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Abstract: Accurately detecting suitable grasp areas for unknown objects through visual information 
remains a challenging task. Drawing inspiration from the success of the Vision Transformer in vi-
sion detection, the hybrid Transformer-CNN architecture for robotic grasp detection, known as 
HTC-Grasp, is developed to improve the accuracy of grasping unknown objects. The architecture 
employs an external attention-based hierarchical Transformer as an encoder to effectively capture 
global context and correlation features across the entire dataset. Furthermore, a channel-wise atten-
tion-based CNN decoder is presented to adaptively adjust the weight of the channels in the ap-
proach, resulting in more efficient feature aggregation. The proposed method is validated on the 
Cornell and the Jacquard dataset, achieving an image-wise detection accuracy of 98.3% and 95.8% 
on each dataset, respectively. Additionally, the object-wise detection accuracy of 96.9% and 92.4% 
on the same datasets are achieved based on this method. A physical experiment is also performed 
using the Elite 6Dof robot, with a grasping accuracy rate of 93.3%, demonstrating the proposed 
method’s ability to grasp unknown objects in real scenarios. The results of this study indicate that 
the proposed method outperforms other state-of-the-art methods. 

Keywords: robotic grasp; transformer; attentional mechanism 
 

1. Introduction 
In the most recent decade, the advancement of artificial intelligence has made smart 

robots increasingly important in industries such as smart factories and healthcare [1,2]. 
Among the tasks performed by these robots, grasping objects is a fundamental ability that 
enables them to carry out more complex operations. Vision-based automated grasping, 
where the robot uses visual sensors to identify the best gripping position for an object, is 
crucial for their intelligence and automation [3,4]. However, despite the advancements in 
the field, most of the current methods are still limited to models of known objects or 
trained for known scenes, making the task of grasping unknown objects, with high accu-
racy, a significant challenge [5]. 

Currently, most grasp detection methods for vision robots rely on convolutional neu-
ral networks (CNNs) [6–10]. Despite their popularity, CNNs have limitations in handling 
grasping tasks. They are designed to process local information through their small con-
volutional kernels and have difficulty capturing global information due to limited filter 
channels and convolution kernel sizes. The convolutional computation method used by 
CNNs also makes it challenging to capture long-distance dependency information during 
information processing. 

Transformer architecture has seen great success in the field of vision lately [11,12]. 
The Transformer’s self-attention mechanism provides a more comprehensive understand-
ing of image features compared to CNNs. The Transformer has the ability to effectively 
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capture global information through its self-attentive mechanism, which makes it a more 
representative model. 

While the self-attention mechanism of the Transformer is useful for capturing infor-
mation within a single sample, it may not fully leverage the potential connections between 
different samples. In the task of grasping, the features of the grasping target are often 
correlated, and the background features of similar scenes are consistent. Thus, considering 
the potential connections between different samples can lead to a more robust feature rep-
resentation. To address this challenge, the proposed HTC-Grasp incorporates external at-
tention in the transformer block to enhance the representation of correlations between dif-
ferent images. 

Moreover, the multi-scale feature fusion mechanism introduces a significant amount 
of noisy features, which can negatively impact grasp detection performance. To mitigate 
this issue and improve the role of effective features, the proposed framework incorporates 
a residual connection-based channel attention block in the decoder. This approach enables 
efficient learning of discriminative channel-wise features. 

The original contributions of this research are outlined below: 
1. A highly robust hierarchical Transformer-CNN architecture for robot grasp detection 

is developed that integrates local and global features. 
2. In this architecture, the external attention-based hierarchical Transformer is pro-

posed as an encoder to effectively capture global context and the correlation features 
across the whole data. Furthermore, a channel-wise attention-based CNN decoder is 
provided to adaptively adjust the weight of the channels, thus providing a more ef-
ficient feature aggregation. 

3. Extensive experiments are conducted on both public datasets and real-world object 
grasp tasks to validate the performance of the HTC-Grasp approach. The results, both 
qualitative and quantitative, manifest that the HTC-Grasp surpasses state-of-the-art 
robotic grasp solutions and can detect stable grasps with high accuracy. 
The proposed HTC-Grasp approach can adapt well to the 2D robotic grasp environ-

ment and can be applied in logistics centers for picking up goods, automated garbage 
sorting, robotic assistance for household tasks, etc. 

2. Related Works 
The representation of object grasping is crucial for robot grasp detection. Jiang et al. 

[13] proposed an efficient method that describes the grasping position using a rectangular 
representation, using a 5-dimensional vector to describe the position, height, width, and 
rotation angle of the grasp in the image. Morrison et al. [14] introduced a grasp location 
description method, which gives the gripping position and posture by predicting the grip-
ping quality of each pixel. These two models are widely used in robot grasp detection 
tasks. 

Current grasp detection models are broadly classified into two different types: cas-
cade approaches and one-stage architecture. Cascade approaches perform the entire grasp 
prediction process in stages, including the extraction of target features, generation of can-
didate regions, and evaluation of the optimal gripping position. Lenz et al. [15] created 
the Cornell dataset and proposed a two-stage cascade detection model to learn this five-
dimensional grasp. The first stage uses a neural network to extract grasp prediction fea-
tures. The second phase refines the predicted grasp parameters to output the optimal 
grasp location. Zhou et al. [16] presented a model that predicts multiple grasping poses 
using an oriented anchor box. Zhang et al.[3] introduced the ROI-GD approach, which 
uses ROI features to detect grasps instead of the whole image. Laili et al. [17] presented a 
region-based approach to locating grasping point pairs. A consistency-based method is 
used to train the grasp detector with less labelled training data. 

In the last few years, the development of one-stage detection approaches for object 
grasping has gained popularity due to their simple and efficient structure. The one-stage 
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approach trains a grasp detection model to directly output the grabbing location. Previous 
works, such as Redmon et al. [18], used AlexNet to directly process the input image and 
predict the grasp location. Kumra et al. [19,20] built a grasp network based on ResNet that 
extracts features from RGB and depth images to output both classification and regression 
results for the optimal grasp location. Mahler et al. [21] put forward a grasp quality eval-
uation network using image segmentation and a corresponding point cloud for grasp pre-
diction. Morrison et al. [14] used convolutional layers for encoding and decoding to per-
form pixel-level grasp prediction of feature maps. Yu et al. [22] presented a U-Net-like 
architecture with channel attention modules to better utilize features. Wu et al. [23] intro-
duced an anchor-free approach which employs a completely convolutional network. This 
approach frames grasp detection as grasp rectangle regression and category classification 
tasks. The CNN-based grasping target detection algorithms discussed above have made 
significant progress. However, the use of convolutional kernels, which primarily focus on 
local spatial information, can limit the ability to capture global information correlations, 
potentially hindering further improvements in detection accuracy. 

Recently, the transformer has gained traction in computer vision because of its ability 
to capture global information, overcoming the limitations of CNN models. The trans-
former has shown excellent performance in applications like object detection, classifica-
tion and tracking [24,25] through its self-attention mechanism and pyramid-like structure. 
In 2022, Wang et al. [26] used the SWIN Transformer to extract features with impressive 
results. The self-attentive mechanism, while useful, has a limitation in that it focuses only 
on the information contained within a single sample and ignores the connection across 
the whole dataset, which may negatively impact the robustness of feature representation. 

To overcome the challenges described above, the HTC-Grasp approach is proposed 
in this article. With the aid of external attention structure, long-distance spatial correlation 
can be learned. The global context between data samples can ameliorate feature robust-
ness implicitly. In order to aggregate the extracted multiscale features, up-sampling and 
skip connection are introduced to the decoder. The channel attention modules based on 
SE-block further assign adaptive weights to each feature channel to enhance the feature 
representation. 

3. Method 
3.1. Grasp Task Representation 

The vision grasping tasks typically involve collecting visual images of the target ob-
ject using sensors such as RGBD cameras. These images are processed by a model to de-
termine the optimal grasp position. When the robot is equipped with parallel grippers, 
the grasping parameters 𝑝 can be represented as a 5-dimensional tuple. 𝑝 = {𝑥,𝑦,𝜃,𝑤,ℎ} (1)

When it comes to the above formula, (𝑥,𝑦) means the 2D coordinates of the center 
point, (𝑤,ℎ)  represents the size of the grasping box including the width and height. 
What’s more, 𝜃 represents the rotation angle of the gripper compared to the horizontal 
axis. 

An alternative representation for high-precision, real-time robot grasping was intro-
duced in [14]. In this representation, the grasp is redefined for 2DoF robotic grasping tasks 
as follows: 𝑃 = {𝑄 ,𝛩 ,𝑊 } ∈ ℝ  ×  ×  (2)

where 𝑃 is a 3-dimensional tensor. The first dimension, 𝑄  means the quality of every 
pixel of the input image. And the second dimension, 𝛩 , denotes the orientation angle 
between the fingertips of the gripper. What’s more, the third dimension, 𝑊 , represents 
the opening width between the fingertips of the gripper. Each pixel, with a specific angle 𝛩 ,  and width 𝑊 , , corresponds to the orientation angle and width of the finger gripper 
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at the particular position. Additionally, H and W correspond to the width and length of 
the feature map. 

3.2. Grasp Overview 
The structure of the HTC-Grasp is illustrated in Figure 1. It consists of three parts: 

the Transformer based encoder, the CNN-based decoder, and the prediction head. The 
encoder is built using hierarchical transformers with a pyramidal design to extract multi-
scale features. The CNN-based decoder, made up of transposed convolution layers with 
res-channel attention blocks, fuses the previously obtained multi-scale features. Finally, 
the fused features are used by four sub-task networks to predict grasp heatmaps, includ-
ing the map of quality score, the angle (in sin 2𝜃 and cos 2𝜃 form) and the width. 
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Figure 1. Overview of HTC-Grasp. H and W in the figure correspond to the height and width of the 
feature map. 𝐶  is the channel size of the feature map. 

The specific process is as follows. Inputting an RGB-D image with the size 𝐻 × 𝑊 × 4, it is first divided into blocks with 4 × 4 pixels for each block. These blocks are 
then used as inputs to the transformer blocks, which output multi-level feature images 
with resolutions of {1/4, 1/8, 1/16, 1/32} of the original image. These multi-level features 
are then up-sampled to 56 × 56 × C  based on the transparent convolutional layers. By 
employing channel-wise concatenation, the four levels of features are aggregated. To 
make the height and width of the obtained features consistent with the original data, the 
two deconvolution modules further up-sample the features. Two Res-channel attention 
blocks are also employed to enhance the robustness of the features in the last part of the 
decoder. The prediction head then can predict quality, angle and width heatmaps. The 
details of HTC-Grasp are explored in the subsequent sections. 
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3.3. HTC-Grasp Architecture 
3.3.1. Hierarchical Transformer Encoder 

To facilitate the generation of multi-scale feature maps, HTC-grasp exploits a layered 
Transformer architecture in this article. Multi-scale features generated by the hierarchical 
Transformer encoder enhance the capability of the model. The feature encoder of HTC-
Grasp comprises four stages, each designed to generate feature maps at a different scale. 
The structure of each stage is similar and consists of a transformer block and a patch em-
bedding layer. 

To be more specific, an image with resolution 𝐻 × 𝑊 × 4 is fed into Patch Embed-
ding stages to get a hierarchical feature image 𝐹   with the resolution of , ,𝐶  , 
where 𝑖 ranges from 1 to 4. Considering that uniform partitioning will make the obtained 
patches have no overlapping parts and weaken the connection between patches, overlap-
ping parts between each patch in the partitioning are preserved intentionally. Then the 
image patches are fed into the encoder to obtain multi-scale features. 

The Transformer based encoder is designed to extract features. Self-attention is the 
most important module of each Transformer block. The original self-attention mechanism 
generates three matrices: the query matrix 𝑄 ∈ ℝ  × , the key matrix 𝐾 ∈ ℝ  × , and 
the value matrix 𝑉 ∈ ℝ  × . Here, 𝑁 means the number of patches. 𝑑  signifies the fea-
ture dimensions of 𝑄 and 𝐾. 𝑑  corresponds to the dimension of 𝑉. The calculation of 
self-attention is as follows: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾√𝑑 )𝑉 (3)

The shortage of self-attention presents a significant drawback to real-time applica-
tions, especially extremely complex calculations. Additionally, self-attention can only 
model correlations within individual samples, ignoring the correlations across the entire 
dataset. To overcome these limitations, HTC-Grasp redesigns the Transformer blocks 
through the multi-head external attention (MEA) [27] blocks. 

MEA mechanism is incorporated to improve the efficiency of the transformer layer. 
This mechanism is represented by the following equations: ℎ = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐹 ,𝑀 ,𝑀 ) (4)𝐹 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝐹,𝑀 ,𝑀 ) (5)𝐹 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ , … ,ℎ )𝑊  (6)

where ℎ  stands for the 𝑖th multi-head, Hd symbolizes the total number of multi-heads, 
and 𝑊  is a linear transformation matrix that has equal output and input dimensions. The 
structure of MEA is shown in Figure 2. 

Norm

ConcatLinear

Linear

Linear

 
Figure 2. The architecture of external attention block. 
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3.3.2. Grasp Decoder 
The grasp decoder is designed with a combination of convolutional layers and Res-

channel attention blocks. As can be seen in Figure 3, the Res-channel attention block is a 
combination of a ResNet block and a channel attention block. The ResNet block is made 
up of three convolutional blocks. The kernel sizes of these three convolutional blocks are 
set o 1 × 1, 3 × 3 and 1 × 1, respectively. The channel attention block, on the other hand, 
utilizes global average pooling (GAP) aiming at decreasing the number of participants 
contained in the features. This block then consists of dual fully connected layers and one 
ReLU unit, which utilizes global information to selectively emphasize important features 
and reduce the emphasis on less relevant features. 

Conv
1×1

Conv
3×3

Conv
1×1

Conv
1×1

+Input

GAP F
C RELU F

C Sigmoid

× output

 
Figure 3. Res-Channel attention block. 

Specifically, the decoder involves three key steps. To begin with, the multilevel fea-
tures 𝐹  from the encoder are fed through the up-sample block, which increases the res-
olution to 1/4 × 224 × 224, and then these features are concatenated. Next, a CNN layer 
is utilized to merge the resulting features, and this is followed by two upsampling layers 
that increase the resolution to 224 × 224. Finally, the fused features are utilized to make 
predictions regarding the grasp heatmaps. 

3.3.3. Loss Function 
In this study, the task of robot grasp detection is a one-stage structure. In addition, 

the smooth 𝐿 loss function is adopted as the optimization objective. The advantage of this 
loss function is that it is robust to outliers and can provide stability during training. 𝐿 𝑇 ,𝑇 = 𝑆𝑚𝑜𝑜𝑡ℎ(𝑇 − 𝑇 )∈{ , , , }  (7)

The Smooth 𝐿 loss is defined as follows: 𝑆𝑚𝑜𝑜𝑡ℎ (𝑥) = 0.5𝑥 ,         𝑖𝑓 |𝑥| < 1|𝑥| − 0.5,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (8)

In this work, 𝑇   means the predicted grasping parameters. 𝑇   represents the 
ground truth. What’s more, 𝑞 represents the grasping quality, 𝜃 stands for the rotation 
angle, and 𝑤 means the opening width between the fingertips of the gripper. 

4. Experiments and Results 
4.1. Dataset 

In this work, experiments are conducted on Cornell and Jacquard datasets to fully 
validate our HTC-Grasp method. 
(a) Datasets 

The Cornell dataset was published in 2013 and it includes 240 distinct objects. It con-
sists of 885 color images and 885 depth images. To ensure the best results from the trans-
former structure, which requires a substantial amount of data, data augmentation ap-
proaches like image rotation, scaling, and random cropping are applied to the dataset in 
our work. 
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The Jacquard dataset consists of 54,485 diverse scenes for 11,619 different objects. It 
provides RGB images, 3D point cloud data, and grasp annotations for each scene. Given 
the massive size of the Jacquard dataset, no data transformations are performed on it in 
this work. 
(b) Implementation details 

In this article, the model was constructed using the Pytorch framework on the Ub-
untu 20.04 platform. For training, an NVIDIA RTX 3090Ti GPU and an Intel Core i9-
12900K CPU are utilized. In the data augmentation process for the Cornell dataset, each 
640 × 480 image undergoes rotation, scaling, and random cropping, resulting in an image 
of size 224 × 224. During each training step, image samples were randomly selected from 
the training dataset, with 200 batches of size 32 in each epoch, and 100 epochs are trained 
in total. AdamW is employed for training HTC-Grasp architecture. The starting learning 
rate is preset to 0.0001. 

HTC-Grasp is parameterized with the following configuration. The channel numbers 
for stages 1 to 4 are set to 2 , 2 , 2  and 2  respectively. The headcount for each exter-
nal attention layer is set to 1, 2, 4, and 8, respectively. The number of encoder layers in 
stages 1 to 4 is set to 𝐿 = 𝐿 = 𝐿 = 𝐿 = 2 . The number of output feature channels for 
each decoder is set to C = 2 . 

In this work, each dataset was structured in two portions, with 90% used for training 
and 10% for testing. To measure the capabilities of the HTC-Grasp method, both image-
wise and object-wise detection accuracy was used. Image-wise split randomly assigns the 
entire data set as 9:1 to assess HTC-Grasp’s generalization performance of previously seen 
objects when they appear in different situations and orientations. Object-wise split divides 
the dataset based on object instances, ensuring that there are no identical object instances 
in the training and test sets, thereby testing the network’s ability to generalize to unknown 
objects. 
(c) Evaluation index 

The predicted grasping box was considered correct if it meets the following angle 
and IOU constraints. 
(1) The angle error between the predicted and labeled values must be within 𝜋 6⁄ . 
(2) The IOU index, which is defined in Equation (9), must be greater than 0.25. 

𝐼𝑂𝑈(𝑅∗,𝑅) = |𝑅∗ ∩ 𝑅||𝑅∗ ∪ 𝑅| (9)

4.2. Comparison Studies 
To compare HTC-Grasp and other recent grasp detection methods, the same evalua-

tion metrics were used. 
The comparison study starts with the evaluation of the Cornell dataset. The grasp 

position can be determined by the four heatmaps output. The center pixel at the most 
likely grasp position has the maximum predicted value of quality. The size and rotation 
values of the grasp rectangle can be obtained by indexing the other three parameter values 
corresponding to the center pixel. Figure 4 presents the results of GR-CNN, TF-Grasp [26] 
and the proposed HTC-Grasp for unseen objects on the Cornell dataset. Statistical results 
in Table 1 indicate that HTC-Grasp has a higher grasp quality as compared to the GR-
CNN and TF-Grasp methods.  
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Figure 4. Comparison of predicted heatmaps on Cornell Dataset. The first and second columns 
depict RGB and depth images, respectively. The third column displays the grasping rectangles 
and successful grasps are marked as rectangles. The final three columns depict heatmaps indicat-
ing the quality, angle, and width of the detected grasps. The quality heatmaps characterizes the 
degree of confidence that each pixel is a valid grasping location. 

Table 1. The statistical results on Cornell Dataset. 

Researchers Approaches Data 
Accuracy (%) 

Time (ms) 
Image-Wise Object-Wise 

Lenz [15] SAE RGB-D 73.9 75.6 1350 
Redmon [18] AlexNet RGB-D 88 87.1 76 
Kumra [19] ResNet-50 × 2 RGB-D 89.2 88.9 103 

Morrision [14] GG-CNN D 73 69 19 
Chu [28] ResNet-50 RGB-D 96 96.1 120 
Asif [8] GraspNet RGB-D 90.2 90.6 24 

Kumra [20] GR-CNN RGB-D 97.7 96.6 20 
Wang [26] TF-Grasp RGB-D 97.99 96.7 41.6 

Ours HTC-Grasp RGB-D 98.3 96.9 5.4 

For the classical method experimental results presented in Table 1, the data reported 
in their original paper are selected. Table 1 illustrates the performance of HTC-Grasp com-
pared to existing algorithms on the Cornell dataset. HTC-Grasp surpasses other algo-
rithms with accuracy rates of 98.3% and 96.9% on image and object-wise tests, respec-
tively. Furthermore, HTC-Grasp, utilizing the NVIDIA RTX 3090Ti GPU, processes a sin-
gle frame in approximately 5.4 ms, fulfilling the requirement for real-time processing. 

Comparative experiments using the Jacquard dataset are also conducted. Figure 5 
displays some examples of the predicted heatmaps and predicted grasps of GR-CNN, TF-
Grasp, and HTC-Grasp. The results indicate that HTC-Grasp exhibits a higher grasping 
quality compared to GR-CNN and TF-Grasp methods. Table 2 presents the statistical 
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results of HTC-Grasp on the Jacquard dataset in comparison to several classic algorithms. 
HTC-Grasp outperformed the other algorithms with an accuracy of 95.8% and 92.4% for 
image and object-wise tests. 

 RGB D Grasp Quality Angle Width 

GR- 
CNN 

 

TF- 
Grasp 

 

Our 

 

GR- 
CNN 

 

TF- 
Grasp 

 

Our 

 
Figure 5. Comparison of predicted heatmaps on Jacquard Dataset. The first and second columns 
depict RGB and depth images, respectively. The third column displays the grasping rectangles and 
successful grasps are marked as rectangles. The final three columns depict heatmaps indicating the 
quality, angle, and width of the detected grasps. The quality heatmaps characterizes the degree of 
confidence that each pixel is a valid grasping location. 

Table 2. The statistical results on Jacquard Dataset. 

Researchers Approaches Data 
Accuracy (%) 

Image-Wise Object-Wise 
Morrision [14] GG-CNN D 84 - 

Kumra [21] GR-CNN RGB-D 92.6 87.7 
Wang [27] TF-Grasp RGB-D 94.6 - 

Ours HTC-Grasp RGB-D 95.8 92.4 

Qualitative comparison results for the Cornell and Jacquard datasets are demon-
strated in Figures 4 and 5. It can be observed that: 
(1) As shown in the first and third rows of Figures 4 and 5, the GR-CNN method which 

is solely based on CNNs has a low prediction quality in the central region of easily 
grasped objects. The background predictions by GRCNN are almost identical to ac-
tual grasping poses. This indicates that grasp pose detection is vulnerable to environ-
mental interference. This is due to the absence of an attention mechanism in the GR-
CNN network, leading to its poor performance. 

(2) In comparison to the Transformer-based TF-Grasp model, the proposed HTC-Grasp 
provides more precise predictions of grasp quality and retains more detailed shape 
information. This is achieved by incorporating an external attention mechanism in 



Electronics 2023, 12, 1505 10 of 16 
 

 

the encoder module, which enhances the network’s capability to encode global con-
text and differentiate semantics. Furthermore, a Residual Channel attention module 
is introduced into the decoder module, which allows the network to learn and deter-
mine the significance of each feature channel, thereby improving the utilization of 
valuable features and reducing the impact of redundant features. 
Experimental results demonstrate that the HTC-Grasp approach can accurately iden-

tify suitable grasp locations and effectively differentiate graspable regions with a high 
level of confidence. As seen in the third and sixth rows of Figure 4, valid grasping pixels 
are highlighted with scores of approximating 1, while invalid pixels are marked with 
smaller values. Similarly in Figure 5, the protruding parts of the object that are easily 
graspable are precisely marked with a high score, and the model effectively captures both 
global information and fine-grained features such as the exact location and shape of the 
object. 

To further evaluate HTC-Grasp’s efficiency, experiments using a test set of images 
captured by ourselves without additional training are conducted. The results in Figure 6 
indicate that HTC-Grasp can accurately identify grasp regions in an unseen real-world 
environment. 

RGB D Grasp Quality Angle Width 

Figure 6. The test result of HTC-Grasp in the real-world multiple objects environment. The first and 
second columns depict RGB and depth images, respectively. The third column displays the grasping 
rectangles and successful grasps are marked as rectangles. The final three columns depict heatmaps 
indicating the quality, angle, and width of the detected grasps. The quality heatmaps characterizes 
the degree of confidence that each pixel is a valid grasping location.  

4.3. Ablation Studies 
To validate the impact of external attention and channel attention on the HTC-Grasp 

model, experiments on the same datasets are conducted. HTC-Grasp model is compared 
to versions without external attention and channel attention, respectively. 

Table 3 shows the results of the ablation experiments. The results indicate that incor-
porating external attention in the encoder and channel attention in the decoder leads to 
improved performance. The external attention mechanism in the transformer effectively 
combines global features, leading to better results. Additionally, the Res-Channel atten-
tion blocks enhance the weight of effective feature maps, resulting in improved perfor-
mance. The results demonstrate that both external attention and Res-Channel attention 
contribute to the accuracy of the final grasp box predictions.  
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Table 3. The comparison results on Jacquard Dataset. 

 With External Attention With Channel Attention Accuracy (%) 

Cornell 
Dataset 

√  97.2 
 √ 97.6 
√ √ 98.3 

Jacquard 
Dataset 

√  94.2 
 √ 94.7 
√ √ 95.8 

4.4. Grasping in Realistic Scenarios 
4.4.1. Experimental Setup 

In the grasping experiments, an Elite EC66 robot, a soft parallel manipulator and an 
Orbbec Femto-W camera are utilized as the experimental setup. As shown in Figure 7, the 
camera is positioned in a fixed location, and the image streams are captured by it. With 
the help of the Fin Ray effect-inspired soft gripper, the robot can grasp different shapes of 
targets adaptively without force control. For robot motion planning and control, open-
source ROS is employed as the software platform. To verify the adaptability of the HTC-
Grasp method to different shapes of grasping targets, more than 40 household objects are 
used in the experiment. As shown in Figure 8, these targets are to be grasped such as 
rectangular, cylindrical, circular and other objects of various shapes and sizes. 

Orbbec Femto-W
RGB-D camera

Fin Ray effect inspired 
soft robotic gripper

Elite EC-66 robot

 
Figure 7. Realistic scenario experiment setup. The experimental equipment includes the Elite EC-66 
robot, the Fin Ray effect-inspired soft parallel gripper and the Orbbec Femto-W RGB-D camera. 

 
Figure 8. Household objects used in the experiment. 
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4.4.2. Experiment Results 
The RGB-D camera captures video streams and fed them into the proposed model to 

obtain the best grasping pose. Subsequently, the robot’s end actuator approaches the tar-
get according to the motion planning method, and the gripper is closed to grasp the target. 
The end actuator is then able to lift the object to another location. 

Figure 9 illustrates the grasping process. A total of 180 grips were carried out to grasp 
household objects and the robot successfully grasped 168 times with an accuracy rate of 
93.3%. The detailed results are presented in Table 4. The results demonstrate the effective-
ness of the HTC-Grasp method in real-world robot grasping tasks. Some successful and 
unsuccessful grasp examples are shown in Appendices A and B. 

According to the above argumentation experiment results, the HTC-Grasp method 
has excellent detection results in most cases. However, when faced with poor lighting 
conditions, transparency, reflections, etc., the accuracy of the proposed algorithm detec-
tion decreases. 

 
(a) (b) 

  
(c) (d) 

Figure 9. Example of the robotic grasp process. (a) shows the initial state of the robot. (b) illustrates 
the robot’s gripper has moved to the target to be grasped. (c) shows the state of the object being 
grasped. (d) demonstrates the target being moved to another location. 

Table 4. Grasp success rates in robotic grasping experiments. 

Researchers Physical Grasp Success Rate 
Lenz [15] 89/100 89.0% 

Morrison [14] 110/120 92.0% 
Chu [28] 89/100 89.0% 

Wang [26] 152/165 92.1% 
Ours 168/180 93.3% 
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5. Conclusions 
This article proposes a novel hierarchical hybrid architecture that combines Trans-

former and convolutional neural network (CNN) for visual grasping in robotics. Specifi-
cally, the proposed architecture enhances the conventional CNN by incorporating an ex-
ternal attention-based hierarchical Transformer, as the encoder, captures the global con-
text, and generates more informative feature representations. Additionally, a channel-
wise attention mechanism is introduced to adaptively adjust channel weights for efficient 
feature aggregation. The proposed architecture, HTC-Grasp, has been evaluated on two 
benchmark datasets, namely Cornell and Jacquard, and it was found that the proposed 
approach consistently outperformed existing state-of-the-art methods, leading to signifi-
cant improvements in grasping accuracy. 
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Appendix A: Sample of Successful Grasps. The first and third columns shows the 
quality maps for each image. The quality heatmaps characterizes the degree of confi-
dence that each pixel is a valid grasping location. Successful grasps are marked as 
blue rectangles in the second and the fourth columns. 

Quality Grasp Quality Grasp 

 

 

 



Electronics 2023, 12, 1505 14 of 16 
 

 

 

 

 

 

 

 

 



Electronics 2023, 12, 1505 15 of 16 
 

 

 

 

Appendix B: Sample of Unsuccessful Grasps. The first and third columns shows the 
quality maps for each image. The quality heatmaps characterizes the degree of confi-
dence that each pixel is a valid grasping location. Unsuccessful grasps are marked as 
blue rectangles in the second and the fourth columns. 

Quality Grasp Quality Grasp 
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