fabricated device: (a) circuit overview, (b) electrode placement, (c) device placement onto
the upper arm for data acquisition.
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Figure 4. Wearable system block diagram showing the wireless interface via Wi-Fi to a mobile device
and a desktop with a web-based database.

The fabricated device has a Wi-Fi interface connecting to both a remote desktop
computer and a mobile phone. It can log in real time both the ECG data and the PPG data
for use in postprocessing. A database has also been developed that can be used to log
computed BP for various time periods.

2.3. PTT Extraction Methodology

The method for obtaining the PTT is summarized in Figure 5. It consists of the pre-
scaling and denoising block for normalizing the extracted data and for the coarse removal of
artifacts, a PPG fine-filtering block built on a 100th order FIR filter with cutoff frequencies
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centered on the physiological PPG bandwidth (0.5 to 4 Hz), a block for extracting the
running derivative of the PPG signal (dPPG), and blocks implementing the Pan-Tompkins
algorithm (PTA) for the extraction of the respective time stamps of the ECG’s R-wave and
the dPPG peak, which are used to estimate the PTT. Data normalization is conducted by
dividing the extracted ECG and dPPG signals by their corresponding maximum values for
the entire duration. These signals may then be related or compared on the basis of their
absolute values (from 0 to 1), thereby reducing any magnitude bias. The denoising block
implements a prefiltering step to reduce artifacts. The PTT is taken as the time difference
between the R-wave and the dPPG peak, as shown in Equation (4):

(Tn(R7Wave) - Tn(dPPka))

PTT, = Fs

(4)

where TR —wave) and Tndppcpk) are the respective time stamps of the detected R-wave and
the peak dPPG, and F; is the preset sampling frequency of the device (Fs = 200).

The Pan-Tompkins algorithm (PTA) is a peak detection algorithm. It recognizes
specific complexes (comprising the significant peaks) of a signal on the basis of an analysis
of the slope, amplitude, and width. PTA consists of a derivative filter followed by squaring
function, moving window integration, and adaptive thresholds. The filtered biomedical
signals are differentiated to obtain the signal components with high rates of change, which
indicate the peaks. Then, the signals are squared to enhance these peaks. Moving window
integration (MWI) is used to acquire information from the features of the waveform while
removing other peaks that result from sensor sensitivity or ambient noise. The MWI width
is crucial. We have chosen a width close to the typical duration of the QRS complex of the
ECG signal and time duration between the systolic and diastolic peaks of the PPG signal. In
lieu of these, the MWI width of 150 ms was used with the sampling rate of 200 samples/s.
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Figure 5. Pulse transit time (PTT) extraction methodology incorporating Pan-Tompkins algorithm
for R-wave and dPPG peak detections.

3. Results and Discussion

Simultaneous ECG and PPG signals were experimentally obtained for 1 minute us-
ing two sets of configurations or test cases: three-electrode ECG collected on the chest
area with the PPG collected on the wrist (test case 1 “TC-1") and where both ECG and
PPG are collected on a single upper arm (test case 2 “TC-2"). For the single upper arm
configuration, the ECG electrodes are positioned circumferentially with the PPG collected
near the underarm (see Figure 2b). To obtain the conversion factor and linearity of the
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extracted PTT with BP, the BP is obtained midway of the collection duration using standard
cuff-based devices (Omron Smart Elite+ HEM-7600T Upper Arm Blood Pressure Monitor
with Bluetooth Connectivity Digital BP).

The average PTT (aPTT) is obtained over a given duration and is correlated to SBP,
MAP, and DBP. The MAP is calculated by using Equation (5) [23]:

MAp — (SBP+ 32*DBP)

©)

Only one subject was employed in this study. The subject had no reported physio-
logical condition, such as hypertension, that would affect the measurements. The subject
was within the age group of 20 to 30 years with a BMI of 30.9. The subject conducted the
experiment in a stationary condition to avoid any potential signal artifact coming from
micro- or macromotions. Both the aPTT and the natural log of aPTT (Ln(aPTT)) were
compared with BP, as shown in Figures 6 and 7 for both test cases.

The extracted aPTTs of both test cases have significant correlations to the measured
SBP, DBP, and MAP, as shown by their respective linear regression results. The absolute
value of the Pearson correlation coefficient (r) is within 0.5 to 0.7, indicating a moderate
correlation [24]. For both experimental setups, the aPTT correlated best with the MAP with
correlation factors of r = 0.663 and r = —0.675 for TC-1 and TC-2, respectively. Similarly,
the natural log of aPTT Ln(aPTT) correlated best with the MAP with correlation factors
of r = 0.658 and r = —0.786, respectively. A higher r value was observed when correlating
Ln(aPTT) with the BP. Usage of Ln(aPTT) is consistent with Equations (1) and (2), showing
the linear relation between Ln(PTT) and BP.
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Figure 6. Plot of aPTT and Ln(aPTT) vs. BP where the ECG is extracted on the chest and the PPG on
the wrist (test case 1 “TC-1") (n = 8 trials).

The correlation for TC-1 is positive but is negative for TC-2. This may be caused by
the difference in displacement traveled by a PPG pulse wave as it traverses through either
the arteries on the upper arm or those on the wrist. Negative r-values between PTT and BP
have also been reported in the literature through the use of several sets of physiological
modalities (e.g., ear and toe PTTs and dPPTs) [25]. Likewise, positive r-values have been
reported in the literature when using a wrist PPG [26]. Another potential confounding
factor to this is the inherent variabilities of BP [27], which tend to influence the PTT [28,29],
as well as the effect of HR [11]. These PTT dependencies presuppose the need for gathering
the average PTT over prescribed time windows to obtain better correlations with BP. This
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was confirmed following the differences in correlations across various windows, as shown
in Figures 8 and 9 for TC-1 and TC-2, respectively. Meanwhile the mean coefficient of
variation (CoV) of the aPTTs per window further reveals PTT variability. The mean CoVs
are 80% and 116% for TC-1 and TC-2, respectively. These CoVs mean that the aPTTs are
significantly dispersed around the mean.

Following a one-factor analysis of variance (ANOVA), the p-values of these correlations
per time window and BP across the entire data set were 0.029 (TC-1) and 0.847 (TC-2).
These imply that for TC-1, there is a statistically significant difference in the r-values of
the aPTT when correlated distinctively to SBP, DBP, and MAP, whereas for TC-2, there
is no significant difference. The latter implies a possible 1:1 correspondence between the
measured aPTT and either SBP, DBP, or MAP over a given time window.

4.00 — 40
DBP MAP SBP

£ & ‘77 [*] 2|
= 3.50 . 5 35 _
% Heg Bhg g -
g 3.00 'E'_ Ll r=—0.63 ; 30 E
- Lo L
¢z "-‘Er"._ (aPTT) O“_ r=—0.675 (aPTT) L s
§F P o : £
EEZ.W '«‘: o -.. = ::. 20 .g
° % |(tn(aPTT] B ;
S 150 ; (Ln(aPTT)) e /v 15 g
S o o |r=—o.7as r=—0.674] g @ 3
= ; 3 8
g 1.00 1 (Ln(aPTT)) (Ln(aPTT)) 10 4
2 £
2 ° o o g

0.50 5 <

0.00 0

75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155
Blood Pressure (mm Hg)
D DBP_aPTT ® MAP_aPTT @ SBP_aPTT o DBP_Ln(aPTT) o MAP_Ln(aPTT) O SBP_Ln(aPTT)

Figure 7. Plot of aPTT and Ln(aPTT) vs. BP where the ECG and PPG are both extracted on the upper
arm (test case 2 “TC-2") (n = 9 trials).
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Figure 8. Correlations (r) of aPTT to BP at various time windows for TC-1.
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Figure 9. Correlations (r) of aPTT to BP at various time windows for TC-2.

4. Conclusions and Recommendations

This work demonstrated a viable unobtrusive and noninvasive method for estimating
blood pressure using a combination of ECG and PPG extracted from the upper arm. This
work was able to show the need for averaging the PTT over equal duration time windows
to account for the inherent variability of BP, as shown by the significant differences in
the resulting Pearson correlation factors between average PTT and average BP. This gives
insight into when the average PTT must be taken alongside the averaging duration to
provide better BP estimation. Most works, however, took the average PTT over the entire
duration, which resulted in a low correlation owing to the apparent variabilities of PTT, BP,
and HR and their nonlinear relationships. This work also showed the potential of using the
Pan-Tompkins algorithm in determining the peaks of the dPPG for use alongside with the
ECG’s R-wave in the calculation of PTT. The results of this work conformed to those in the
literature concerning the linear dependence of BP to PTT or Ln(PTT) extracted either from
the single site (upper arm) or from proximal-distal sites.

To further improve the correlation between BP and PTT, it is suggested to include the
effect of HR on both BP and PTT. Micro- and macromotion artifact cancelation algorithms
may also be incorporated to achieve better correlations and higher SNRs.
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