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Abstract: This research paper studies and highlights the features of the most popular finite control set
model predictive control (FCS-MPC) strategies available in the state of the art, which are the optimal
switching vector (OSV-MPC), modulated model predictive control (M2PC), and optimal switching
sequence (OSS-MPC) methods. Thus, these strategies are studied experimentally by analyzing the
transient and steady state performance using a grid tie conventional three-phase two-level voltage
source inverter (VSI) with inductive output filter in a Typhoon HIL real-time simulator (RTS) with a
Texas Instruments F28379D digital signal processor (DSP). Hence, quantitative indicators, such as the
maximum tracking error, the mean absolute error, the settling time, the total harmonic distortion, the
switching frequency spectrum, the switching pattern, and the computational burden are compared
with the aim to deduce the best strategy for each criteria.

Keywords: finite control set model predictive control; optimal switching vector; modulated model
predictive control; optimal switching sequence; comparative analysis

1. Introduction

To provide the electrical power required by the electrical loads, it is necessary to use
electrical power converters which also used to enhance the electrical power efficiency. In
fact, this is necessary for many applications such as electrical vehicles and distributed
generation, which require a continuous enhancement in the technology used. Indeed, the
control of the power converters is considered one of the important points of interest in
the power electronics field. Initially, this step was performed using operational amplifiers.
Then, digital signal processors (DSPs) were introduced to generate the control signals for the
switches [1,2]. These technologies allowed the use of intelligent control techniques, namely,
fuzzy logic, sliding mode, artificial neural network (ANN), and predictive control [1–5].

For instance, predictive control uses the system model and prediction to generate the
signals control [1,4,5]. Among various predictive control techniques, model predictive
control (MPC) is used in power converter applications [2–4,6]. Indeed, MPC consists in
predicting the values of variables to be controlled. To do so, a cost function is used and
minimized in such a way that the optimum value of the control signals of the power
converter switching states are calculated at each sample time [4,6,7]. Based on the type of
optimization (integer or non-integer), two subdivisions may be considered for the MPC.
The first one consists in the non-integer optimization MPC, known as the continuous control
set (CCS-MPC) which uses continuous signals to control the converter. The implementation
of CCS-MPC is characterized by its high complexity [5,6]. However, lower computational
cost, fixed switching frequency, and the possibility to expand the prediction horizon are the
main advantages of CCS-MPC [6]. The second subdivision is the integer MPC optimization
technique, known as the finite control set (FCS-MPC) [5–7], which utilizes the discrete
nature of power converters, with finite switching states for the control of the converter
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switches. In fact, FCS-MPC does not require a modulator and control algorithm [3,5,6].
Indeed, this technique is considered as the most useful for the power converters control [5,6],
despite its significant computational cost. This is noticed especially in the case of long
prediction horizon in which the optimization is online and it considers many possibilities
in the optimization procedure on every sampling time (Ts) [6,7]. Moreover, FCS-MPC can
be classified on the optimal switching vector (OSV-MPC) and optimal switching sequence
(OSS-MPC) based on the applied switching vector application [6]. For instance, OSV-MPC
is a very popular MPC technique that uses all available switching vectors as possible control
actions on the converter. In fact, a cost function that includes all the possible switching
vectors is used. Hence, the vector that fulfills the lowest cost function is applied to the
converter during the switching period [6]. This cost function is minimized in such a way
that the same vector can be applied to the converter for the next switching selection. Hence,
a variable switching frequency ( fs) limited to fs/2 can be obtained. Moreover, the average
value of fs is usually much lower than this value [8]. In addition, fs generates a spread
frequency spectrum at the output of the converter. This means that higher complexity in
filter design is obtained, on the one hand, and an inferior harmonic response with higher
total harmonic distortion (THD) is generated, on the other hand, which is considered one
of the most significant drawbacks of this technique [6,8].

To overcome this OSV-MPC issue, many solutions have been analyzed in the literature.
For example, a hybrid OSV-MPC is studied in [9], in which the optimized control signals
are filtered using a low-pass filter before being applied to a pulse width modulator (PWM).
This method demonstrated a better frequency spectrum owing to the use of the filter and a
modulator in the control design. Moreover, in the research paper [10], the authors used the
virtual state vector to archive a constant switching frequency. In fact, this method requires
many virtual vectors to be evaluated at low sampling frequencies in such a way that the
computational burden can be high to maintain the performance. Other solutions to the
frequency problem consist in the modifications of the cost function [11–15]. Indeed, this
solution achieves a better frequency spectrum at the cost of the complexity of the cost
functions. Therefore although solutions exist, each one has disadvantages and does not
adequately solve the problem.

In recent years, OSS-MPC has emerged as a new technique of FCS-MPC in which a set
of switching sequences are evaluated at each sample time Ts to generate a cost function.
The sequence with the lowest cost functions is selected and applied to the power converter.
Thus, the time is introduced as an additional variable and the switching frequency is
generated as the set of switching sequences [6]. This allows OSS-MCP to have a higher
computational burden when compared with OSV-MPC [6].

Another FCS-MPC technique that has been widely used is modulated model predic-
tive control (M2PC). In fact, the technique uses a modulator as part of the cost function
elaboration that produces a constant switching frequency [6]. M2PC has a computational
burden lower than OSS-MPC and is characterized by a simpler implementation process.

As FCS-MPC is considered an advantageous technique to control power convert-
ers, this research paper presents an extend comparison between OSV-MPC, M2PC, and
OSS-MPC applied to the grid tie conventional three-phase two-level voltage source in-
verter (VSI) with an inductive output filter. All the three techniques are described in
detail. Moreover, an experimental comparison in steady and transient states is conducted
to evaluate each technique. The experiments are implemented using a Typhoon HIL
402 real-time simulator (RTS) with a Texas Instruments F28379D digital signal processor
(DSP). A previous FCS-MPC comparison paper [16] compared four different techniques;
however, it did not compare the most recent one, which is the OSS-MPC. Another compari-
son research paper [17] studied the same three techniques of this research paper. However,
both papers only presented Matlab®/Simulink simulation results. Therefore, they did
not addressed the computational delay problem since they only presented the physical
controllers’ implementation. As far as other research, a methodology to compensate the
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computational delay for M2PC was not found. Thus, to overcome this issue, the present
research work studies an OSS-MPC based on delay compensation.

This research paper is structured as follows: Section 2 describes the three-phase
two-level VSI connected to the electrical grid and the power converter selected for the
implementation. The in-depth description of the three FCS-MPC techniques and their
applications to power converters are presented in Sections 3–5. Section 6 presents the
experimental setup and the results related with the stead state and transient conditions.
The paper ends with a conclusion presented in Section 7.

2. Two-Level Voltage Source Inverter

The three-phase two-level VSI is one of the most used power converters owing to its
simple topology and its capacity to operate with bidirectional power flow. In fact, several
applications of VSI have been studied in literature such as uninterruptible power supplies
(UPS), adjustable-speed drives, battery management systems (BMS), static synchronous
compensators (STATCOM), active power filters, and grid-tie converters [18].

In this research paper, the three-phase two-level VSI is considered. Indeed, it is
connected to the electrical grid through an inductor filter L with internal resistance R. This
configuration could represent a photovoltaic generation system connected to the grid. The
schematic diagram of the converter connected to the grid is shown in Figure 1.

Electronics 2023, 11, x FOR PEER REVIEW 3 of 26 
 

 

papers only presented Matlab® /Simulink simulation results. Therefore, they did not ad-

dressed the computational delay problem since they only presented the physical control-

lers’ implementation. As far as other research, a methodology to compensate the compu-

tational delay for M2PC was not found. Thus, to overcome this issue, the present research 

work studies an OSS-MPC based on delay compensation. 

This research paper is structured as follows: Section 2 describes the three-phase two-

level VSI connected to the electrical grid and the power converter selected for the imple-

mentation. The in-depth description of the three FCS-MPC techniques and their applica-

tions to power converters are presented in Sections 3, 4, and 5. Section 6 presents the ex-

perimental setup and the results related with the stead state and transient conditions. The 

paper ends with a conclusion presented in Section 7. 

2. Two-Level Voltage Source Inverter 

The three-phase two-level VSI is one of the most used power converters owing to its 

simple topology and its capacity to operate with bidirectional power flow. In fact, several 

applications of VSI have been studied in literature such as uninterruptible power supplies 

(UPS), adjustable-speed drives, battery management systems (BMS), static synchronous 

compensators (STATCOM), active power filters, and grid-tie converters [18]. 

In this research paper, the three-phase two-level VSI is considered. Indeed, it is con-

nected to the electrical grid through an inductor filter 𝐿 with internal resistance 𝑅. This 

configuration could represent a photovoltaic generation system connected to the grid. The 

schematic diagram of the converter connected to the grid is shown in Figure 1. 

 

Figure 1. Grid-tie two-level VSI with output L filter. 

The three-phase two-level VSI presents eight possible switching states for the power 

switches S1 to S6. In fact, the same leg switches of the converter are driven in a comple-

mentary manner to avoid short circuits in the DC voltage source. The possible switching 

states for the upper, and consequently for the lower, switches 𝑆1 , 𝑆3 , and 𝑆5  are pre-

sented in Table 1 [19]. Applying Equation (1), which represents the invariable amplitude 

Clarke transformation [20], the eight possible switching states can be represented as eight 

space vectors in the 𝛼𝛽-axis. 

Table 1 also presents the calculated space vectors. 

𝑣𝑖,𝛼𝛽 =
2

3
𝑉𝑑𝑐(𝑆1 + 𝑆3𝑒

𝑗(2𝜋/3) + 𝑆5𝑒
𝑗(4𝜋/3)) (1) 

  

S1

a

S4

S3

S6

b
c

S5

S2

L R

vg,xvi,x
il,x

vdc

n
Figure 1. Grid-tie two-level VSI with output L filter.

The three-phase two-level VSI presents eight possible switching states for the power
switches S1 to S6. In fact, the same leg switches of the converter are driven in a comple-
mentary manner to avoid short circuits in the DC voltage source. The possible switching
states for the upper, and consequently for the lower, switches S1, S3, and S5 are presented
in Table 1 [19]. Applying Equation (1), which represents the invariable amplitude Clarke
transformation [20], the eight possible switching states can be represented as eight space
vectors in the αβ-axis.
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Table 1. Possible switching states for the two-level VSI and space vectors generated.

Applied Vector Switching State [S1 S3 S5] Space Vector

→
V 0

[0, 0, 0] 0

→
V 1

[1, 0, 0] 2
3 Vdc

→
V 2

[1, 1, 0] 2
3 Vdcej π

3

→
V 3

[0, 1, 0] 2
3 Vdcej 2π

3

→
V 4

[0, 1, 1] 2
3 Vdcej 3π

3

→
V 5

[0, 0, 1] 2
3 Vdcej 4π

3

→
V 6

[1, 0, 1] 2
3 Vdcej 5π

3

→
V 7

[1, 1, 1] 0

Table 1 also presents the calculated space vectors.

vi, αβ =
2
3

Vdc

(
S1 + S3ej(2π/3) + S5ej(4π/3)

)
(1)

The vectors presented in Table 1 generate 6 sectors in the αβ-axis which are shown in
Figure 2. The converter presented in Figure 1 is used as a four quadrants power source
for the electrical grid, having as references the active power P * and the reactive power
Q *. The use of the inductive filter output is necessary to allow the electrical power to be
exchanged and the output current harmonic content to be reduced.
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Figure 2. Three-phase two-level VSI space vector diagram.

2.1. System Modeling

The system modeling in the abc-axis can be obtained directly from Kirchhoff’s laws
in the circuit formed by the inverter and the electrical grid (Figure 1). The equations
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obtained in the abc-axis are converted to the αβ-axis using Clarke transformation to reduce
the number of equations and the computational burden of the three MPC algorithms
implemented [21].

2.1.1. Inductor Current Gradient

The inductor current gradient of the grid-tie two-level VSI with an output L filter in
the abc-axis is described by Equation (2).

fil,a =
dil,a
dt = 1

L
(
vi,a − Ril,a − vg,a

)
fil,b =

dil,b
dt = 1

L

(
vi,b − Ril,b − vg,b

)
fil,c =

dil,c
dt = 1

L
(
vi,c − Ril,c − vg,c

) (2)

The invariable amplitude Clarke transformation [20] is presented in Equation (3) and
is used to convert the Equation (2) abc-axis into the αβ-axis as shown in Equation (4); the
circuit is considered balanced with a null zero-sequence component.

Tabc→αβ =
2
3

[
1 −1/2 −1/2
0
√

3/2 −
√

3/2

]
(3)


fil,α =

dil,α
dt = 1

L
(
vi,α − Ril,α − vg,α

)
fil,β =

dil,β
dt = 1

L

(
vi,β − Ril,β − vg,β

) (4)

2.1.2. Inductor Current Discretization

To implement the FCS-MPC strategies, Equation (4) must be discretized. Thus, the
Euler forward method is used here since it is characterized by its satisfactory approximation
for first-order systems. Moreover, for higher-order systems, the error becomes relevant, and
an exact discretization method must be used [1]. Equation (5) presents the Euler forward
method for the derivative approximation.

di
dt
∼=

i(k + 1)− i(k)
TS

(5)

Using the approximation presented in Equation (5) in Equation (4) generates the dis-
cretized equations for the converter. The discretized equations are shown in
Equation (6). {

il,α(k + 1) = il,α(k) +
TS
L
(
vi,α(k)− Ril,α(k)− vg,α(k)

)
il,β(k + 1) = il,β(k) +

TS
L

(
vi,β(k)− Ril,β(k)− vg,β(k)

) (6)

2.1.3. Current Reference

To control the controller’s power exchange with the grid, the P * and Q * references are
used with voltage measurements to generate the current references which are applied in
the FCS-MPC control. From the instantaneous power theory in the αβ-axis, the references
are calculated as shown in Equation (7) [20].[

i∗l,a(k)
i∗l,β(k)

]
=

2
3

1

vg,α(k)
2 + vg,β(k)

2

[
vg,α(k) vg,β(k)
vg,β(k) −vg,α(k)

][
P∗

Q∗

]
(7)

2.2. Space Vector Modulation Switching Pattern

Space vector modulation (SVM) is a popular modulation method used for three-phase
two-level VSI. In fact, compared with the sinusoidal pulse width modulation, SVM has the
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enhanced application of the DC voltage link and reduced THD [19]. Indeed, the technique
consists in synthetizing a desired equivalent voltage vector composed of two actives and
one zero based on three stationary vectors. Hence, the vectors in the αβ plane (Figure 2) can
be generated by choosing the two adjacent vectors and the application times. Considering

a sufficiently reduced sample time Ts, the equivalent vector
→
Veq can be approximated

as shown in Equation (8). Figure 3 shows the
→
Veq construction that corresponds to the

first sector. 
→
Veq = 2t1

Ts

→
V1 +

2t2
Ts

→
V2

Ts = 2t1 + 2t2 + 4t0

(8)
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Figure 3. SVM Sector One Equivalent Voltage Synthesis.

The SVM modulation has a defined way to calculate the application times, t0, t1, and
t2, that depends on the voltage that should be generated [22]. In fact, the SVM principle is
applied for the implementation of M2PC and OSS-MPC control techniques that generate
vectors for the control of the converter switches. Indeed, the switching sequence is a
7-segment type generated at a fixed switching frequency which is equal to the sampling
frequency fsw = 1/Ts [22]. Figure 4 illustrates the seven-segment switching sequence that
corresponds to sector one. Moreover, in Table 2, the vector sequence and its application
times for the six sectors is described.
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Table 2. Seven-segment switching sequence and application times.

Sector Vector Sequence Application Times Sequence

1 [
→
V0,

→
V1,

→
V2,

→
V7,

→
V7,

→
V2,

→
V1,

→
V0] [t0, t1, t2, t0, t0, t2, t1, t0]

2 [
→
V0,

→
V3,

→
V2,

→
V7,

→
V7,

→
V2,

→
V3,

→
V0] [t0, t2, t1, t0, t0, t1, t2, t0]

3 [
→
V0,

→
V3,

→
V4,

→
V7,

→
V7,

→
V4,

→
V3,

→
V0] [t0, t1, t2, t0, t0, t2, t1, t0]

4 [
→
V0,

→
V5,

→
V4,

→
V7,

→
V7,

→
V4,

→
V5,

→
V0] [t0, t2, t1, t0, t0, t1, t2, t0]

5 [
→
V0,

→
V5,

→
V6,

→
V7,

→
V7,

→
V6,

→
V5,

→
V0] [t0, t1, t2, t0, t0, t2, t1, t0]

6 [
→
V0,

→
V1,

→
V6,

→
V7,

→
V7,

→
V6,

→
V1,

→
V0] [t0, t2, t1, t0, t0, t1, t2, t0]

Owing to the seven-segment switching advantages, in this research paper, the control
techniques M2PC and OSS-MPC developed are implemented using this switching sequence.

3. OSV-MPC

The OSV-MPC operation implementation in power converters is simple since it consists
of producing a finite number of possible switching states that are combined with the
converter discrete model to predict the future value of the vector variables that minimizes
a cost function during the sample time Ts [23].

Based on the evaluation of the possible switching states and compared with the
classical control techniques, the computational performance of the OSV-MPC algorithm is
higher [24]. In fact, the delay between measurements and the switching of the converter
can be critical and may reduce the efficiency of the control response [24]. Therefore, in
this case, it is necessary to use a delay compensation [24] which is based on applying a
k + 2 prediction. The OSV-MPC algorithm steps with delay compensation for the converter
studied in this research paper are shown below. In Figure 5, the block diagram of the
converter with the OSV-MPC control is presented.
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3.1. Predictive Model and Delay Compensation

In the three-phase two-level VSI with the OSV-MPC control, the abc inductor current
and grid voltage are measured (Figure 5). In this method, Equation (3) is applied to convert
to the αβ-axis and then the switching vector evaluated in the previous sample period is
applied to the switches of the converter, thus guaranteeing no interference in the switching.
Since the three-phase two-level VSI includes eight possible switching vectors, therefore
the converter has eight possible predictive inductor currents which can be deduced by
applying Equation (9), where vj

i,αβ represents the eight possible voltages generated by the

inverter and ij
l,αβ(k + 2) represents the current predictions as described below:

ij
l,αβ(k + 2) = il,αβ(k + 1) +

TS
L

(
vj

i,αβ − Ril,αβ(k + 1)− vg,αβ(k)
)

, j ∈ 0 . . . 7 (9)

Then, the k + 1 current value is calculated from the present switching vector vi,αβ(k)
and measurements by applying Equation (6). Finally, the delay compensation for the
inductor current can be obtained using Equation (10).

il,αβ(k + 1) = il,αβ(k) +
TS
L

(
vi,αβ(k)− Ril,αβ(k)− vg,αβ(k)

)
(10)

3.2. Reference Generation

The current references used in the cost functions are obtained from the power refer-
ences and the use of Equation (7) by performing the calculation of k + 2 to avoid the delays.
The implementation of the compensation is conducted by extrapolating the measured
voltages to k + 2. For example, the authors of [1] applied two extrapolation techniques
for this purpose. The first one consists in the use of the order 2 Lagrange extrapolation
formula. The second method for extrapolation consists in the vector angle compensation,
which is the method that will be used in this research paper. In fact, this method considers
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the estimated changes in the vector angle during a sample time considering a sinusoidal
signal. The reference extrapolation formula used to compensate the measured grid voltage
is described in Equation (11):[

vg,α(k + 2)
vg,α(k + 2)

]
=

[
cos
(
4π fgTs

)
− sin

(
4π fgTs

)
sin
(
4π fgTs

)
cos
(
4π fgTs

) ][vg,α(k)
vg,β(k)

]
(11)

where fg is the grid frequency.
The reference currents are obtained from the power references using Equation (12).[
i∗l,a(k + 2)
i∗l,β(k + 2)

]
=

2
3

1

vg,α(k + 2)2 + vg,β(k + 2)2

[
vg,α(k + 2) vg,β(k + 2)
vg,β(k + 2) −vg,α(k + 2)

][
P∗

Q∗

]
(12)

3.3. Cost Function Minimization

The minimization of the cost function is to obtain the switching vector index j that
minimizes the current error. In fact, it is evaluated for all the eight possible vectors
and deduced in such a way that a global optimal solution Gopt that corresponds to an
optimum vector index jopt and switching vector Sopt are obtained. Thus, the Gopt is applied
to the switches of the converter in the next Ts, so the computational delay is avoided.
Equation (13) describes how the cost function is minimized and Figure 6 illustrates the
flowchart of the developed OSV-MPC controller.

Gj =
∣∣∣∣∣∣i∗l,αβ(k + 2)− ij

l,αβ(k + 2)
∣∣∣∣∣∣2, j ∈ 0 . . . 7 (13)
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4. M2PC-MPC

The M2PC technique applied to the three-phase two level VSI incorporates the classical
SVM modulation as part of the FCS-MPC optimization procedure [25,26]. In fact, the
discrete model of the system is used to predict the future values of the variables by the
calculation of the OSV-MPC cost. Therefore, the optimum sector and vector are deduced
for the next step time Ts.

Moreover, M2PC has a higher computational effort when compared with OSV-MPC
since the cost function calculated by applying the OSV-MPC should be evaluated in M2PC
before the sector optimization. The major advantage between M2PC and OSV-MPC is
that the former generates a constant switching frequency and a well-defined harmonic
spectrum. Hence, to compensate for the computational delay, an OSV-MPC k + 2 delay
compensation scheme is developed. Its main difference with M2PC is that an equivalent
vector is required as more than one vector is applied at the output at each sample time Ts.
Figure 7 describes the block diagram used in this paper to implement the M2PC algorithm
with delay compensation.
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4.1. Predictive Model and Delay Compensation

The grid voltages and inductor currents are measured and transformed by applying

the Clarke transformation method. Thus, the vectors
[

t0, t1, t2,
→
V1,

→
V2

]k

opt
calculated in the

previous sample time are applied to the switches using the SVM seven-segment pattern.
Then, the predictive model obtained using Equation (6) is applied to calculate the eight pos-
sible predictive inductor currents ij

l,αβ(k + 2) (Equation (9)). Then, the delay compensation
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is implemented using Equation (9) by calculating the inductor currents at the k + 1 sample
time. The difference from OSV-MPC is that for the M2PC, two active vectors and one zero
vector need to be used to calculate il,αβ(k + 1). However, for OSV-MPC only one vector is
required. The delay compensation scheme used for OSS-MPC [27] is extended for M2PC.
Considering the switching vectors sequence and application times presented in Table 2, the
equivalent predicted current is calculated as:

il,αβ(k + 1) = il,αβ(k) + 2
(

f 1
il,αβ

(k)[t1]
k
opt + f 2

il,αβ
(k)[t2]

k
opt + 2 f 0

il,αβ
(k)[t0]

k
opt

)
(14)

where the gradients from Equation (4) are used to obtain the current with the optimum
application times [t0]

k
opt , [t1]

k
opt, [t2]

k
opt obtained from the previous sample time. The vectors[→

V0

]k

opt
,
[→

V1

]k

opt
,
[→

V2

]k

opt
, which correspond to the optimum vectors of the previous

sample time, are applied for the gradient calculations as shown in Equation (15).

f 0
il,αβ

(k) = 1
L

([→
V0

]k

opt
− Ril,αβ(k)− vg,αβ(k)

)

f 1
il,αβ

(k) = 1
L

([→
V1

]k

opt
− Ril,αβ(k)− vg,αβ(k)

)

f 2
il,αβ

(k) = 1
L

([→
V2

]k

opt
− Ril,αβ(k)− vg,αβ(k)

) (15)

4.2. Reference Generation

The current reference i∗l,α(k + 2) and i∗l,β(k + 2) are calculated from Equation (12).

4.3. Cost Function Minimization

An initial vector OSV cost Gj is calculated as described in Equation (13) by performing
all the eight possible switching vectors j. Then, the next step consists in calculating the cost
function that corresponds to the new sector p, followed by the vectors and switching times
of the converter’s switches. Hence, the new sector cost function is defined using Equation
(16), where d0, d1, d2 are the sector vectors duty cycles with 0, 1, and 2 null and two active
vector indexes.

GM2PC,p = d1G1 + d2G2 + d0G0 (16)

Considering a constant K and assuming that the vector duty cycle is inversely pro-
portional to its cost, the system in Equation (17) is used here to obtain sector vectors
duty cycles. 

d0 = K/G0

d1 = K/G1

d2 = K/G2

d0 + d1 + d2 = 1

(17)
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Thus, solving the system presented by Equation (17), the constant K and the duty
cycles are as follows: 

K = G0G1G2
G1G2+G0G1+G0G2

d0 = G1G2
G1G2+G0G1+G0G2

d1 = G0G2
G1G2+G0G1+G0G2

d2 = G0G1
G1G2+G0G1+G0G2

(18)

Hence, substituting Equation (18) in Equation (16), the new sector cost function to be
minimized is given by Equation (19), which is evaluated for the six sectors of the αβ-axis.

GM2PC,p = 3K = 3
G0G1G2

G1G2 + G0G1 + G0G2
≡ G0G1G2

G1G2 + G0G1 + G0G2
, p ∈ 1 . . . 6 (19)

Therefore, the sector that fulfills a minimum cost is selected, and then the vectors and

application times
[

t0, t1, t2,
→
V1,

→
V2

]k+1

opt
are applied in the next Ts using the SVM modulator.

Hence, the switching times are issued from the duty cycles as presented in Equation (20).
Figure 8 describes the flowchart of the developed M2PC controller.

t0 = d0Ts/4

t1 = d1Ts/2

t2 = d2Ts/2

(20)
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5. OSS-MPC

Among the three FCS-MPC techniques studied in this research paper, OSS-MPC is
the most recent technique used for three-phase two-level VSI. For example, in [27,28] the
authors described the implementation of the control algorithm. For this, two optimizations’
techniques were implemented. In fact, the first one performs the calculation in an offline
way. However, the second one conducts the calculation at each sample time Ts in such a
way to minimize the cost function. Thus, owing to its advantages, the switching sequence
selected for implementation is the SVM seven-segment switching pattern, as presented
in [27] and described in Section 2.2.

The system’s discrete gradients used consist of the equations used to model the system.
In fact, the application times and the minimization of the cost function for each sector p
of the αβ-axis are illustrated in Figure 2. Then, the optimum sector, vectors, and times
are applied to the converter using the seven-segment switching pattern in the next Ts.
OSS-MPC has the highest computational cost since it allows the vector used for the switch
control to be obtained. However, the use of an inter-sample-based cost function improves
the steady state response and reduces the output THD when compared with the other
techniques [17,27]. This is justified by the fact that the switching frequency is constant
owing to the SVM modulation scheme used.

The computational delay compensation is implemented considering the two active and
one zero vectors applied to the converter to construct an equivalent vector as presented for
M2PC. The OSS-MPC algorithm steps with delay compensation for the converter studied in
this paper is shown below. In Figure 9, the block diagram of the converter with OSS-MPC
control is presented.

5.1. Predictive Model and Time Calculation

The grid voltages and inductor currents are measured and transformed using the

Clarke transformation (Figure 9). In fact, the times and vectors
[

t0, t1, t2,
→
V1,

→
V2

]k

opt
cal-

culated in the previous control period are applied to the converter using the SVM seven-
segment pattern. Hence, the predictive model comes from the Equation (4) gradient
calculation discretized as shown in Equation (21), where the index n = 0, 1, 2 represents
null and the two active vectors of sector p respectively as described in Figure 3. Using
Equation (21), the inductor gradients fil,α,n and fil,β,n are directly controlled by the VSI
output voltage vi. 

fil,α,n(k) =
1
L
(
vi,α,n(k)− Ril,α(k)− vg,α(k)

)
fil,β,n(k) =

1
L

(
vi,β,n(k)− Ril,β(k)− vg,β(k)

) (21)

Therefore, the predictive currents can be calculated for sector p as follows:
il,α(k + 1) = il,α(k) + 2

(
fil,α,1(k)t1p + fil,α,2(k)t2p + 2 fil,α,0(k)t0p

)
il,β(k + 1) = il,β(k) + 2

(
fil,β,1(k)t1p + fil,β,2(k)t2p + 2 fil,β,0(k)t0p

) (22)
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Figure 9. Block diagram of three-phase two-level VSI with OSS-MPC control.

To select the optimum application times of the switching vectors for each Ts, the
Lagrange multipliers method, without restrictions, is applied. The sum of the quadratic
current future error is minimized by applying Equations (23) and (24).

L
(
t1p, t2p

)
= i2e,α(k + 1) + i2e,α(k + 1) (23)ie,α(k + 1) =

(
i∗lα(k)− il,α(k + 1)

)
ie,β(k + 1) =

(
i∗lβ(k)− il,β(k + 1)

) (24)

where ie,α(k + 1) and ie,β(k + 1) are the predicted inductor current errors. The null vec-
tor application time is not considered in Equation (23) as it can be eliminated from
Equation (22) using Equation (25).

t0p =
(
Ts − 2t1p − 2t2p

)
/4 (25)
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The optimum time values and local minimum presented in Equation (23) are obtained
by applying the optimization conditions presented in Equation (26).

∂L(t1p , t2p)
∂t1p

= 0

∂L(t1p , t2p)
∂t2p

= 0
(26)

Solving Equation (26), the optimum application times for each sector p are calculated
using Equation (27). In Appendix A, the Matlab code used to solve Equation (26) is
presented.

t1p =

(
fil,β,2

(k)− fil,β,0
(k)
)

ie,α(k)+
(

fil,α,0
(k)− fil,α,2

(k)
)

ie,β(k)+
(

fil,α,2
(k) fil,β,0

(k)− fil,α,0
(k) fil,β,2

(k)
)

Ts

2
(

fil,α,0
(k) fil,β,1

(k)− fil,α,0
(k) fil,β,2

(k)+ fil,α,1
(k) filβ,2

(k)− fil,α,1
(k) fil,β,0

(k)+ fil,α,2
(k) fil,β,0

(k)− fil,α,2
(k) fil,β,1

(k)
)

t2p =

(
fil,β,0

(k)− fil,β,1
(k)
)

ie,α(k)+
(

fil,α,1
(k)− fil,α,0

(k)
)

ie,β(k)+
(

fil,α,0
(k) fil,β,1

(k)− fil,α,1
(k) fil,β,0

(k)
)

Ts

2
(

fil,α,0
(k) fil,β,1

(k)− fil,α,0
(k) fil,β,2

(k)+ fil,α,1
(k) fil,β,2

(k)− fil,α,1
(k) fil,β,0

(k)+ fil,α,2
(k) fil,β,0

(k)− fil,α,2
(k) fil,β,1

(k)
)

(27)

5.2. Delay Compensation

The delay compensation for OSS-MPC is implemented in the corrections of the gradi-
ents and current error terms in Equation (27). As presented for M2PC, Equation (14) is used
to calculate the inductor current k + 1 value. The difference between the two compensation
algorithms is that for OSS-MPC the gradients for the two optimum vectors and the null
vector are already calculated from the previous Ts. The delay compensation for the inductor
current is given by Equation (28):

il,αβ(k + 1) = il,αβ(k) + 2
([

fil,αβ,1(k)
]k

opt
[t1]

k
opt +

[
fil,αβ,2(k)

]k

opt
[t2]

k
opt + 2

[
fil,αβ,0(k)

]k

opt
[t0]

k
opt

)
(28)

where
[

fil,αβ,1(k)
]k

opt
,
[

fil,αβ,2(k)
]k

opt
,
[

fil,αβ,0(k)
]k

opt
and [t0]

k
opt , [t1]

k
opt, [t2]

k
opt are the optimum

gradients and times obtained from the previous Ts, respectively.
Thus, the compensated gradients can be calculated as:

fil,α,n(k + 1) = 1
L
(
vi,α,n(k)− Ril,α(k + 1)− vg,α(k)

)
fil,β,n(k + 1) = 1

L

(
vi,β,n(k)− Ril,β(k + 1)− vg,β(k)

) (29)

Considering the extrapolated reference, the current error used in Equation (27) is
compensated with the future error as follows:

ie,α(k + 1) =
(

i∗l,α(k + 2)− il,α(k + 1)
)

ie,β(k + 1) =
(

i∗l,β(k + 2)− il,β(k + 1)
) (30)

5.3. Reference Generation

The current reference generation is implemented for OSS-MPC exactly as it is im-
plemented in Section 3.2 Therefore, the current references i∗l,α(k + 2) and i∗l,β(k + 2) are
calculated from Equation (12).

5.4. Cost Function Minimization

The local minimum error for the inductor current is tracked for each sector p. With
these times and applying the delay compensation, it is possible to elaborate a cost function
to select the global optimum sector popt. The cost function presented in [27,28] is an inter-
sample-based type. Therefore, for each sector p the cost function is constructed using the
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gradients and times calculated in Equations (25), (27), and (29). The cost function for sector
p is presented in Equation (31).

GOSS,p =
7

∑
u=0

((
i∗l,α(k + 2)− iu+1

l,α

)2
+
(

i∗l,β(k + 2)− iu+1
l,β

)2
)

, p ∈ 1 . . . 6 (31)

The inductor currents iu+1
l,α , iu+1

l,β are obtained recursively from the calculated times
and gradients for each sector p. The index u represents the vector sequence applied using
the order presented in Table 2. The constructed inductor current is calculated as follows:{

iu+1
l,α = iu

l,α + f u
il,α
(k + 1)tu

p

iu+1
l,β = iu

l,β + f u
il,β
(k + 1)tu

p
(32)

The current gradients f u
il,α
(k + 1), f u

il,β
(k + 1) in Equation (32) are calculated using

Equation (29). The initial values i0l,α, i0l,β used to construct the signal are equal to the
compensated inductor current as presented in Equation (28). Thus, Equation (31) is used to
calculate the cost function for the six sectors, choosing the sector with the minimum cost as

the optimum. Hence, the times and vector for this sector
[

t0, t1, t2,
→
V1,

→
V2

]k+1

opt
are applied

in the next Ts using the SVM modulator. Figure 10 shows the implemented flowchart of the
OSS-MPC controller.
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6. Experimental Results

To compare the three FCS-MPC techniques presented in this paper, an experimen-
tal setup is implemented using a hardware-in-the-loop (HIL) environment. In fact, the
three-phase two-level VSI connected to the grid is implemented virtually in a Typhoon
HIL 402 device. Hence, the control techniques are implemented in a Texas Instruments
TMDSCNCD28379D control card development board. Indeed, this board uses a C2000™
200 MHz TMS320F28379D 32-bit floating-point microcontroller designed especially for
advanced close-loop control applications [29]. Thus, a supervisory control and data acquisi-
tion (SCADA) process is implemented using the Texas Instruments Code Composer Studio
11.2.0 (CCS) and Typhoon Control Center 2022.1 (TCC). Therefore, using SCADA, the
data are sent to the microcontroller using the CCS and post processing results is obtained
using Matlab. Moreover, a TBS1064 Tektronix oscilloscope is used to observe the variables
in the physical domain. The Typhoon HIL 402 physical connection to the control card
is implemented using a HIL-DSP-180 interface board especially designed for the Texas
Instruments control card. The laboratory experimental configuration and its block diagram
are shown in Figures 11 and 12.
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The parameters implemented in the HIL 402 and microcontroller and used in the
experimental tests are presented in Table 3. The control techniques are evaluated for
different steady state and transient scenarios, as presented in the next sections.

Table 3. Parameters used in the experimental tests.

Parameter Value

DC bus voltage Vdc= 600 Vdc
Grid voltage and frequency Vg= 127 Vrms, fg= 50 Hz

Filter inductance L= 5 mH
Filter resistance R= 1 mΩ

Active power reference P ∗= Variable
Reactive power reference Q ∗ = Variable

Sampling time Ts = 50 µs
Switching frequency 20 kHz (variable for OSV-MPC)

ADC resolution 12 bits
PWM counter (resolution) 2500

6.1. Steady State Results

To evaluate the control techniques in steady state, the power references P ∗, Q ∗ are
changed for five different scenarios to incorporate the four power quadrants. The power
references are set in the controller using the CCS software and the data for post processing
are acquired using the TCC (Table 4). The resulting figures are only shown for the power
references P ∗ = 4 kW, Q ∗ = 4 kVAr, since they are similar to the other quadrants. However,
to compare the other techniques, Table 4 presents the performance parameters for all the
tested scenarios.
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Table 4. Steady state experimental results.

Strategy
Power Reference Emax MAE THDi (%) Computational

Time (µs)P (kW) Q (kVAr) P (W) Q (var) P (W) Q (var)

OSV-
MPC

0 0 651.97 716.96 168.90 189.84 -

5.9
4 4 662.98 695.51 170.23 191.30 5.39
−4 4 724.43 696.20 174.67 193.20 5.59
4 −4 653.94 650.02 170.74 204.78 5.82
−4 −4 678.55 645.24 172.94 207.87 5.65

M2PC

0 0 217.91 227.53 42.43 58.33 -

8.2
4 4 229.50 247.11 43.80 58.37 1.46
−4 4 210.21 237.29 45.92 56.82 1.47
4 −4 241.97 253.80 57.62 59.76 1.51
−4 −4 251.22 240.79 59.76 58.26 1.49

OSS-
MPC

0 0 156.65 154.33 36.61 28.42 -

27.9
4 4 181.45 174.65 42.94 35.72 1.03
−4 4 223.56 170.32 45.01 33.97 1.02
4 −4 170.11 154.67 43.60 28.48 0.97
−4 −4 209.92 147.80 45.55 26.49 0.96

6.1.1. Mean Absolut Error (MAE) and Maximum Absolute Error (Emax)

To evaluate the power tracking performance, the MAE and the Emax are calculated for
all the power scenarios (Table 4). For the power reference P ∗ = 4 kW, Q ∗ = 4 kVAr, the
reference and measured active and reactive powers for each technique are presented in
Figure 13. Analyzing the tracking error, in yellow, it is evident that OSS-MPC is better in
steady state, followed by M2PC and OSV-MPC.
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Table 4. Steady state experimental results. 

Strategy 
Power Reference Emax MAE 

THDi (%) 
Computational 

Time (µs) P (kW) Q (kVAr) P (W) Q (var) P (W) Q (var) 

OSV-MPC 

0 0 651.97 716.96 168.90 189.84 - 

5.9 4 4 662.98 695.51 170.23 191.30 5.39 

−4 4 724.43 696.20 174.67 193.20 5.59 

Figure 13. Output active and reactive power for each FCS-MPC technique for P∗ = 4 kW,
Q∗ = 4 kVAr.

To quantify the steady state performance, Equations (33) and (34) are used to calculate
the MAE and Emax, where N is the total number of samples collected. In Table 4, the tracking
performance results for all power references tested are shown. OSS-MPC presented the
best results for all scenarios, with much lower MAE and Emax. Then, M2PC presented
intermediate results while OSV-MPC generated the worst tracking results.

MAE =
1
N

N

∑
k=1
|P∗ − Pk| (33)



Electronics 2023, 12, 1482 20 of 27

Emax = max

(
N

∑
k=1
|P∗ − Pk|

)
(34)

6.1.2. Current THD

The current harmonic content is an import performance parameter as grid-tie convert-
ers must follow legislation limits to be connected to the grid. The current THD is calculated
for all the power scenarios presented in Table 4. Figure 14 presents the currents and the
harmonic spectrum for each control technique that corresponds to the power reference
P∗ = 4 kW, Q∗ = 4 kVAr. Analyzing the currents in Figure 14, OSS-MPC presents much less
distortion, followed by M2PC and OSV-MPC. The current THD follows the same order
of performance. For all tested scenarios presented in Table 4, OSS-MPC presented better
results, followed by M2PC and OSV-MPC.

6.1.3. VSI Line Voltage and Spectrum

The VSI output line voltage and its harmonic spectrum are presented in Figure 15
for power references P∗ = 4 kW, Q∗ = 4 kVAr. The modulator used in OSS-MPC and
M2PC produces a well-defined harmonic spectrum at the output with the main harmonics
multiple of the switching frequency of 20 kHz. The harmonic spectrum of OSV-MPC is
spread with much lower frequency concentrations. The high-frequency concentration of
OSS-MPC and M2PC facilitates the filter design, in the case of higher order filters, and
increases the filter attenuation of the harmonics which improves the steady state results.
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6.1.4. Sector Selection and Duty Ratio

The SVM sector selection and phase a duty ratio for OSS-MPC and M2PC with power
references P ∗ = 4 kW, Q ∗ = 4 kVAr are presented in Figures 16 and 17, respectively. The
two optimizations elaborated in the OSS-MPC produce a more precise sector selection than
M2PC, and then less transitions between sectors are observed for OSS-MPC. This affects
the M2PC duty ratio. The duty ratio for OSS-MPC is similar to the duty ratio expected for a
traditional SVM.
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6.1.5. Gate Pulse Shape

The gate pulse shape (S1, S3, and S5) for each technique is presented in Figure 18.
As expected from the theory, OSV-MPC has no pattern for the switching and produces a
variable switching frequency at the output. Owing to the modulation stage, OSS-MPC and
M2PC have a well-defined 7-segment switching pattern as presented in Figure 4, with a
constant switching frequency of 20 kHz at the output.
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6.1.6. Computational Burden

As the FCS-MPC optimization is based on a large number of online calculations, the
computational burden is a relevant parameter, as it defines the computational power of
the hardware and, consequently, the hardware acquisition cost. The TMS320F28379D
microcontroller was able to implement in real time all three FCS-MPC control techniques.
Two digital output pins on the microcontroller were used to measure the analog-to-digital
(ADC) conversion time and the total, including the ADC, control time. The pins were set
to ‘1’ at the beginning of the interruption and set to ‘0’ at the end of the ADC conversion
and at the end of the control calculations. Figure 19 shows the computational time for each
FCS-MPC technique. The ADC conversion time is about 1.1 µs, which is similar to all the
other techniques. The total computational time followed the expected order based on the
cost function complexity for the techniques, with OSS-MPC demonstrating the highest time
of (27.9 µs), followed by M2PC (8.2 µs) and OSV-MPC (5.9 µs). OSV-MPC and M2PC have
large margins to increase the sampling frequency.
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6.1.7. Steady State Results Summary

In Table 4, the steady state experimental results for all the tested scenarios are pre-
sented. OSS-MPC presented the best results for all steady state parameters, followed by
M2PC and OSV-MPC. On the other hand, for the computational time the performance
order is inverted. Therefore, there is a trade-off between steady state performance and
computational time in the performance of the techniques.

6.2. Transient Results

To evaluate the techniques’ transient responses, two different power reference steps
were tested. The active power step was implemented from P ∗ = −8 kW to P ∗ = +8
kW with Q ∗ = 0 kVAr, and the reactive power step was implemented from Q ∗ = −8
kVAr to Q ∗ = +8 kVAr with P = 0 kW. Figures 20 and 21 present the results for the
active and reactive power steps, respectively. The settling time was measured directly
from the step responses in Figures 20 and 21 using Matlab by applying a 5% margin for
each technique (Table 5), which show that OSV-MPC and OSS-MPC presented the lowest
settling times and M2PC presented the highest one. All the techniques demonstrated a good
transient response as they achieved the desired reference value in less than a quarter of the
grid period.

Table 5. Transient experimental results.

Strategy Settling Time (ms)
Active Power Step Reactive Power Step

OSV-MPC 1.8 1.0
M2PC 4.4 2.9

OSS-MPC 1.6 1.5

A qualitative comparison between the techniques based on the results and the theory.
They are presented in Table 6.
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Table 6. Comparison between OSV-MPC, M2PC, and OSS-MPC.

Parameter OSV-MPC M2PC OSS-MPC

Cost function Vector based Sector based Inter-sample sector
based

Applied vectors per Ts Single vector (1) Multiple vectors (8) Multiple vectors (8)
Switching frequency Variable Fixed Fixed

Modulator No Yes Yes
Steady state
performance Moderate Good Better

Transient
performance Good Moderate Good

Computational cost Low Low High

7. Conclusions

This research paper studied the FCS-MPC method, which is a promising technique to
control power converters characterized by the incorporation of multiple control loops in a
single predictive control law, flexibility to control linear and non-linear systems, and the
possibility to include multiple control objectives and restrictions in a single cost function.
This research paper presented an experimental comparison between three of the most
popular FCS-MPC techniques that could in the near future be substitutes to the classical
linear control in many applications. The techniques were compared for steady state and
transient conditions. As the computational cost is one of the main drawbacks of FCS-MPC,
M2PC is the strategy that demonstrated superior overall results, fulfilling a commitment
between computational cost, performance, and simplicity. For future research works, a long
prediction horizon approach should be evaluated as a possibility to improve the parameters’
performance for all the techniques.
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Appendix A Equation (26) Matlab Solution

To solve Equation (26), the symbolic equation solver in Matlab was used. The code is
presented below:

clear all
syms t1 t2 Ts % Times
syms ie_ak ie_bk % Current error aplha and beta
syms fi_ak_0 fi_ak_1 fi_ak_2 % Current gradients alpha
syms fi_bk_0 fi_bk_1 fi_bk_2 % Current gradients beta
t0 = (Ts/2 − t1 − t2)/2; % Equation (25)
Lk = (ie_ak-2 * (fi_ak_1 * t1 + fi_ak_2 * t2 + 2 * fi_ak_0 * t0))ˆ2 +(ie_bk-2 * (fi_bk_1 * t1 +

fi_bk_2 * t2 + 2 * fi_bk_0 * t0))ˆ2 % Equation (24)
D_t1 = diff(Lk,t1) % Equation (26)
D_t2 = diff(Lk,t2) % Equation (26)
D_t1 = collect(D_t1,{‘t1’,’t2’}) % Separate by variable to construct the system
D_t2 = collect(D_t2,{‘t1’,’t2’}) % % Separate by variable to construct the system
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% |A B|=|R1| % System to be solved
% |C D|=|R2|
A = (2 * (2 * fi_ak_0 − 2 * fi_ak_1)ˆ2 + 2 * (2 * fi_bk_0 − 2 * fi_bk_1)ˆ2);
B = (2 * (2 * fi_ak_0 − 2 * fi_ak_1) * (2 * fi_ak_0 − 2 * fi_ak_2) + 2 * (2 * fi_bk_0 − 2 *

fi_bk_1) * (2 * fi_bk_0 − 2 * fi_bk_2));
C = (2 * (2 * fi_ak_0 − 2 * fi_ak_1) * (2 * fi_ak_0 − 2 * fi_ak_2) + 2 * (2 * fi_bk_0 − 2 *

fi_bk_1) * (2 * fi_bk_0 − 2 * fi_bk_2));
D = (2 * (2 * fi_ak_0 − 2 * fi_ak_2)ˆ2 + 2 * (2 * fi_bk_0 − 2 * fi_bk_2)ˆ2);
R1 = −(2 * (2 * fi_ak_0 − 2 * fi_ak_1) * (ie_ak − Ts * fi_ak_0) + 2 * (2 * fi_bk_0 − 2 *

fi_bk_1) * (ie_bk − Ts * fi_bk_0));
R2 = −(2 * (2 * fi_ak_0 − 2 * fi_ak_2) * (ie_ak − Ts * fi_ak_0) + 2 * (2 * fi_bk_0 − 2 *

fi_bk_2) * (ie_bk − Ts * fi_bk_0));
% System solving
t1 = simplify((R1 * D-R2 * B)/(A * D-B * C))
t2 = simplify((A * R2-C * R1)/(A * D-B * C))
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