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Abstract: Accurately detecting suitable grasp areas for unknown objects through visual information
remains a challenging task. Drawing inspiration from the success of the Vision Transformer in
vision detection, the hybrid Transformer-CNN architecture for robotic grasp detection, known as
HTC-Grasp, is developed to improve the accuracy of grasping unknown objects. The architecture em-
ploys an external attention-based hierarchical Transformer as an encoder to effectively capture global
context and correlation features across the entire dataset. Furthermore, a channel-wise attention-
based CNN decoder is presented to adaptively adjust the weight of the channels in the approach,
resulting in more efficient feature aggregation. The proposed method is validated on the Cornell
and the Jacquard dataset, achieving an image-wise detection accuracy of 98.3% and 95.8% on each
dataset, respectively. Additionally, the object-wise detection accuracy of 96.9% and 92.4% on the same
datasets are achieved based on this method. A physical experiment is also performed using the Elite
6Dof robot, with a grasping accuracy rate of 93.3%, demonstrating the proposed method’s ability to
grasp unknown objects in real scenarios. The results of this study indicate that the proposed method
outperforms other state-of-the-art methods.

Keywords: robotic grasp; transformer; attentional mechanism

1. Introduction

In the most recent decade, the advancement of artificial intelligence has made smart
robots increasingly important in industries such as smart factories and healthcare [1,2].
Among the tasks performed by these robots, grasping objects is a fundamental ability that
enables them to carry out more complex operations. Vision-based automated grasping,
where the robot uses visual sensors to identify the best gripping position for an object, is
crucial for their intelligence and automation [3,4]. However, despite the advancements in
the field, most of the current methods are still limited to models of known objects or trained
for known scenes, making the task of grasping unknown objects, with high accuracy, a
significant challenge [5].

Currently, most grasp detection methods for vision robots rely on convolutional neural
networks (CNNs) [6–10]. Despite their popularity, CNNs have limitations in handling
grasping tasks. They are designed to process local information through their small con-
volutional kernels and have difficulty capturing global information due to limited filter
channels and convolution kernel sizes. The convolutional computation method used by
CNNs also makes it challenging to capture long-distance dependency information during
information processing.

Transformer architecture has seen great success in the field of vision lately [11,12]. The
Transformer’s self-attention mechanism provides a more comprehensive understanding
of image features compared to CNNs. The Transformer has the ability to effectively
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capture global information through its self-attentive mechanism, which makes it a more
representative model.

While the self-attention mechanism of the Transformer is useful for capturing informa-
tion within a single sample, it may not fully leverage the potential connections between
different samples. In the task of grasping, the features of the grasping target are often
correlated, and the background features of similar scenes are consistent. Thus, considering
the potential connections between different samples can lead to a more robust feature
representation. To address this challenge, the proposed HTC-Grasp incorporates external
attention in the transformer block to enhance the representation of correlations between
different images.

Moreover, the multi-scale feature fusion mechanism introduces a significant amount
of noisy features, which can negatively impact grasp detection performance. To mitigate
this issue and improve the role of effective features, the proposed framework incorporates
a residual connection-based channel attention block in the decoder. This approach enables
efficient learning of discriminative channel-wise features.

The original contributions of this research are outlined below:

1. A highly robust hierarchical Transformer-CNN architecture for robot grasp detection
is developed that integrates local and global features.

2. In this architecture, the external attention-based hierarchical Transformer is proposed
as an encoder to effectively capture global context and the correlation features across
the whole data. Furthermore, a channel-wise attention-based CNN decoder is pro-
vided to adaptively adjust the weight of the channels, thus providing a more efficient
feature aggregation.

3. Extensive experiments are conducted on both public datasets and real-world object
grasp tasks to validate the performance of the HTC-Grasp approach. The results, both
qualitative and quantitative, manifest that the HTC-Grasp surpasses state-of-the-art
robotic grasp solutions and can detect stable grasps with high accuracy.

The proposed HTC-Grasp approach can adapt well to the 2D robotic grasp environ-
ment and can be applied in logistics centers for picking up goods, automated garbage
sorting, robotic assistance for household tasks, etc.

2. Related Works

The representation of object grasping is crucial for robot grasp detection. Jiang et al. [13]
proposed an efficient method that describes the grasping position using a rectangular repre-
sentation, using a 5-dimensional vector to describe the position, height, width, and rotation
angle of the grasp in the image. Morrison et al. [14] introduced a grasp location description
method, which gives the gripping position and posture by predicting the gripping quality
of each pixel. These two models are widely used in robot grasp detection tasks.

Current grasp detection models are broadly classified into two different types: cascade
approaches and one-stage architecture. Cascade approaches perform the entire grasp
prediction process in stages, including the extraction of target features, generation of
candidate regions, and evaluation of the optimal gripping position. Lenz et al. [15] created
the Cornell dataset and proposed a two-stage cascade detection model to learn this five-
dimensional grasp. The first stage uses a neural network to extract grasp prediction
features. The second phase refines the predicted grasp parameters to output the optimal
grasp location. Zhou et al. [16] presented a model that predicts multiple grasping poses
using an oriented anchor box. Zhang et al. [3] introduced the ROI-GD approach, which
uses ROI features to detect grasps instead of the whole image. Laili et al. [17] presented a
region-based approach to locating grasping point pairs. A consistency-based method is
used to train the grasp detector with less labelled training data.

In the last few years, the development of one-stage detection approaches for object
grasping has gained popularity due to their simple and efficient structure. The one-stage
approach trains a grasp detection model to directly output the grabbing location. Previous
works, such as Redmon et al. [18], used AlexNet to directly process the input image and



Electronics 2023, 12, 1505 3 of 16

predict the grasp location. Kumra et al. [19,20] built a grasp network based on ResNet
that extracts features from RGB and depth images to output both classification and regres-
sion results for the optimal grasp location. Mahler et al. [21] put forward a grasp quality
evaluation network using image segmentation and a corresponding point cloud for grasp
prediction. Morrison et al. [14] used convolutional layers for encoding and decoding to
perform pixel-level grasp prediction of feature maps. Yu et al. [22] presented a U-Net-like
architecture with channel attention modules to better utilize features. Wu et al. [23] intro-
duced an anchor-free approach which employs a completely convolutional network. This
approach frames grasp detection as grasp rectangle regression and category classification
tasks. The CNN-based grasping target detection algorithms discussed above have made
significant progress. However, the use of convolutional kernels, which primarily focus on
local spatial information, can limit the ability to capture global information correlations,
potentially hindering further improvements in detection accuracy.

Recently, the transformer has gained traction in computer vision because of its ability
to capture global information, overcoming the limitations of CNN models. The transformer
has shown excellent performance in applications like object detection, classification and
tracking [24,25] through its self-attention mechanism and pyramid-like structure. In 2022,
Wang et al. [26] used the SWIN Transformer to extract features with impressive results.
The self-attentive mechanism, while useful, has a limitation in that it focuses only on the
information contained within a single sample and ignores the connection across the whole
dataset, which may negatively impact the robustness of feature representation.

To overcome the challenges described above, the HTC-Grasp approach is proposed in
this article. With the aid of external attention structure, long-distance spatial correlation
can be learned. The global context between data samples can ameliorate feature robustness
implicitly. In order to aggregate the extracted multiscale features, up-sampling and skip con-
nection are introduced to the decoder. The channel attention modules based on SE-block fur-
ther assign adaptive weights to each feature channel to enhance the feature representation.

3. Method
3.1. Grasp Task Representation

The vision grasping tasks typically involve collecting visual images of the target object
using sensors such as RGBD cameras. These images are processed by a model to determine
the optimal grasp position. When the robot is equipped with parallel grippers, the grasping
parameters p can be represented as a 5-dimensional tuple.

p = {x, y, θ, w, h} (1)

When it comes to the above formula, (x, y) means the 2D coordinates of the center
point, (w, h) represents the size of the grasping box including the width and height. What’s
more, θ represents the rotation angle of the gripper compared to the horizontal axis.

An alternative representation for high-precision, real-time robot grasping was intro-
duced in [14]. In this representation, the grasp is redefined for 2DoF robotic grasping tasks
as follows:

P =
{

Qg, Θg, Wg
}
∈ R3×W×H (2)

where P is a 3-dimensional tensor. The first dimension, Qg means the quality of every pixel
of the input image. And the second dimension, Θg, denotes the orientation angle between
the fingertips of the gripper. What’s more, the third dimension, Wg, represents the opening
width between the fingertips of the gripper. Each pixel, with a specific angle Θgi,j and width
Wgi,j , corresponds to the orientation angle and width of the finger gripper at the particular
position. Additionally, H and W correspond to the width and length of the feature map.

3.2. Grasp Overview

The structure of the HTC-Grasp is illustrated in Figure 1. It consists of three parts:
the Transformer based encoder, the CNN-based decoder, and the prediction head. The
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encoder is built using hierarchical transformers with a pyramidal design to extract multi-
scale features. The CNN-based decoder, made up of transposed convolution layers with
res-channel attention blocks, fuses the previously obtained multi-scale features. Finally, the
fused features are used by four sub-task networks to predict grasp heatmaps, including the
map of quality score, the angle (in sin 2θ and cos 2θ form) and the width.
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Figure 1. Overview of HTC-Grasp. H and W in the figure correspond to the height and width of the
feature map. Ci is the channel size of the feature map.

The specific process is as follows. Inputting an RGB-D image with the size H ×W × 4,
it is first divided into blocks with 4 × 4 pixels for each block. These blocks are then
used as inputs to the transformer blocks, which output multi-level feature images with
resolutions of {1/4, 1/8, 1/16, 1/32} of the original image. These multi-level features
are then up-sampled to 56× 56× Ci based on the transparent convolutional layers. By
employing channel-wise concatenation, the four levels of features are aggregated. To make
the height and width of the obtained features consistent with the original data, the two
deconvolution modules further up-sample the features. Two Res-channel attention blocks
are also employed to enhance the robustness of the features in the last part of the decoder.
The prediction head then can predict quality, angle and width heatmaps. The details of
HTC-Grasp are explored in the subsequent sections.

3.3. HTC-Grasp Architecture
3.3.1. Hierarchical Transformer Encoder

To facilitate the generation of multi-scale feature maps, HTC-grasp exploits a layered
Transformer architecture in this article. Multi-scale features generated by the hierarchical
Transformer encoder enhance the capability of the model. The feature encoder of HTC-
Grasp comprises four stages, each designed to generate feature maps at a different scale.
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The structure of each stage is similar and consists of a transformer block and a patch
embedding layer.

To be more specific, an image with resolution H ×W × 4 is fed into Patch Embedding
stages to get a hierarchical feature image Fi with the resolution of H

2i+1 , W
2i+1 , Ci, where i

ranges from 1 to 4. Considering that uniform partitioning will make the obtained patches
have no overlapping parts and weaken the connection between patches, overlapping parts
between each patch in the partitioning are preserved intentionally. Then the image patches
are fed into the encoder to obtain multi-scale features.

The Transformer based encoder is designed to extract features. Self-attention is the
most important module of each Transformer block. The original self-attention mechanism
generates three matrices: the query matrix Q ∈ RN×dk , the key matrix K ∈ RN×dk , and
the value matrix V ∈ RN×dv . Here, N means the number of patches. dk signifies the
feature dimensions of Q and K. dv corresponds to the dimension of V. The calculation of
self-attention is as follows:

Attention = so f tmax
(

QKT
√

d

)
V (3)

The shortage of self-attention presents a significant drawback to real-time applications,
especially extremely complex calculations. Additionally, self-attention can only model
correlations within individual samples, ignoring the correlations across the entire dataset.
To overcome these limitations, HTC-Grasp redesigns the Transformer blocks through the
multi-head external attention (MEA) [27] blocks.

MEA mechanism is incorporated to improve the efficiency of the transformer layer.
This mechanism is represented by the following equations:

hi = ExternalAttention(Fi, Mk, Mv) (4)

Fout = MultiHead(F, Mk, Mv) (5)

Fout = Concat(h1, . . . , hH)Wo (6)

where hi stands for the ith multi-head, H symbolizes the total number of multi-heads, and
Wo is a linear transformation matrix that has equal output and input dimensions. The
structure of MEA is shown in Figure 2.
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3.3.2. Grasp Decoder

The grasp decoder is designed with a combination of convolutional layers and Res-
channel attention blocks. As can be seen in Figure 3, the Res-channel attention block is a
combination of a ResNet block and a channel attention block. The ResNet block is made
up of three convolutional blocks. The kernel sizes of these three convolutional blocks are
set o 1× 1, 3× 3 and 1× 1, respectively. The channel attention block, on the other hand,



Electronics 2023, 12, 1505 6 of 16

utilizes global average pooling (GAP) aiming at decreasing the number of participants
contained in the features. This block then consists of dual fully connected layers and one
ReLU unit, which utilizes global information to selectively emphasize important features
and reduce the emphasis on less relevant features.
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Specifically, the decoder involves three key steps. To begin with, the multilevel features
Fi from the encoder are fed through the up-sample block, which increases the resolution to
1/4× 224× 224, and then these features are concatenated. Next, a CNN layer is utilized to
merge the resulting features, and this is followed by two upsampling layers that increase
the resolution to 224× 224. Finally, the fused features are utilized to make predictions
regarding the grasp heatmaps.

3.3.3. Loss Function

In this study, the task of robot grasp detection is a one-stage structure. In addition, the
smooth L1loss function is adopted as the optimization objective. The advantage of this loss
function is that it is robust to outliers and can provide stability during training.

Lreg
(
T̂k, Tk

)
= ∑

k∈{q,sin 2θ,cos 2θ,w}
Smooth

(
T̂k − Tk

)
(7)

The Smooth L1loss is defined as follows:

SmoothL1(x) =
{

0.5x2, i f |x| < 1
|x| − 0.5, otherwise

(8)

In this work, T̂k means the predicted grasping parameters. Tk represents the ground
truth. What’s more, q represents the grasping quality, θ stands for the rotation angle, and w
means the opening width between the fingertips of the gripper.

4. Experiments and Results
4.1. Dataset

In this work, experiments are conducted on Cornell and Jacquard datasets to fully
validate our HTC-Grasp method.

(a) Datasets

The Cornell dataset was published in 2013 and it includes 240 distinct objects. It
consists of 885 color images and 885 depth images. To ensure the best results from the
transformer structure, which requires a substantial amount of data, data augmentation
approaches like image rotation, scaling, and random cropping are applied to the dataset in
our work.

The Jacquard dataset consists of 54,485 diverse scenes for 11,619 different objects. It
provides RGB images, 3D point cloud data, and grasp annotations for each scene. Given
the massive size of the Jacquard dataset, no data transformations are performed on it in
this work.

(b) Implementation details
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In this article, the model was constructed using the Pytorch framework on the Ub-untu
20.04 platform. For training, an NVIDIA RTX 3090Ti GPU and an Intel Core i9-12900K CPU
are utilized. In the data augmentation process for the Cornell dataset, each 640 × 480 image
undergoes rotation, scaling, and random cropping, resulting in an image of size 224 × 224.
During each training step, image samples were randomly selected from the training dataset,
with 200 batches of size 32 in each epoch, and 100 epochs are trained in total. AdamW
is employed for training HTC-Grasp architecture. The starting learning rate is preset
to 0.0001.

HTC-Grasp is parameterized with the following configuration. The channel numbers
for stages 1 to 4 are set to 25, 26, 27 and 28 respectively. The headcount for each external
attention layer is set to 1, 2, 4, and 8, respectively. The number of encoder layers in stages
1 to 4 is set to L1 = L2 = L3 = L4 = 28. The number of output feature channels for each
decoder is set to C = 28.

In this work, each dataset was structured in two portions, with 90% used for training
and 10% for testing. To measure the capabilities of the HTC-Grasp method, both image-
wise and object-wise detection accuracy was used. Image-wise split randomly assigns
the entire data set as 9:1 to assess HTC-Grasp’s generalization performance of previously
seen objects when they appear in different situations and orientations. Object-wise split
divides the dataset based on object instances, ensuring that there are no identical object
instances in the training and test sets, thereby testing the network’s ability to generalize to
unknown objects.

(c) Evaluation index

The predicted grasping box was considered correct if it meets the following angle and
IOU constraints.

(1) The angle error between the predicted and labeled values must be within π/6
(2) The IOU index, which is defined in Equation (9), must be greater than 0.25.

IOU(R*, R) =

∣∣R* ∩ R
∣∣

|R* ∪ R|
(9)

4.2. Comparison Studies

To compare HTC-Grasp and other recent grasp detection methods, the same evaluation
metrics were used.

The comparison study starts with the evaluation of the Cornell dataset. The grasp
position can be determined by the four heatmaps output. The center pixel at the most
likely grasp position has the maximum predicted value of quality. The size and rotation
values of the grasp rectangle can be obtained by indexing the other three parameter values
corresponding to the center pixel. Figure 4 presents the results of GR-CNN, TF-Grasp [26]
and the proposed HTC-Grasp for unseen objects on the Cornell dataset. Statistical results
in Table 1 indicate that HTC-Grasp has a higher grasp quality as compared to the GR-CNN
and TF-Grasp methods.

For the classical method experimental results presented in Table 1, the data reported
in their original paper are selected. Table 1 illustrates the performance of HTC-Grasp
compared to existing algorithms on the Cornell dataset. HTC-Grasp surpasses other algo-
rithms with accuracy rates of 98.3% and 96.9% on image and object-wise tests, respectively.
Furthermore, HTC-Grasp, utilizing the NVIDIA RTX 3090Ti GPU, processes a single frame
in approximately 5.4 ms, fulfilling the requirement for real-time processing.
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Figure 4. Comparison of predicted heatmaps on Cornell Dataset. The first and second columns
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Table 1. The statistical results on Cornell Dataset.

Researchers Approaches Data
Accuracy (%)

Time (ms)
Image-Wise Object-Wise

Lenz [15] SAE RGB-D 73.9 75.6 1350
Redmon [18] AlexNet RGB-D 88 87.1 76
Kumra [19] ResNet-50 × 2 RGB-D 89.2 88.9 103

Morrision [14] GG-CNN D 73 69 19
Chu [28] ResNet-50 RGB-D 96 96.1 120
Asif [8] GraspNet RGB-D 90.2 90.6 24

Kumra [20] GR-CNN RGB-D 97.7 96.6 20
Wang [26] TF-Grasp RGB-D 97.99 96.7 41.6

Ours HTC-Grasp RGB-D 98.3 96.9 5.4

Comparative experiments using the Jacquard dataset are also conducted. Figure 5
displays some examples of the predicted heatmaps and predicted grasps of GR-CNN,
TF-Grasp, and HTC-Grasp. The results indicate that HTC-Grasp exhibits a higher grasping
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quality compared to GR-CNN and TF-Grasp methods. Table 2 presents the statistical
results of HTC-Grasp on the Jacquard dataset in comparison to several classic algorithms.
HTC-Grasp outperformed the other algorithms with an accuracy of 95.8% and 92.4% for
image and object-wise tests.
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Figure 5. Comparison of predicted heatmaps on Jacquard Dataset. The first and second columns
depict RGB and depth images, respectively. The third column displays the grasping rectangles and
successful grasps are marked as rectangles. The final three columns depict heatmaps indicating the
quality, angle, and width of the detected grasps. The quality heatmaps characterizes the degree of
confidence that each pixel is a valid grasping location.

Table 2. The statistical results on Jacquard Dataset.

Researchers Approaches Data
Accuracy (%)

Image-Wise Object-Wise

Morrision [14] GG-CNN D 84 -
Kumra [21] GR-CNN RGB-D 92.6 87.7
Wang [27] TF-Grasp RGB-D 94.6 -

Ours HTC-Grasp RGB-D 95.8 92.4

Qualitative comparison results for the Cornell and Jacquard datasets are demonstrated
in Figures 4 and 5. It can be observed that:

(1) As shown in the first and third rows of Figures 4 and 5, the GR-CNN method which
is solely based on CNNs has a low prediction quality in the central region of easily
grasped objects. The background predictions by GRCNN are almost identical to
actual grasping poses. This indicates that grasp pose detection is vulnerable to
environmental interference. This is due to the absence of an attention mechanism in
the GR-CNN network, leading to its poor performance.

(2) In comparison to the Transformer-based TF-Grasp model, the proposed HTC-Grasp
provides more precise predictions of grasp quality and retains more detailed shape
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information. This is achieved by incorporating an external attention mechanism in the
encoder module, which enhances the network’s capability to encode global context
and differentiate semantics. Furthermore, a Residual Channel attention module is
introduced into the decoder module, which allows the network to learn and determine
the significance of each feature channel, thereby improving the utilization of valuable
features and reducing the impact of redundant features.

Experimental results demonstrate that the HTC-Grasp approach can accurately iden-
tify suitable grasp locations and effectively differentiate graspable regions with a high level
of confidence. As seen in the third and sixth rows of Figure 4, valid grasping pixels are
highlighted with scores of approximating 1, while invalid pixels are marked with smaller
values. Similarly in Figure 5, the protruding parts of the object that are easily graspable
are precisely marked with a high score, and the model effectively captures both global
information and fine-grained features such as the exact location and shape of the object.

To further evaluate HTC-Grasp’s efficiency, experiments using a test set of images captured
by ourselves without additional training are conducted. The results in Figure 6 indicate that
HTC-Grasp can accurately identify grasp regions in an unseen real-world environment.
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Figure 6. The test result of HTC-Grasp in the real-world multiple objects environment. The first and
second columns depict RGB and depth images, respectively. The third column displays the grasping
rectangles and successful grasps are marked as rectangles. The final three columns depict heatmaps
indicating the quality, angle, and width of the detected grasps. The quality heatmaps characterizes
the degree of confidence that each pixel is a valid grasping location.

4.3. Ablation Studies

To validate the impact of external attention and channel attention on the HTC-Grasp
model, experiments on the same datasets are conducted. HTC-Grasp model is compared to
versions without external attention and channel attention, respectively.

Table 3 shows the results of the ablation experiments. The results indicate that incor-
porating external attention in the encoder and channel attention in the decoder leads to
improved performance. The external attention mechanism in the transformer effectively
combines global features, leading to better results. Additionally, the Res-Channel attention
blocks enhance the weight of effective feature maps, resulting in improved performance.
The results demonstrate that both external attention and Res-Channel attention contribute
to the accuracy of the final grasp box predictions.
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Table 3. The comparison results on Jacquard Dataset.

With External Attention With Channel Attention Accuracy (%)

Cornell
Dataset

√
97.2√
97.6√ √
98.3

Jacquard
Dataset

√
94.2√
94.7√ √
95.8

4.4. Grasping in Realistic Scenarios
4.4.1. Experimental Setup

In the grasping experiments, an Elite EC66 robot, a soft parallel manipulator and an
Orbbec Femto-W camera are utilized as the experimental setup. As shown in Figure 7,
the camera is positioned in a fixed location, and the image streams are captured by it.
With the help of the Fin Ray effect-inspired soft gripper, the robot can grasp different
shapes of targets adaptively without force control. For robot motion planning and control,
open-source ROS is employed as the software platform. To verify the adaptability of the
HTC-Grasp method to different shapes of grasping targets, more than 40 household objects
are used in the experiment. As shown in Figure 8, these targets are to be grasped such as
rectangular, cylindrical, circular and other objects of various shapes and sizes.

Figure 7. Realistic scenario experiment setup. The experimental equipment includes the Elite EC-66
robot, the Fin Ray effect-inspired soft parallel gripper and the Orbbec Femto-W RGB-D camera.
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4.4.2. Experiment Results

The RGB-D camera captures video streams and fed them into the proposed model to
obtain the best grasping pose. Subsequently, the robot’s end actuator approaches the target
according to the motion planning method, and the gripper is closed to grasp the target.
The end actuator is then able to lift the object to another location.

Figure 9 illustrates the grasping process. A total of 180 grips were carried out to
grasp household objects and the robot successfully grasped 168 times with an accuracy
rate of 93.3%. The detailed results are presented in Table 4. The results demonstrate the
effectiveness of the HTC-Grasp method in real-world robot grasping tasks. Some successful
and unsuccessful grasp examples are shown in Appendices A and B.
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Figure 9. Example of the robotic grasp process. (a) shows the initial state of the robot. (b) illustrates
the robot’s gripper has moved to the target to be grasped. (c) shows the state of the object being
grasped. (d) demonstrates the target being moved to another location.

Table 4. Grasp success rates in robotic grasping experiments.

Researchers Physical Grasp Success Rate

Lenz [15] 89/100 89.0%
Morrison [14] 110/120 92.0%

Chu [28] 89/100 89.0%
Wang [26] 152/165 92.1%

Ours 168/180 93.3%

According to the above argumentation experiment results, the HTC-Grasp method
has excellent detection results in most cases. However, when faced with poor light-
ing conditions, transparency, reflections, etc., the accuracy of the proposed algorithm
detection decreases.

5. Conclusions

This article proposes a novel hierarchical hybrid architecture that combines Trans-
former and convolutional neural network (CNN) for visual grasping in robotics. Specifically,
the proposed architecture enhances the conventional CNN by incorporating an external
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attention-based hierarchical Transformer, as the encoder, captures the global context, and
generates more informative feature representations. Additionally, a channel-wise attention
mechanism is introduced to adaptively adjust channel weights for efficient feature aggre-
gation. The proposed architecture, HTC-Grasp, has been evaluated on two benchmark
datasets, namely Cornell and Jacquard, and it was found that the proposed approach consis-
tently outperformed existing state-of-the-art methods, leading to significant improvements
in grasping accuracy.

Author Contributions: Conceptualization, Q.Z.; methodology, Q.Z. and J.Z.; software, Q.Z. and
J.Z.; writing—original draft preparation, J.Z. and X.S.; writing—review and editing, Q.Z. and M.L.;
visualization, X.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number 61903162) and Jiangsu Province’s “Double Innovation Plan”: Research and development of
flexible cooperative robot technology for intelligent manufacturing.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Sample of Successful Grasps

The first and third columns shows the quality maps for each image. The quality
heatmaps characterizes the degree of confidence that each pixel is a valid grasping location.
Successful grasps are marked as blue rectangles in the second and the fourth columns.
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Appendix B Sample of Unsuccessful Grasps

The first and third columns shows the quality maps for each image. The quality
heatmaps characterizes the degree of confidence that each pixel is a valid grasping location.
Unsuccessful grasps are marked as blue rectangles in the second and the fourth columns.
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