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Abstract: The recent progress in computational, communications, and artificial intelligence (AI)
technologies, and the widespread availability of smartphones together with the growing trends in
multimedia data and edge computation devices have led to new models and paradigms for wearable
devices. This paper presents a comprehensive survey and classification of smart wearables and
research prototypes using machine learning and AI technologies. The paper aims to survey these
new paradigms for machine learning and AI for wearables from various technological perspectives
which have emerged, including: (1) smart wearables empowered by machine learning and AI;
(2) data collection architectures and information processing models for AI smart wearables; and
(3) applications for AI smart wearables. The review covers a wide range of enabling technologies
for AI and machine learning for wearables and research prototypes. The main findings of the
review are that there are significant technical challenges for AI smart wearables in networking
and communication aspects such as issues for routing and communication overheads, information
processing and computational aspects such as issues for computational complexity and storage, and
algorithmic and application-dependent aspects such as training and inference. The paper concludes
with some future directions in the smart wearable market and potential research.

Keywords: artificial intelligence (AI); smart wearables; wearable devices; deep learning

1. Introduction

Recent years have seen rapid progress in computational, communication, and artificial
intelligence (AI) technologies and trends. Another trend is the widespread availabilities of
smartphones, multimedia computing, and edge computation devices. Other trends are the
availability of new data collection architectures and information processing technologies
such as cloud computing. These converging trends have led to new models and paradigms
for smart wearables and technologies. This section will briefly discuss the progress of
AI in wearable devices beginning from the need for wearables, how AI can be used to
benefit wearables, and the main challenges. The further sections in the paper will give
more detailed discussions on the various aspects.

There is a growing market and perception for the benefits on constant monitoring
technologies for clinical, health, and well-being. The trends on utilizing wearables for
health monitoring and activity recognition are increasing rapidly. The advances in sensing
technologies and integrated electronic circuits have enabled the development of small and
compact sophisticated devices which can integrate different sensors such as temperature
sensing, accelerometers, gyroscopes, and sensors for heart rate and blood oxygen levels.
The availability of these wearable sensors and sensing devices have enabled new applica-
tions to be developed for sensing various human activities in consumer and workplace
environments. Some examples include using wearables for sleep monitoring and circadian
rhythms (Bianchi, 2018 [1]), fatigue detection (Moshawrab et al., 2022 [2]), fall detection
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for elderly people (Pierleoni et al., 2015 [3]), and human emotion and stress recognition
(Zamkah et al., 2020 [4]). The usage of smart wearables can also be extended to the moni-
toring of animal and wildlife behaviours and activities. The authors in (Nagl et al., 2003 [5])
developed an early approach for using sensing and wearable technologies for the mon-
itoring and health management of cattle and livestock. A review for using wearable
technologies with a focus on animal monitoring can be found in (Neethirajan 2017, [6]).

Machine learning and artificial intelligence technologies play a crucial role in smart
wearables because its architecture is embedded in the wearables. Artificial intelligence
and smart wearables are mostly used in medical healthcare sector, sports, rehabilitation
centres, entertainment, and surveillance in smart homes. These wearables help in mon-
itoring patients’ heart failure, diabetes, and cardiovascular activity. Additionally, it is
useful in detecting and classifying the emotional states, human posture, and sleep stage.
There are many AI and machine learning technologies which have been developed over
the years. These AI and machine learning technologies can be classified into classical
machine learning techniques (Michalski et al., 2013, [7]) and recent deep learning tech-
niques (Goodfellow 2016, [8]). Some examples for classical machine learning techniques
include multilayer perceptron (MLP), support vector machines (SVM), decision trees, linear
discriminant analysis (Seng et al., 2017 [9]), random forest algorithms (Biau et al., 2016 [10]),
Bayesian approaches, and hidden Markov models. Some examples for deep learning
techniques include convolutional neural networks (CNNs), recurrent neural networks
(RNNs), long short-term memory (LSTM) networks, deep reinforcement learning, and
stacked autoencoder architectures. Our paper will focus on discussions for both classical
machine learning approaches and recent deep learning approaches for smart wearable
technologies and applications.

Although machine (and deep) learning and AI-based technologies have enjoyed some
considerable success for smart wearables and technologies, particularly for applications in
human activity recognition and health monitoring, some challenges remain to be satisfacto-
rily resolved in order to enable widespread adoption and application in the marketplace.
For example, the authors in (Ramanujam et al., 2021 [11]) identified several issues or chal-
lenges which need to be addressed for the deployment of smart wearables for activity
recognition. The first challenge is the need for a significant amount of training data to train
the classifiers for activity recognition. The large amount of training data is particularly
required for training deep learning classifiers. Classical machine learning classifiers can
be adequately trained with a lower amount of data. The second challenge is to select the
required features for recognition. In classical machine learning approaches, the process
of feature selection is often performed manually using the expertise of the designer. In
deep learning approaches, the process of feature selection can be performed in an end-
to-end manner and incorporated as part of the training process. The third challenge is
to distinguish between activities which may have similar inputs (e.g., distinguishing be-
tween a fall activity event and an event of searching for an item on the floor). A further
challenge for real-time deployments is the need for computationally efficient algorithms
and hardware implementations to realize the tasks to be performed by the smart wearables.
These hardware architectures for smart wearables would need to take into account the
challenging issues and hardware constraints such as the electronics chip and board area,
power consumption, and costs for production.

Although these challenges were targeted towards smart wearables for activity recog-
nition, the issues the authors have identified have general applications towards the de-
ployment of AI and machine learning technologies for smart wearables in general. Our
paper will further survey and expound on these and other issues for smart wearables. The
paper has been organized using the following structure: Section 2 gives an overview on
wearables and smart device technologies to introduce the reader to the related concepts and
technologies. Sections 3–5 discusses various technological perspectives for smart wearables.
Section 3 gives discussions on smart wearables empowered by machine learning and AI.
Deep learning architectures for smart wearables are also discussed in this section. Section 4
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gives discussions on data collection architectures and information processing models for AI
smart wearables. Section 5 provides discussions on various applications which have been
proposed for AI smart wearables. Some future directions in the smart wearable market and
potential research are discussed in Section 6. Section 7 provides a summary of the paper
and some concluding remarks. Table 1 shows a summary of the classification descriptors
covered in the main technology sections which also serves as a summary and roadmap to
aid readers to navigate the contents of the paper. This survey paper aims to bring discus-
sions on smart wearable technologies with recent AI innovations. Although there are some
surveys on wearables in the literature, these works were not focused on the integration of
wearables with AI technologies. The literature review and papers were retrieved using
selected keywords such as “wearables and AI”, “wearables and machine learning”, etc.,
from standard publishers and databases such as IEEE Xplore, Elsevier, MDPI, etc.

Table 1. Classification descriptors for machine learning and AI technologies for smart wearables.

Classification Descriptor References
Smart Wearable Technologies

Smart wearable wristbands and bracelets for AI smart wearables [12–15]
Smart wearable waist devices and belts for AI smart wearables [16,17]
Smart wearable bowel recorder devices for AI smart wearables [18,19]
Smart wearable neural interfaces for AI smart wearables [20]

Smart Wearables Empowered by Machine Learning and AI
Machine learning for AI smart wearable technologies [21–23]
Deep learning for AI smart wearable technologies [24–28]
Convolutional neural networks (CNNs) for AI smart wearables [29–32]
Recurrent neural network (RNN) for AI smart wearables [33–36]
Long short-term networks (LSTMs) for AI smart wearables [37,38]
Hybrid deep learning approaches for AI smart wearables [39–42]

Data Collection Architectures and Information Processing for AI Smart Wearables
Standalone architectures for AI smart wearables [43–45]
Smartphone and smartwatch architectures for AI smart wearables [46–50]
IoT and cloud architectures for AI smart wearables [51–54]

Applications for AI Smart Wearables
Healthcare and medical applications for AI smart wearables [55–59]
Virtual/augmented reality applications for AI smart wearables [60]
Sports and entertainment applications for AI smart wearables [61–65]
Environment and smart city applications for AI smart wearables [66,67]

Challenges and Future Research for AI Smart Wearables
Technical challenges for AI smart wearables [68,69]
Social challenges for AI smart wearables [70]
Future research directions for AI smart wearables [71]

2. Smart Wearable Technologies

This section provides some background information on wearables and smart device
technologies to introduce the reader to the related concepts and technologies. Table 2
shows a summary of some representative research works for wearable and smart de-
vice technologies. We have provided some representative examples for three categories
which will be frequently encountered by the reader and further discussed in the paper:
(1) research works for smart wearable wristbands and bracelet technologies; (2) research
works for smart wearable waist and belt device technologies; (3) research works for smart
wearable bowel recorder technologies; and (4) research works for smart wearable neural
interface technologies.
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Table 2. Some representative works on wearable and smart device technologies.

Category/Domain Area Year Main Contributions Reference

Research works for smart
wearable wristbands and
bracelet technologies

2018

Wrist wearable device for elderly fall detection—three
sensor types (accelerometer, gyroscope and
magnetometer), three signal types (acceleration,
velocity and displacement), and two direction
components (vertical and non-vertical).

Quadros et al., 2018 [12]

2017

Wrist-worn wearable device for classification of atrial
fibrillation (AF)—deep neural network classification
from pulsatile photoplethysmography (PPG) signals,
wavelet, and convolution neural network.

Shashikumar et al., 2017 [13]

2020

Wearable smart device with the convolution neural
network for real-time quality inspections in the smart
manufacturing industry; classifies a worker’s actions
based on acoustic and accelerometer data.

Sarivan et al., 2020 [14]

2019

Smart wristband with iGenda to recognize the
emotional states of human beings, especially elderly
people; neural networks and the PAD method to
interpret bio-signals into emotion.

Costa et al., 2019, [15]

Research works for smart
wearable waist device and
belt technologies

2020

Wearable belt device for fall detection using machine
learning and signal processing; IMU sensor unit
with an inbuilt combination of an accelerometer
and gyroscope.

Desai et al., 2020 [16]

2020

Waist wearable device—combined an accelerometer
with a waist-mounted gyroscope; the machine
learning algorithms utilized were ensemble learning,
random forest, and gradient boosting.

Zurbuchen et al., 2020 [17]

Research works for
smart wearable bowel
recorder technologies

2020

The edge bowel sound (BS) wearable system aimed at
selecting idle BS events while effectively eliminating
audio segments that contain only background
information noise such as voice and white
Gaussian noise.

Zhao et al., 2020 [18]

2022 Lightweight BS recognizer for use with a
convolutional neural network (CNN) portable system. Zhao et al., 2022 [19]

Research works for
smart wearable neural
interface technologies

2020
HTSMNN (heuristic tubu optimized sequence
modular neural network) smart wearable neural
interfaces to identify Parkinson’s disease.

AlZubi et al., 2020 [20]

2.1. Research Works for Smart Wearable Wristbands and Bracelet Technologies

The wrist is a comfortable location to house a wearable smart AI device. Several
authors have proposed the use of smart wearable wristbands and bracelets for wearable
technologies. The authors in (Quadros et al., 2018 [12]) proposed a wrist wearable device
for detecting falls in elders. The device is made up of different sensors, signals, and
direction components. Their proposed wrist wearable device consisted of three sensor
types (accelerometer, gyroscope, and magnetometer), three signal types (acceleration,
velocity and displacement), and two direction components (vertical and non-vertical).
These data captured from the different sensors were then combined and analysed using
machine learning approaches to identify the best approach for fall detection. To validate
their approach, the authors acquired data for fall events and non-fall events from 22 people.
The authors showed that their proposed wearable device could provide an accuracy of
approximately 91% to detect fall events.

The authors in (Shashikumar et al., 2017 [13]) proposed a wrist-worn wearable
device for the classification of atrial fibrillation (AF). Shashikumar et al., (2017) intro-
duced a method, applying deep neural network for the classification of atrial fibrillation
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(AF). The classification of AF was carried out from wrist-worn pulsatile photoplethys-
mography (PPG) signals. The distinctive traits from the PPG were extracted through
the wavelet investigation, and the convolution neural network was utilized to forecast
the 2D feature vector. The authors conducted a study on adult patients whose ages
ranged from 18 to 89 years old. A watch-based wearable device was utilized to record
the ambulatory pulsatile data.

The authors in (Sarivan et al., 2020 [14]) proposed an approach that utilized wearable
smart devices with convolution neural network for real-time quality inspection in a smart
manufacturing industry. This approach classifies a worker’s actions based on the acoustic
and accelerometer data collected from the wrist device (Huawei watch 2). The data from
the wrist device are sent to a computer, where the computer uses artificial intelligence
techniques to process and classify the data and send them back to the wrist device over
the local wireless network. The wrist device displays the results of their action, which
is either successful or unsuccessful, and the feedback is given to the workers. The result
from the wearable device is in different modes—namely, audio, visual, and haptic. The
WearOS application, termed as QCApp, runs on the wrist device and gives a GUI for
commencing and ending the inspection operation. An experiment was carried out using an
artificial intelligence-based device during the manufacturing of Mercedes-Benz AG. Their
experimental results indicated that acoustic and accelerometer data are very important in
training a classifier for a proper assessment during the manufacturing operation.

The authors in (Costa et al., 2019, [15]) proposed an approach that combines a smart
wristband with iGenda to recognize the emotional states of humans, especially elderly
people. An overview of the architecture structure of the smart wristband with iGenda
is shown in Figure 1. The wristband detects the emotional states of humans and sends
the information to the iGenda, and the iGenda displays the information to the caregivers.
This display of information allows for the scheduling of new tasks with respect to the
emotional states of humans. This approach utilizes neural networks and the Pleasure,
Arousal, Dominance (PAD) method to interpret bio-signals into emotion.
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Figure 1. Overview of the smart wristband with iGenda (Costa et al., 2019 [15]).

2.2. Research Works for Smart Wearable Waist and Belt Device Technologies

The authors in (Desai et al., 2020 [16]) proposed a wearable belt device that can detect
falls using machine learning and the signal processing algorithm. The wearable device
sends information to the family through a mobile phone whenever a fall is detected. Their
wearable belt device (termed as Hip-grip) contains an IMU sensor unit with an inbuilt
combination of an accelerometer and gyroscope. The authors defined some activity events
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for walking, jogging, running, bending, squatting, and falls and trained a classifier using
logistic regression to perform the fall detection task. The authors further categorized fall
events into front, side, and back falls. The aim of their proposed wearable system was to
detect potential fall events before the person completely falls. Their experimental results
showed that the belt-based wearable device was able to detect a fall within 0.25 s with
high accuracy.

The study in (Zurbuchen et al., 2020 [17]) provides another example of a fall detection
system using a wearable waist wearable device. The authors approach used an accelerome-
ter in combination with a waist-mounted gyroscope. The data were taken from SisFall, a
public dataset that contains information about daily living activities and falls. Five machine
learning algorithms were compared. Before applying and comparing the five machine
learning techniques, we started with the steps of pre-processing and feature extraction.
Ensemble learning algorithms with near 99% sensitivity and specificity, such as random
forest and gradient boosting, provided the best results.

2.3. Research Works for Smart Wearable Bowel Recorder Technologies

The authors in (Zhao et al., 2020 [18]) proposed an edge bowel sound (BS) wear-
able system aimed at selecting idle BS events while effectively eliminating audio seg-
ments that contain only background information noise, such as voice and white Gaussian
noise. The system consists of a wearable BS recorder which captures the data for analy-
sis by a remote computer. According to the experimental data, the proposed algorithm
achieves a classification accuracy of 99.92% with a very low false alarm rate. The work in
(Zhao et al., 2022 [19]) describes a lightweight BS recognizer for use with a convolutional
neural network (CNN) portable system. The proposed recognizer first calculates the mel
frequency-cepstrum to convert each one-dimensional segment into a two-dimensional
spectrogram coefficient (MFCC) frame by frame, followed by the spectrogram via the
CNN. To validate the CNN-based BS detector, a 28 min BS dataset of 955 BS present and
725 BS absent segments was constructed. According to the experimental outcome of the
dataset, the recognizer achieves an average accuracy of 91.25% and 90.83% in “not across
disciplines” and “cross validation of subjects” categories, respectively. Figure 2 shows an
overview of the wearable bowel sound system of surveillance.
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2.4. Research Works for Smart Wearable Neural Interface Technologies

The authors in (AlZubi et al., 2020 [20]) introduced HTSMNN (heuristic tubu op-
timized sequence modular neural network), which is a smart wearable approach using
neural interfaces to identify Parkinson’s disease. The authors introduced a wearable device
called deep brain simulation (DBS), which is placed on the patient’s brain to simulate the
patient’s brain and to receive event information about the brain.
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3. Machine Learning Approaches for AI and Smart Wearables

Machine learning plays a crucial role in artificial intelligence and smart wearables
be-cause its architecture is embedded in the wearables. Artificial intelligence and smart
wearables find application in many sectors of society such as medical healthcare sector,
sports, rehabilitation centres, entertainment, and surveillance in smart homes. This section
discusses different AI and machine learning approaches for artificial intelligence technolo-
gies and smart wearables. The section will focus on more recent approaches which have
been proposed using deep learning technologies.

3.1. Machine Learning Approaches for Smart Wearable Technologies

There are different machine learning approaches which can be used in AI and smart
wearables, such as deep learning, which is used for feature extraction in human behaviour,
activity recognition and pattern recognition. The recent machine learning approaches
require the utilization of feature engineering and classification to attain precision. The
authors in (Lu et al., 2020 [21]) proposed a method which utilizes deep learning to address
the challenges encountered in the application of recent machine learning approaches for
detecting movement. The authors introduced an approach that utilizes confidence index
and tunes confidence index thresholds to obtained stability intent recognition.

Machine learning approaches can be utilized to overcome limitations in existing
systems. For example, many fall detection sensors have some limitations, including false
alarms and the cost of maintenance due to irregular usage. The machine learning approach
integrated with Internet of Things (IoT) has a significant impact on addressing these
challenges with fall detection wearable sensors. The authors in (Chaudhuri et al., 2020 [22])
proposed a machine learning-based wearable device that predicts pulse rates and skin
temperature. The authors introduced an approach called enhanced predicted thermal state
(ePTS), which predicts the thermal state index. Another machine learning approach for
wearable technology by authors (Rubio-Solis et al., 2020 [23]) proposed an extreme learning
machine with multilayer interval type-2 fuzzy for the effective identification of walking
actions and patterns using wearable device.

3.2. Deep Learning Approaches for Smart Wearable Technologies

Deep learning is one of the most important methods of analysing data for smart
wearable technologies. The authors in (Saeedi et al., 2017 [24]) proposed novel deep
learning architecture using wearables sensors which support human activity recognition
systems working in a robust environment. This deep architecture combines the innovative
deep neural network and the active learning technique in the development of broad
models for data classification. The former utilized the convolutional neural network (CNN)
with layered long-short term memory (LSTM) to learn the tiered depiction of features
and capture the long-term dependency in activity data, while the latter selects the best
opportunity for the adjustment of the deep neural network to a new configuration that
allows for the system to function. The deep network model is made up of eight layers
which are further grouped into two recurrent LSTM layers, five convolutional layers, and a
soft-max layer. The authors discussed that the deep network architecture works by allowing
for the activity of the individual information segment to pass through the convolution
neural network layers to create a static vector representation of length for the following
layer, and the LSTM layers capture the time dependence of the activity data.

The authors in (Young et al., 2020 [25]) proposed an approach which utilized a deep
learning-based wearable healthcare Internet of Things system to help people who have a
hearing disability to communicate with others. The approach contains a server application
that converts the output of the Google’s Online speech recognition system into text. The
deployment of micro-display was used to display the content of the information to the
people with a hearing disability. This approach helps in assisting the deaf people to
communicate with others with a non-hearing disability. The authors also introduced an
urban-emergency system which utilizes a deep learning approach, Inception-v4, with
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transfer learning for sound recognition and classification. In this system, an alarm is raised
which creates an awareness of traffic congestion, fire, and road accidents. The text generated
from this system is displayed to the road users.

The authors in (Jacobson et al., 2021 [26]) proposed a deep learning-paired technique
with a wearable sensor-based device to forecast the decline in anxiety and panic disorder
symptoms during the day’s movement and night’s sleep. Another work by authors in
(Bauer et al., 2020 [27]) also proposed a deep learning approach with a wearable sensor
device for promoting movement for people with a vision impairment. The deep learning
method provides a 3D presentation of the surrounding area with certain names for the
obstacle from the wearable camera. The smart watch gives information about the obstacles
in the environment to the person with a visibility challenge. The depth estimator helps
the obstacles to seem closer than they are. The authors in (Janarthanan et al., 2020 [28])
proposed an unsupervised deep learning approach that helps in the reconstruction of the on-
nodule wearable sensor’s coder for the better recognition of human activities. The authors
integrated the coder architecture with the Z-layer approach to eliminate the reconstruction
error and promote precision in the system. The deep learning approach utilizes data
collected from wearable sensors in the Lab of Wireless Sensor Data Mining. The data
include six different action such as standing, walking, sitting, jogging, ascending stairs, and
descending stairs. The subsequent sub-sections will discuss various deep learning network
architectures for application in AI and smart wearable technologies.

3.2.1. Deep Learning Approaches Using Convolutional Neural Networks (CNNs)

Convolutional neural networks combine convolutional layers for feature
extraction. Due to many challenges faced in research regarding falls in older people,
(Alarifi & Alwadain, 2021 [29]) introduced a heuristic-optimized convolution neural net-
work technique to detect falls in elders. The fall features were recognized using eight
layers of a convolution neural network. This approach provides an accurate result regard-
ing the detection of falls in elders. The authors utilized a wearable sensor-based system
that is made up of a magnetometer, gyroscope, and accelerometer tri-axial device. Data
were collected from different activities of human daily routines and falls. The authors in
(Hernandez et al., 2021 [30]) proposed a wearable device which is based on deep learning
to estimate the lower limb kinematic during gait analysis. Convolutional and long-short
term memory recurrent layers were used in the deep learning process (DeepConvLSTM).
The deep convolutional recurrent neural network is combined with the long-short term
memory network. The former aids the extraction of the feature and the latter provides the
time domain.

The authors in (Rad et al., 2018 [31]) proposed a wearable device that detects motion
in patients with autism spectrum disorder using a convolutional neural network. To learn
the characteristics from raw data that were obtained from different wearable sensors, three
convolution neural network layers were employed. Figure 3 shows the architectural view of
the stereotypical motor movement (SMM) detection proposed by the authors. The authors
also introduced a concept which combines the convolution neural network with long
short-term memory (LSTM) for the improvement of stereotypical motor movement (SMM)
detection. The work in (Mai et al., 2021 [32]) proposed a 1D-Convolutonal Neural Network
approach; this approach utilizes the EEG-based BCI method for the recognition of emotional
states. A cordless and wearable 8-channel custom-designed electroencephalogram (EEG)
device was utilized for signal classification. This wireless EEG device is made of dry active
sensors, an active circuit, a communication unit, a micro controller, and an analogue-to-
digital converter.



Electronics 2023, 12, 1509 9 of 21

Electronics 2023, 12, x FOR PEER REVIEW 9 of 22 
 

 

different activities of human daily routines and falls. The authors in (Hernandez et al., 
2021 [30]) proposed a wearable device which is based on deep learning to estimate the 
lower limb kinematic during gait analysis. Convolutional and long-short term memory 
recurrent layers were used in the deep learning process (DeepConvLSTM). The deep con-
volutional recurrent neural network is combined with the long-short term memory net-
work. The former aids the extraction of the feature and the latter provides the time do-
main. 

The authors in (Rad et al., 2018 [31]) proposed a wearable device that detects motion 
in patients with autism spectrum disorder using a convolutional neural network. To learn 
the characteristics from raw data that were obtained from different wearable sensors, 
three convolution neural network layers were employed. Figure 3 shows the architectural 
view of the stereotypical motor movement (SMM) detection proposed by the authors. The 
authors also introduced a concept which combines the convolution neural network with 
long short-term memory (LSTM) for the improvement of stereotypical motor movement 
(SMM) detection. The work in (Mai et al., 2021 [32]) proposed a 1D-Convolutonal Neural 
Network approach; this approach utilizes the EEG-based BCI method for the recognition 
of emotional states. A cordless and wearable 8-channel custom-designed electroencepha-
logram (EEG) device was utilized for signal classification. This wireless EEG device is 
made of dry active sensors, an active circuit, a communication unit, a micro controller, 
and an analogue-to-digital converter. 

 
Figure 3. The architectural view of the stereotypical motor movement (SMM) detection (Rad et al., 
2018 [31]). 

  

Figure 3. The architectural view of the stereotypical motor movement (SMM) detection
(Rad et al., 2018 [31]).

3.2.2. Deep Learning Approaches Using Recurrent Neural Networks (RNN)

The authors in (Zhang et al., 2018 [33]) presented an approach for classifying and
monitoring sleep using wearables medical devices. This approach utilized recurrent neural
networks based on bidirectional long short-term memory (BLSTM) and tiered feature learn-
ing. Their experiments and analysis were carried out with a group of people with resting
and non-resting sleep. The approach grouped sleep into the following groups: namely,
wakes, regular eye shift, and irregular eye shift. The authors in (Torti et al., 2019 [34])
integrated recurrent neural networks into wearable devices with a micro controller unit
(MCU) for monitoring and detecting falls in a real-time scenario. This device is linked to a
wireless network and monitoring device to enable the caregiver to provide the necessary
care for the patient. The authors emphasized that the wearable device must achieve the
basic requirements for the effective detection of fall. The basic requirements are as follows:
First, the wearables need to be constantly connected to the wireless network to alert the
caregiver of the fall. Second, the device must be portable so that it will be convenient for
the patients. Third, the device constantly needs to be on for a lengthy period of time to
ensure the effective monitoring of activities.

Another study (Martindale et al., 2021 [35]) introduced an approach that utilizes the
multi-task gait and activity segmentation approach. This approach uses recurrent neural
network-based wearable devices. The authors in (Coutts et al., 2020 [36]) introduced
a wearable device with deep recurrent neural network (LSTM) to predict the patient’s
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health. The wrist wearable device utilizes heart rate variability data to provide accurate
information of the patient’s general and mental health.

3.2.3. Deep Learning Approaches Using Long Short-Term Networks (LSTM)

Some authors have also proposed to use the long short-term network (LSTM) architec-
ture for application towards AI and smart wearables. Compared to deep learning models
such as the CNN model, which has the capability of utilizing spatial correlations and
performing the classification role, the LSTM model has the capability of utilizing feedback
connections to process sequences of time-series data. The authors in (Chung et al., 2019 [37])
proposed an LSTM deep learning model for the fusion of multimodal data towards the
application of human activity recognition. Their work developed a testbed for an on-body
positioning system using IMU (inertial measurement unit) sensors. Their analytics model
utilized the LSTM model to perform the classification of activity events in controlled and
real-world scenarios. The authors also developed an ensemble approach for the computa-
tion of event probabilities from the multimodal sensors. Their experimental work used data
from 15 people; their results showed challenges for developing a wearable-based system
and scaling the work towards large-scale applications.

The authors in (Zhang et al., 2018 [33]) proposed an approach for classifying and
monitoring sleep using wearable medical devices. This approach utilized recurrent neural
networks based on bidirectional long short-term memory (BLSTM) and tiered feature
learning. The analysis was carried out with a group of people with resting and non-resting
sleep. The approach grouped sleep into the following groups, namely, wakes, regular eye
shift, and irregular eye shift.

3.2.4. Hybrid Deep Learning Approaches Using a Combination of Deep Learning
Techniques

Some authors have proposed combining a variety of deep learning techniques and
developed hybrid deep learning approaches for AI and smart wearables. The authors
in (Xia et al., 2020 [38]) proposed a hybrid deep learning approach for smart wearables
by utilizing LSTM models which were connected to convolutional layers and Global
Pooling layers (GAP). Their approach using the GAP and batch normalization process
could speed up the convergence of the system. Their LSTM-CNN architecture approach
was applied and validated towards the classification of human activity. The authors in
(Rueda et al., 2019 [39]) combined deep neural network approaches with symbolic models
to address the issues of subject and location dependency for activity recognition. Their
work was validated using contextual information in realistic scenarios.

Another hybrid deep learning approach was proposed by authors in
(Mukherjee et al., 2020 [40]) for human activity recognition. Their approach used
a combination of deep learning techniques, conventional machine learning techniques,
and statistical techniques. The authors termed their approach as EnsemConvNet, of
which utilizes an ensemble of CNN-Net, Encoded-Net, and CNN-LSTM models. Their
experimental work was validated on the WISDM, UniMB SHAR, and MobiAct activ-
ity prediction datasets. The authors in (Ascioglu and Senol 2020, [41]) proposed a
hybrid deep learning approach for human activity recognition by utilizing a convolu-
tional neural network with LSTM (ConvLSTM). The authors carried out experiments
to classify human activities in outdoor-based environments and developed a novel
sensor-based wireless activity monitoring system.

4. Data Collection Architectures and Processing Models for AI and Smart Wearables

This section discusses various data collection architectures and processing models
for AI and smart wearables which have been proposed. The section is structured into the
following discussions: (1) standalone architectures for AI smart wearables; (2) smartphone
architectures for AI smart wearables; (3) cloud architectures for AI smart wearables; and
(4) edge architectures for AI smart wearables.
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4.1. Standalone Architectures for AI Smart Wearables

This sub-section will provide some discussions on standalone architectures for AI
smart wearables. The authors in (Orfanidis et al., 2021 [42]) proposed a standalone archi-
tecture and low-cost wearable device which combines three components to detect foot
movements and relay messages over long distances in an emergency, based on standard
shoes and off-the-shelf electronic devices. The rating takes into account an application
scenario in which the user executes accurate foot movements during other activities (such
as walking) to trigger the sending of an urgent message. The proposed portable device is
at risk and is useful for users who want to carefully alert their emergency contacts. The
proposed system can identify the intended foot movement with 98 times the accuracy,
according to the results.

The authors in (Ravi et al., 2017 [43]) proposed a standalone wearable architecture
utilizing deep learning for an accurate, real-time activity classification by combining the
extracted features using inertial sensor data and supplemental data from a collection of
flat features. This combined method’s design aims to overcome some of the limitations
found in standard deep learning frameworks that require on-node computing. Before the
input is passed to the deep learning framework, it uses spectral domain pre-processing
to improve the proposed approach for on-node real-time computation. Their work used
datasets on both laboratory and real-world activity to compare the classification accuracy
of the proposed deep learning strategy with the classification state-of-the-art precision
methods. Their findings demonstrated the efficacy of the strategy across various human
activity datasets and are superior to other techniques, including the two employed in
the study.

Another example of a standalone architecture for smart wearables can be found in
the work by (Mai et al., 2021 [32]). In this work, the authors developed a standalone smart
wearable architecture for emotion detection using EEG signals. The authors utilized a
one-dimensional CNN model to create a BCI system based on EEG for emotion detection.
The EEG signals were captured non-invasively using eight drywall electrodes attached to
the scalp and a cordless handheld custom EEG device.

4.2. Smartphone and Smartwatch Architectures

There have been many smartphone and smartwatch architectures which have been
proposed for smart AI and wearable technologies. The authors in (Rakhman et al., 2014 [44])
proposed, using an accelerometer and gyroscope based on a developed smartphone, a fall
detection system that detects falls and daily activities using tilt angle and the acceleration
threshold. The authors in (Zhang et al., 2018 [33]) proposed a two-stage method: multi-
level learning features and classification using neural networks with recurrent connections
(RNNs). The feature learning phase extracts low- and mid-level features. The raw signals
are processed to extract low-level properties that capture temporal and frequency domain
characteristics. Figure 4 shows the proposed sleep stage wearable method.
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The authors of (Yin et al., 2017 [45]) proposed a hierarchical health decision support
system which has been developed for disease detection by integrating health data from
WMSs into CDSSs. The proposed system is multitiered, beginning with a WMS tier
supported by robust machine learning and allowing for a disease diagnosis module that
will track each disease individually. Six disease diagnosis modules targeting four ICD10CM



Electronics 2023, 12, 1509 12 of 21

disease categories are used to demonstrate the system’s feasibility. Using five examples,
they demonstrated that the system is scalable for additional disease categories.

The authors of (Kalantarian et al., 2015 [46]) used data from a gyroscope and an
accelerometer smart watch collected at 16 Hz to distinguish between the “Opening a pill
bottle” and “pouring pills into hand” actions. Predictions were made for both actions, and
if “pouring pills into hand” occurred within six seconds, a subject was considered to have
successfully taken a pill from “opening a pill bottle”. The authors of (Fozoonmayeh et al.,
2020 [47]) created a smart watch-based medication intake detection system that classified
pill-taking behaviour using gyroscope and accelerometer sensors.

4.3. IoT and Cloud-Based Architectures

Positive computing makes use of mobile communications, wearables, and Internet of
Things technologies. Smartphones, activity trackers, voice assistants, and smart sensors
are examples of Internet of Things (IoT) devices. Positive computing research is frequently
conducted interdisciplinary, making it challenging to obtain a holistic view of intelligent
positive computing system designs, implementation, and evaluation using IoT, wearables
and mobile technologies. To address this issue, the authors in (Lee et al., 2019 [48]) proposed
a conceptual framework and reviewed key components to provide guidelines for studying
intelligent positive computing systems. The author also presents some practical service
scenarios and provides valuable insights into opportunities and challenges. By critically
considering the literature and scenarios, the author suggested some research directions
in intelligent positive computing’s core topic system research. In addition, the authors
discussed issues such as technology dependence, abandonment, side effects, privacy, and
ethical concerns.

The authors in (Gao et al., 2020 [49]) proposed a cellular network-based control system
for intelligent wearable rehabilitation robots. In their research, they investigated how to
stimulate the signal and process the signal feedback during the course of electromyographic
stimulation of the rehabilitation robot in order to improve the robot’s rehabilitation effect
after stimulation. In addition, the authors investigated problems of controlling patients for
rehabilitation training, making use of biofeedback and fuzzy control rules. This encourages
the patient to actively participate in the rehabilitation treatment and effectively restores the
patient’s self-confidence. Then, for rehabilitation training, the system uses biofeedback and
fuzzy control rules to investigate the problem of controlling the patient. This effectively
guides the patient’s recovery of self-awareness.

Currently, pose detection algorithms rely on visual image analysis that detects motion
and signal analysis based on wearable sensors. However, these systems have drawbacks
such as a high misjudgement rate, high cost, and low efficiency. To address these concerns,
the authors of (Hong et al., 2022 [50]) proposed a collaborative AI IoT-based solution that
includes advanced AI-assisted technologies. The authors proposed a technique termed
as Multiposture Recognition (MPR) algorithm. This is an offline technique that can be
implemented on wearable hardware to recognize poses based on multidimensional data.
The authors in (Tao et al., 2011 [51]) proposed a smart shoe system that uses sensors to
detect the occurrence and direction of a fall; the MLP uses this as an input function. Several
automated computer detection systems are used to detect this disease, but they cannot
predict it at an earlier stage. In addition, traditional methods do not predict disease with
the highest accuracy, which increases the accuracy of misclassification. As a result of this
problem, wearable IoT mental health sensor devices such as deep brain stimulation (DBS)
are used to capture the patient’s brain activity and cellular status and can predict changes
in brain function. The information collected is processed by a heuristic tube-optimized
sequence modular neural network (HTSMNN). This method examines the information
collected continuously and independently to better predict the changes present in the brain.
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5. Applications for AI Smart Wearables

This section discusses applications for AI smart wearables in several areas and market-
places: (1) healthcare and medical applications for AI smart wearables; (2) augmented and
virtual reality applications for AI smart wearables; (3) sports and entertainment applications
for AI smart wearables; and (4) environment applications for AI smart wearables.

5.1. Healthcare and Medical Applications for AI Smart Wearables

The authors in (Ali et al., 2021 [52]) proposed a healthcare monitoring system utilizing
smart wearables and AI that improved the efficiency of data handling and classification of
healthcare data for monitoring the health of patients. The healthcare data were collected
from different sources such as mobile phones, wearable devices, medical records, and social
networks contents. The data collected were kept in the cloud network and analysed on
the big data system. The analysis of data was carried out with different approaches which
involved the mining of data, ontologies, and the utilization of bidirectional long short-term
memory (Bi-LSTM). The mined data support the pre-processing and compressing of data
size, ontologies provide a perspective on the features, while the Bi-LSTM carries out the
classification of data on healthcare to determine the negative consequences of drug and
unusual functionality in patients.

Figure 5 shows the architectural view of the healthcare monitoring system. There are
five layers in the architectural view of the system: (1) data source layer, where the data
are generated from different types of sources; (2) data collection layer, which collects and
gathers the data generated; (3) data storage layer, which has the role of storing the data for
analysis; (4) analytics engine layer, which performs the compression and classification of
the data; and (5) data presentation layer, which provides the user interface for healthcare
monitoring and recommendation. The proposed system by the authors alerts the patients,
especially those with diabetes and blood pressure, of the stage of their health and the
danger of it and assists the doctors with the right treatment for their patients.
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The authors in (Ramkumar et al., 2019 [53]) introduced a method based on wearable
and machine learning that remotely monitors the total knee replacements of patients. This
approach also provides evaluation for mobility, knee movement, opioid consumption,
and home exercise consent. The authors in (Vos et al., 2020 [54]) integrated a wearable
device with machine learning algorithms for the accurate differentiation of PSP (progressive
supranuclear palsy) from PD (Parkinson’s disease). Logistic regression (LR) and random
forest (RF) are two machine learning algorithms used for data analysis. The authors in
(Meyer et al., 2021 [55]) proposed a wearable device that utilizes a deep neural network
with bidirectional long short-term memory to recognize a person with multiple sclerosis.
The authors in (Orfanidis et al., 2021 [42]) proposed an inexpensive wearable device that
can identify human foot gestures and then sends emergency information, especially about
someone who is in danger, to an emergency contact.

5.2. Augmented and Virtual Reality Applications for AI Smart Wearables

The authors in (Park et al., 2020 [56]) introduced a smart task aid approach that
combines wearable augmented reality (AR) with deep learning and instance segmentation
in a real-world setting. This approach helps in providing visual guidance. The approach
utilizes the Mask R-convolution neural network as instance segmentation. The authors also
conducted a study comparison and evaluation of two users with respect to object matching,
inspection, and maintenance of 3D in a manufacturing environment. The result from the
study shows that the deep learning-based smart task assistance approach with wearable AR
performs better in quantitative and qualitative measures than the previous method used by
many researchers with a more effective performance. Figure 6 shows an architectural view
of the deep learning-based wearable AR approach proposed by the authors.
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5.3. Sports and Entertainment Applications for AI Smart Wearables

The sport sector is faced with challenges due to the huge size of monitoring equipment.
The monitoring equipment is not movable, making it difficult to monitor the health of
an athlete during sport. The performance analysis of the sport activities is also a major
challenge. The utilization of wearables by athletes helps to provide a record of sport
activities to the computer for the detection and analysis of sport motion. The authors in
(Xia et al., 2020 [57]) proposed a wearable-based Internet of Things device that can monitor
and identify changes in an athlete’s heart rate during sport. The information, such as heart
rate, body temperature, and blood oxygen, were collected and analysed.

The authors in (Hsu et al., 2019 [58]) presented a deep convolution neural network-
based wearable device for classifying sport activities. The approach comprises two wearable
sensor units that athletes wear on their wrists and ankles to enable the collection of data
during sport activities. The information collected from the sensing unit is sent to the per-
sonal computer through the wireless RF transmission for sport analysis. The sensing unit
in the wearable device consists of the microcontroller, triaxial accelerometer, RF wireless
transmission module, triaxial gyroscope, and the power supply circuit. The convolution
neural network used in the wearable helps to collect the features from the sport activities.
The authors also introduced a deep learning-based algorithm for identifying the various
types of sport activities. The proposed algorithm is made up of the following components:
(1) first, the data from sport activities; (2) second, the data pre-processing; (3) third, the
sport activity segmentation; (4) fourth, the signal normalization; (5) fifth, the spectro-
gram generation; (6) sixth, the image resizing; and (7) seventh, the convolution neural
network classifier.

The authors in (Chiang et al., 2020 [59]) presented a low-cost wearable device that
utilizes a machine learning approach to monitor an athlete’s body conditioning. The
authors in (Seethi & Bharti, 2020 [60]) proposed a wrist-worn wearable device that rec-
ognizes the healthy lifestyle of humans. A convolution neural network algorithm was
used to measure the physical activities required to achieve a good fitness level. The ex-
periment was conducted using 15 people carrying out physical activities such as walking
and running with various speeds on a treadmill. The authors in (Mahmud et al., 2021 [61])
proposed a multi-stage training method that utilizes a deep neural network for detecting
human activities.

5.4. Environmental and Smart City Applications for AI Smart Wearables

AI and smart wearable technologies can also be utilized for environmental and smart
city applications. The authors in (Balsamo et al., 2017 [62]) discussed the open challenges of
wearable devices and autonomous computing systems for smart city scenarios. The authors
in (Kyriazis et al., 2013 [63]) provided some discussions on using AI smart wearables for
controlling and optimizing the heat and electricity resource management systems in smart
buildings. On an individual scale, smart wearable technologies can be deployed to give
authorization and access to shared appliances and living areas such as hostels, student
accommodation, and dormitories.

6. Challenges for AI Smart Wearables and Future Research Directions

The previous sections have discussed the benefits and potential of AI and smart
wearable technologies. This section will provide discussions on some of the challenges and
future research directions for AI smart wearables. The challenges will be discussed from
two perspectives: (1) technical challenges; and (2) social challenges.

6.1. Technical Challenges for AI Smart Wearables

The authors in (Schnell et al., 2022 [64]) identified several technical challenges for
wearable devices in medical Internet-of-Things applications, of which are also applicable
to wearable devices and for smart AI devices in general, such as battery consumption,
high energy efficiency, and the need for data privacy and security. Other technology-
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related aspects and challenges for smart wearables and AI can be categorized into three
main aspects: (1) networking and communication aspects, such as issues for routing and
communication overheads; (2) information processing and computational aspects, such
as issues for computational complexity and storage; and (3) algorithmic and application-
dependent aspects, such as training and inference.

The first two aspects for networking and communication aspects, and algorithmic and
application-dependent aspects share similar challenges with the challenges for application-
specific Internet of Things (ASIoTs). The authors in (Ang et al., 2019 [65]) identified
several challenges for the ASIoTs, including interoperability challenges, energy efficiency
challenges, computational challenges using edge and fog machine learning models and
security and privacy challenges. The reader is referred to the above two references for
further details on challenges for networking and communication aspects, and algorithmic
and application-dependent aspects for AI and smart wearable technologies.

The third challenge on algorithmic and application-dependent aspects applies directly
to smart wearables with AI technologies and machine learning. First, as with machine
learning and deep learning algorithms, there is a requirement for training the AI algorithms
in the wearable technologies. The issues involved here are the need for a large amount
of data, particularly for training deep learning algorithms. This would in turn require a
significant investment in recruiting people to perform the required tasks or actions while
using the wearable devices in order to obtain the authentic training data. The subjects or
people may also need to be immersed in the actual operational environment (in contrast to
a controlled or laboratory environment) during the training sessions. A further challenge
at the algorithmic level is to optimize the usage of multimodal data to obtain higher
performance and accuracy for the smart AI wearables. As an example, a smart wearable
system for activity recognition could integrate sensing data from multiple devices such as
a smart watch, smart clothes, and smart helmets.

6.2. Social Challenges for AI Smart Wearables

AI smart wearables would also face social challenges for the successful adoption to
human society. The authors in (Xing et al., 2021 [66]) identified several socio-technical
challenges or barriers which affect the large-scale deployment of AI-enabled wearable
medical devices among the elderly population in China. The authors provided six cate-
gories for barriers or challenges to be addressed: (1) technological barriers or challenges,
(2) managerial barriers or challenges, (3) clinical barriers or challenges, (4) financial barriers
or challenges, (5) legal barriers or challenges, and (6) personal barriers or challenges.

The technological barriers for the design and development of the wearables include
the trade-offs among designing the wearable device to be small and compact in order to be
worn comfortably, designing the device to provide accurate readings, designing the device
to have a long battery life, and designing the device to be cost-effective and affordable.
The solution proposed by the authors is to design and develop the wearable devices to
meet the specific requirements and needs. The managerial barriers include the need for the
support from top management and for wearable device providers to establish the necessary
links and official collaborations with public health organizations in order to promote the
wearable devices in the marketplace. The clinical barriers include establishing the efficacy
and collecting evidence to show the clinical value of the wearable devices. The authors also
identified another clinical barrier or challenge due to the fear of undesirable changes in
workload by doctors and physicians in public health organizations.

The financial barriers and challenges include the cost of producing the wearable
devices and the development of a sustainable business model. For national and public
health organizations, there may be insufficient public funding to support the large
volume and demand from the society. The authors identified two legal barriers for the
adoption of wearable devices which were the lack of an efficient legislative framework
and the lack of instruments for data privacy. This challenge is particularly applicable for
elderly users who have concerns regarding the potential legal risks for wearable medical
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devices. The second legal challenge is the issue for data privacy where elderly users have
concerns that the wearable medical devices may have the capability to track personal
information such as their movements, locations, and living styles. The personal barriers
and challenges include a lack of user trustworthiness, a lack of personalized analytical
services, and psychological resistance. Figure 7 shows a summary of the barriers or
challenges for AI smart wearables.
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6.3. Future Directions for AI Smart Wearables

The research area of AI and smart wearables is constantly evolving. In this sub-section,
we provide some recent innovations in the area and potential future directions for AI smart
wearables. New sensing technologies are being invented which can be used to augment
AI smart wearables and open up directions for future research. A recent innovation in
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sensing technologies is the development of e-skin (Li et al., 2022 [67]; Choi, 2022 [68];
Sapra et al., 2023 [69]). The authors in (Choi, 2022 [68]) discuss an electronic skin (e-skin)
technology which can transmit health data such as heart and pulse rates without requiring
further chips/electronics or batteries. The e-skin is flexible and can be worn on the human
body like an electronic version of tape for long periods of time. New applications for AI
smart wearables are being proposed. These innovations are applicable to different sectors
of society and raises new challenges to be addressed.

An emerging application and future research direction is aimed at utilizing soft robotics
and smart wearable technologies for paediatric assistive devices, thus targeting the market
needs for infants (two years old and below). These wearable devices for infants need to
address challenges such as fitting smaller body proportions and supporting greater activity
levels (Mucchiani et al., 2022 [70]). The authors in (Hijazi et al., 2021 [71]) identified another
important future research direction for AI smart wearables—the importance of developing
interpretable or explainable AI (XAI) and being able to explain the AI-generated results to
human practitioners, of which is particularly critical for health-based applications.

7. Conclusions

This paper has provided a comprehensive survey of paradigms for AI and smart
wearable technologies. The paper aims to serve as a useful reference work on how these
new paradigms can be applied to solve new problems and applications in intelligent and
sensor-based environments. The review has covered the various deployment types and
interfaces for smart wearable and AI technologies. The paper has also provided insights
into the various techniques and approaches which have been utilized, such as conventional
machine learning and deep learning approaches. The review has also uncovered open
challenges which remain to be resolved and provided recommendations for future work. A
final note is on the constraints and limitations of the studies covered in this paper. While
the authors have endeavoured to cover the published studies in major databases, there may
be studies in other archives (e.g., arXiv) which have not been covered in this paper.
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