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Abstract: Light Field (LF) cameras can capture angular and spatial information simultaneously,
making them suitable for a wide range of applications such as refocusing, disparity estimation, and
virtual reality. However, the limited spatial resolution of the LF images hinders their applicability.
In order to address this issue, we propose an end-to-end learning-based light field super-resolution
(LFSR) model called MFSR, which integrates multiple features, including spatial, angular, epipolar
plane images (EPI), and global features. These features are extracted separately from the LF image
and then fused together to obtain a comprehensive feature using the Feature Extract Block (FE
Block) iteratively. Gradient loss is added into the loss function to ensure that the MFSR has good
performance for LF images with rich texture. Experimental results on synthetic and real-world
datasets demonstrate that the proposed method outperforms other state-of-the-art methods, with a
peak signal-to-noise ratio (PSNR) improvement of 0.208 dB and 0.274 dB on average for the 2× and
4× super-resolution tasks, and structural similarity (SSIM) of both improvements of 0.01 on average.

Keywords: macro-pixel images; super-resolution; global feature; gradient loss

1. Introduction

LF cameras have the unique ability to capture both the intensity and direction of
light rays, making it possible to record 3D geometry in a convenient and efficient manner.
By encoding 3D scene information into 4D LF images (2D for spatial dimensions and 2D
for angular dimensions), LF cameras enable a wide range of applications such as post-
capture refocusing [1,2], depth sensing [3,4], saliency detection [5,6], and de-occlusion [7,8].
However, there is a trade-off between spatial and angular resolution, with LF cameras
providing either dense angular samplings with low image resolution or high-resolution
(HR) sub-aperture images (SAI) with sparse angular samplings. To overcome this limitation,
researchers focus on reconstructing high-resolution LF images from low-resolution(LR)
ones, a process known as LF image spatial super-resolution (SR). Extracting and utilizing
the different features in the LF images is a key topic in LF image spatial SR. In this paper,
we focus on extracting multiple features of LF to achieve LF image spatial SR.

Conventional 2D images provide a single-view description, while 4D LF captures
multiple views of a scene. In order to achieve light field super-resolution, researchers have
typically applied 2D image SR models to each sub-aperture image, but this approach fails
to utilize the angular features of LF. To address this issue, many researchers have focused
on exploiting multiple features of different SAI to improve super-resolution reconstruction
quality. Some methods, such as [9,10], treat the entire 4D LF as a single entity to exploit
angle and spatial features but ignore LF sub-space features. Others, like [11], disentangle
LF sub-space features for LF super-resolution, they involve global features, which refer
to the overall embedding of an LF image, such as LF texture, geometry embedding, and
structural embedding. We propose an end-to-end light field image super-resolution model
MFSR that integrates multiple features, including spatial, angular, EPI, and global features.
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The challenge of super-resolving rich texture areas is not limited to LFSR but also
affects Single Image Super-Resolution (SISR). To address this issue, Jiang et al. proposed a
focal frequency loss function [12] to enhance image reconstruction. Wang et al. recently
introduced DPT [13], which preserves detailed texture information in LF images by in-
cluding a gradient image as an independent branch in the network. The current LFSR
methods have limited reconstruction performance in areas with rich textures. To address
this bottleneck, a gradient loss is added to guide the model in learning these rich texture
features in LF images, which ensures our MFSR has good performance for LF images with
rich texture.

Our proposed method, MFSR, brings several innovations to the light field spatial
super-resolution. First, we introduce a flexible and efficient end-to-end LFSR model that
achieves state-of-the-art (SOTA) results across different LF image datasets. Second, we
build upon multiple sub-space feature extraction by proposing a global feature extract
block and fusing multiple features to enhance LFSR performance. Third, the gradient
loss on Sobel [14] was applied to ensure MFSR has outperformance for LF image with
rich texture. Our experiments, which include both synthetic and real-world scenarios,
confirm the effectiveness of our MFSR model. The synthetic scenarios refer to the creation
of synthetic LF data by computer science, such as the HCI Synthetic Light Field Dataset [15]
and EPFL Light Field Dataset [16]. We demonstrate through experiments that our model
MFSR can handle super-resolution tasks at different scales and achieve better results than
the baseline. Our results indicate that our model outperforms the state-of-the-art LFSR
model, where the PSNR results are improved by 0.208 dB and 0.274 dB on average in ×2
and ×4 light super-resolution tasks.

2. Related Works

The primitive classic non-learning-based methods utilize projection and optimiza-
tion techniques to super-resolve the SAI, relying on geometric [17] and mathematical [18]
modeling of the 4D light field structure. These classic LFSR methods establish a mathe-
matical model through relation among different views and solve the mathematical model
by information including disparities and geometric. Wanner et al. [15,19] took the lead
to estimate disparity information of light field by an algorithm based on EPIs and then
obtain EPIs after super-resolution by corresponding interpolation through disparities, and
then transformed LF EPIs into SAIs to obtain super-resolution results. Mitra et al. [20]
proposed an LFSR algorithm based on disparity estimation through pixel block in the light
field based on Gaussian Mixed Model (GMM). There are also algorithms [21,22] able to
compensate and recover view by matching relative pixels from other views. Rossi et al. [23]
solved the problem by regarding LFSR as a global optimization question through an image
optimization model. Farrugia et al. [24] broke HR and LR image couples into several
sub-spaces and obtained light field spatial images through Principal Component Analysis
(PCA). All the above methods need view disparity to calculate the transmission matrix
between views in the light field. There is still a shortcoming in the aspect of digging out
relationships among views and spatial information.

With the application of deep learning in computer vision, convolution neural net-
work (CNN) has represented excellent performance in the task of computer vision. A
series of algorithms based on deep learning for image super-resolution are proposed
including SRCNN [25], SRGAN [26], VDSR [27], EDSR [28], RCAN [29]. Compared to
classic non-learning-based methods, these methods obtain higher PSNR and SSIM scores
in solving SISR. Since the learning-based SISR methods have made much progress, several
researchers begin to research light field super-resolution (LFSR) based on deep convolution
neural networks.

Recently, light field spatial super-resolution methods based on deep learning have
been proposed. These methods learn angular and spatial features of LF images in the
training process and represent wonderful performance in the aspect of qualitative and
quantitative assessment. Yoon et al. [30] initially utilized a convolution neural network for
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spatial and angular super-resolution of LF images. In their work, every SAI in the LF is
up-sampling by a single image super-resolution algorithm and its details are enhanced with
a combination of 4D LF quality. Furthermore, images of new visual angles between adjacent
views are generated by an angular super-resolution network. Zhang et al. proposed a light
field images super-resolution method with the utilization of residual convolution neural
network, ResLF [10], learning residual information in horizontal, vertical, and diagonal
directions in the SAI array and applying to supplement the information in a high frequency
of target view to super-resolution reconstruction. Jin et al. proposed an all-to-one light
field image super-resolution architecture, LF-ATO [31], and propelled structure consistency
regularization to protect disparity structure between reconstitution views. Coming up
with LF-InterNet [32], Wang et al. extracted angular and spatial features in the light field
images for assistance in the reconstruction of HR light field images through macro-pixel
images. The experiment indicates that this method represents excellent performance in
both vision and evaluation. Wang et al. subsequently applied deformable convolution to
light field images spatial super-resolution algorithm and put forward LF-DFNet [33] which
represents further promotion in PSNR score. Zhang et al. proposed MEG-Net [9] which
stacks SAIs in different directions and utilizes 3D convolution to extract EPI features in
different directions. Wang et al. proposed DistgSSR [11] to propel LFSR through decoupling
different subspace features in the LF images which integrate with spatial, angular, and
EPI features. Recently, Wang et al. came up with DPT [13] which initially applies the
transformer structure to LFSR and it retains detailed texture information in the light field
images through integration with detailed gradient information.

Previous LFSR algorithms typically treated spatial, angular, EPI, and global features as
separate entities and did not consider integrating global features into the super-resolution
process. In contrast, we propose an LFSR method to extract and integrate these features
to improve LFSR performance. To preserve the detailed texture information in light field
images during super-resolution, we apply the gradient loss to aid in the learning process
and further enhance the performance of rich texture with LF images.

3. Methods

In recent work, Wang et al. proposed DistgSSR [11] to explore disentangled features
for LF super-resolution tasks. While achieving state-of-the-art performance, we believe
that there is still room for improvement in the architecture of DistgSSR [11]. Specifically,
DistgSSR [11] maps the 4D LF to a 2D subspace for feature learning and fusion, but it cannot
extract global features. In our method, we introduce a global feature extraction block based
on spatial, angular, and EPI features to learn the inner features of the LF. Furthermore, our
approach employs the gradient loss on Sobel [14] to ensure the performance of LF images
with rich textures. We will elaborate on our super-resolution algorithm in detail in the
following sections.

3.1. Light Field Representation

In the context of a light field image, 4D light field data can be represented as L(u, v, h, w)
∈ RU×V×H×W , where u and v correspond to the angular dimensions and h and w corre-
spond to the spatial dimensions. However, due to the inconvenience of processing 4D data,
current LFSR research often organizes light field images into SAI arrays or macro-pixel
images. The four main types of LF features are spatial, angular, EPI, and global features.
Spatial features are inherent to individual views and can be extracted similarly to tradi-
tional 2D images. Angular features capture the relationships between different views and
can be used to further improve super-resolution performance. EPI features describe the
relationship between space and angle in a certain direction, serving as a bridge between
spatial and angular features. Global features refer to the overall embedding of an LF image,
such as its texture, geometry embedding, and structural embedding. Our global features
extractor uses 3D convolution to extract overall embedding from stacking SAI.
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The SAI array provides a convenient visualization of the LF images where each sub-
aperture image can be treated as a traditional 2D image. For example, Figure 1 illustrates a
toy example of the SAI representation method. In the SAI array, LF images are arranged as
a U ×V image matrix with a spatial resolution of H ×W. Each SAI at a specific coordinate
(u, v) is represented as L(u, v, :, :) ∈ RH×W , which can be treated as a traditional 2D
image and processed using 2D image algorithms. The initial LFSR models based on deep
learning treat each SAI as a traditional 2D image and employ single-image super-resolution
algorithms to upscale them, followed by a fine-tuning step to integrate angular information.
This approach is effective in extracting spatial and global features but may fail to extract
features that are hidden among different views.

In the SAI array of LF images, stacking all pixels with a direction, an EPI could be
obtained. We stock images with the v-axis, then stacked EPI image space is L(u, :, h, :) ∈
RV×W , which could represent linear relation between different views in the v-axis. The EPI
image stacked all pixels in a certain direction which could represent the relation between
spatial and angle in this direction. EPI features are applied to LFSR methods [9,11] which
promotes the performance of LFSR based on spatial and angular features. In reference [11],
fusion with EPI feature could be applied to not only LFSR but also LF images disparity
estimation and LF images angular super-resolution, which obtains improved performance
compared to only considering spatial and angular features. This research demonstrates the
importance of EPI features in LF image processing.

4D LF could be also organized into macro-pixel images L(:, :, w, h) ∈ RU×V , are a
series of pixels with the spatial coordinates (w, h) recorded by different cameras at different
locations, a toy example as shown in Figure 1b. The process of converting SAIs into macro-
pixel images is to organize the pixels at the same spatial location in each SAI according to
their different angular coordinates, and then organize the macro-pixels at different spatial
positions into a complete LF micro-pixel image. For the macro-pixel LF images, spatial
and angular feature extraction is convenient. LFSR methods [11,32,33] take the macro-pixel
images as the input and separately extract angular and spatial features to obtain the SOTA
performance of the LFSR task. The organization method of macro-pixel could be not only
convenient for extraction of spatial and angular features but also get EPI features by the
pixel stack with a certain direction.

Figure 1. Different representations and different features of light field images, they should be listed as:
(a) Light Field Sub-aperture image. (b) Macro-pixel Light Field Image. (c) Global Feature (d) Spatial,
Angular and EPI Feature.
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The aforementioned LF organization methods have their respective advantages. LF
SAI can be processed similarly to traditional 2D images but is limited in its ability to extract
angular features. EPIs can represent the 2D section in a direction of a 4D LF clip but only
demonstrate the relation between different views in a direction, which means they can only
represent 1D spatial and angle features of LF and cannot extract 2D angular, spatial, or
global features. LF macro-pixel images cannot be processed by traditional image algorithms
and are used as a means of mosaic, but they are convenient for angular features extracted
by 2D convolution. Additionally, due to LF angular resolution being much less than spatial
resolution, spatial features can be obtained using a 2D dilated convolution, making it
convenient for spatial and angular feature extraction. Furthermore, LF EPI features can be
conveniently extracted from micro-pixel images and SAI. Therefore, we utilize macro-pixel
LF images as input for the MFSR network.

3.2. Network Design

The objective of the proposed MFSR network takes a low-resolution macro-pixel image
with a size of RU×V×H×W as input to produce a high-resolution sub-aperture image array
with a size of RU×V×αH×αW . α represents the rate of spatial super resolution, U, V repre-
sents the angular resolution, and H, W represents spatial resolution. The MFSR network
enters a low-resolution 4D light field image ILR ∈ RU×V×H×W , and its corresponding
feature extractions are separately extracted through spatial, angular, EPI, and global feature
extractors. Then, the needed feature of super-resolution is obtained by integration with
different extracted features. In the past light field feature extractor, the sub-aperture array
is always utilized. Therefore, in the paper, the angular resolution of the 4D light field is set
as U = V = A, and A means the angular resolution of the 4D light field.

3.2.1. Network Structure

The proposed network MFSR, as illustrated in Figure 2, takes light field sub-aperture
images and converts them into macro-pixel images for initial convolution. The resulting
features are then fed into four feature extraction blocks for spatial, angular, EPI, and global
feature extraction. The core idea of the LFSR model based on deep learning is to learn
multiple features from different angles and single views. In particular, EPI and angular
features represent different angular information, spatial features represent information
from individual views, and global features learn the overall embedding of an LF image.
We introduce the global feature extractor of the light field to enhance the performance of
the LFSR model.

The MFSR network is composed of Feature Extract Blocks (FE Blocks) which are shown
in Figure 2b. The input to the FE Block is a macro-pixel image feature, and the FE Block
uses five parallel branches: an angular branch, a spatial branch, two EPI branches, and
a global branch to extract multiple features. The Angular Feature Extractor (AFE) and
Spatial Feature Extractor (SFE) are just like LF-InterNet [32]. The EPI feature extractor (i.e.,
EPI_h and EPI_v) extracts horizontal and vertical EPI feature separately using 1D dilated
convolutions. The Global Feature Extractor (GFE) using 3D convolutions extract overall LF
features from stacking SAI. The feature fusion block concatenates multiple features and
these features are fused by 2D convolutions. The features were obtained from the four
feature extraction groups iteratively, then the feature was transformed into sub-aperture
form and used to calculate the SR local residual results. Finally, the low-resolution SAI
array Bilinear Up-sampling [34] element-wise added with the residual results to output the
SR results.
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Figure 2. (a) The architectural overview of the MFSR. (b) Feature Extract Block(FEB). (c) Global
Feature Extract Block(GFE). All up-sampling operator is the Bilinear Upsampling.

To extract the spatial features of the 4D light field, which are the features of a contin-
uous region in the different sub-apertures of the light field, the macro-pixel images are
reflected as pixels with the same angular coordinates in images from different sub-apertures.
Just like LF-InterNet [32], we apply dilation convolution to treat the pixels at corresponding
positions. For efficient extraction of light field spatial features, the spatial feature extractor
as a convolution whose convolution kernel size is 3× 3 with a stride of 1 and dilation as A
(angular resolution) and executes zero padding to assure the same size of spatial resolution
of input and output macro-pixel images.

For angular feature extraction in the 4D light field, which is pixels at the same angular
coordinate from different views, the corresponding pixels to different angles could be
properly organized for the macro-pixel images as a macro-pixel represented in them.
Just like LF-InterNet [32], the angular feature extractor in our MFSR is conducted by
2D convolution, where the size of the convolution kernel is A × A whose stride is 1
and takes 0 as padding in the horizontal direction. The utilization of the convolution
kernel with the size of A× A could exactly assure pixels in a macro-pixel are extracted by
corresponding features.

Spatial and angular features are unable to efficiently represent the relation between
angular and spatial for light field feature representation. The EPI image is always applied
to represent the relation features of angular and spatial in the dual-view or multi-view
images. The research thus applies a 1D convolution kernel for EPI feature extraction
employing the light field as a multi-view image. The horizontal feature extractor applies
1D convolution which is to utilize 1D dilated convolution, the kernel size set to 1× A2,
and the stride is (1, A). Furthermore, no padding is performed to ensure that the size of
the output feature space is consistent with the input feature image, where A× (A− 1)/2
is the angular resolution of the 4D LF. The EPI feature extraction is similar to that in the
horizontal direction.

We propose a global feature extractor to learn the inner features of 4D LF. Although
the relations of different directions are separately extracted in the above feature extraction
blocks, the EPI features in the two directions could only represent the features in the two
directions and are unable to sufficiently extract the relationships between different views.
Therefore, we apply 3D convolution to conduct the extraction of the LF images global
features which applies 3× 3× 3 convolution kernel whose stride is 1 to ensure the size of
output feature images is the same as the input. This convolution method could efficiently
obtain global features and learn the inner features of the needy implicit representation.
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We design a multiple-feature fusion block to integrate spatial, angular, EPI, and global
feature. At first, the resolutions of the above features are aligned by pixelShuffle1D [11]
and 1× 1 convolution. Then, all the features are attached to the channel dimension. At last,
the multi-dimension of features is converted by 1× 1 convolution to the target dimension.
Taking the resolution of spatial features as the base for aligning other features, the angular
features are converted into spatial feature resolution by pixelShuffle2D [11]. The resolution
conversion of EPI features in the two directions is conducted by pixelShuffle1D [11]. The
global features could be transformed to corresponding spatial feature resolution after
3D convolution.

To realize more sufficient feature extraction and integration, inspired by LF-InterNet [32],
we cascade several feature extraction blocks iteratively to extract multiple features of LF image.
The extracted features are sent to the up-sampling block for spatial up-sampling to obtain light
field image features with target resolution. Furthermore, the up-sampling operation increases
the number of the channels to α2 × C (α is the super-resolution scale, C is the feature channels)
by 1× 1 convolution. Then, the up-sampling of the feature images is conducted through
pixelShuffle2D [11]. The ultimate results are reduced dimension through 1 × 1 convolution
single channel, which could obtain the Y channel images of ultimate super-resolution by
adding the up-sampling results in the original images.

The channel attention mechanism [29] is used to improve the integration of extracted
angular and spatial features in the proposed method. This mechanism allows the network
to pay more attention to important regional features, such as high-frequency and marginal
feature information in the light field. By combining the attention mechanism with global
feature integration, the method can effectively drive the integration of light field super-
resolution features, leading to better performance in terms of PSNR and SSIM scores, as
demonstrated in the experiments.

3.2.2. Loss Function

Inspired by DPT [13], the gradient images are able to assist the super-resolution model
to learn detailed texture information. Therefore, the gradient loss function is used for rich
texture with the LF image efficiently. The loss function of MFSR can be represented by
Equation (1). I and Î, respectively, represent the super-resolved image and the ground truth
image, (i, j) is the pixel location, (M, N) is the image resolution, and Sobel(I) represent a
gradient detector [14] for image I.

Loss = α1L1(I, Î) + α2Lgradient(I, Î) (1)

L1(I, Î) =
1
N

1
M

N

∑
i=1

M

∑
j=1
|I(i, j)− Î(i, j)| (2)

Lgradient(I, Î) = L1(Sobel(I), Sobel( Î)) (3)

In the gradient loss, the Sobel operator [14] is a gradient extraction function that
separately extracts the horizontal and vertical gradients through two convolutions. Through
the gradient extractor, the results of bicycle and origami scenes are visualized as shown
in Figure 3. It can be seen that the gradient information in the image can be effectively
extracted to assist the learning of the image super-resolution network.
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Figure 3. Original and Bicycle scene image (left) and their gradient image using Sobel Operator [14].

4. Experiments

In this section, we first present the datasets and implementation details. Then, we
demonstrate the effectiveness of our proposed MFSR through an ablation study. We conduct
a discussion and analysis of our algorithm based on the experiments. Finally, we compare
our proposed MFSR to several state-of-the-art light field image super-resolution methods.
The training setup and ablation study setup as shown in Figure 4.

Figure 4. Experiments setup. (a) Training model by Adam optimizer [35] and two losses.
(b) With/without Global feature extract for MFSR.

4.1. Datasets and Implementation Details

We conduct extensive experiments on 5 open light field images datasets including
EPFL [16], HCI_new [15], HCI_old [36], INRIA_Lytro [37], and STF_gantry [38]. The
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angular resolution of the whole light field images in the above datasets is all 9× 9 (U =
V = A = 9), and PSNR and SSIM are ultimate evaluation indicators of the super-resolution
model. For test datasets with multiple scenarios, the researchers obtain the sub-aperture
image calculation evaluation indicator at a certain angular resolution first and average the
evaluation indicator results of different sub-apertures in multiple scenarios, and obtain the
evaluation indicator value of this dataset last. The angular resolution in the experiments
of this paper is U = V = A = 5 and the selected test dataset scenarios division in the
experiment is as shown in Table 1.

Table 1. Datasets used in our experiments.

Dataset HCI_NEW Stanford_Gantry EPFL INRIA_Lytro HCI_OLD Total

Train 20 9 70 35 10 144
Test 4 2 10 5 2 23

For model training, the image space is converted from RGB to YCbCr in this paper,
and the model only inputs the images of the Y channel for training. During the test, the
PSNR and SSIM indicators calculated from the Y channel of the light field image are directly
used for model performance evaluation. In the period of training, each sub-aperture is cut
into blocks with a stride of 32, and the spatial resolution of each sample is 160× 160 by
setting the angular resolution of the light field as U = V = 5. After down-sampling, the
spatial resolution of the sample is 80× 80. At the same time, this research also conducts
the number enhancement of random horizontal flip, vertical flip, and 90◦ rotation in the
model training process to improve the generalization ability of the model. In the process of
data enhancement, the researchers transform the spatial dimension and angular dimension
simultaneously to maintain the structural consistency of the light field before and after
data enhancement.

The model in this paper is trained with the loss function of Equation (1), set loss weight
α1 = α2 = 1, and optimized by Adam [35] optimizer, β1 = 0.9, β2 = 0.999, and the batch
size is set to 4. All experiments in this study are conducted based on PyTorch, and the
model is optimized by the Adam [35] optimizer. A single NVidia V100 GPU was used for
model training. The initial learning rate is set to 2× 10−4, and the learning rate is reduced
by a factor of 0.5 every 15 epochs. The training is stopped after 50 epochs, and the weights
of the 50th epoch are finally adopted as the weight for model examination.

4.2. Ablation Study

To verify the validation of our proposed MFSR, we compared for performance influ-
ence on the light field image super-resolution from global feature and gradient loss in this
section. In the DistgSSR [11], the influence on the performance of the light field images
super-resolution caused by spatial, angular, and EPI features which finally demonstrates
the effectiveness of sub-space features (spatial, angular, and EPI features).

To verify the validation of global features for light field image super-resolution, we
introduce global feature fusion based on spatial, angular, and EPI features. The PSNR
value comparison of the experimental results is shown in Table 2. It could be observed that
PSNR values of the light field image super-resolution with the introduction of the global
features in different datasets are higher than those without the introduction of the global
features. Compared to the original model, the PSNR value of 4 times super-resolution
with the introduction of the global features is promoted by 0.219 dB. That indicates the
superiority of integration with global features of the light field images compared to mere
utilization of local features which efficiently promotes the performance of the light field
image super-resolution.
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Table 2. Ablation study of Global Feature in the proposed model. We compare the performance
of the model with (w) or without (w/o) Global Feature on different test datasets and report the
PSNR results.

Global Feature HCI_new Stanford_Gantry EPFL INRIA_Lytro HCI_old Average

w 31.11 30.891 28.711 30.836 37.198 31.749
w/o 31.239 31.223 28.943 30.959 37.48 31.968

To demonstrate the influence on the light field image spatial super-resolution of the
loss function introduced by us, the paper introduces a gradient loss function to train
the model while introducing the global feature. Furthermore, the experiment results in
comparison are shown in Table 3. It is obvious that the average PSNR after the introduction
of the gradient loss function is promoted by 0.1 dB but the PSNR of the model declines
in the dataset EPFL and HCI_old. The researchers conclude that the corresponding light
field scenario gradient information is not evident enough in these datasets. The majority of
these scenarios are relatively smooth making the gradient information have little assistance
to super-resolution in these scenarios.

Table 3. Ablation study of Gradient Loss in the proposed model. We compare the performance of the
model with (w) or without (w/o) Gradient Loss on different test datasets and report the PSNR results.

Gradient Loss HCI_NEW Stanford_Gantry EPFL INRIA_Lytro HCI_OLD Average

w 31.239 31.223 28.943 30.959 37.48 31.968
w/o 31.278 31.338 28.92 30.966 37.388 31.978

4.3. Experimental Results on the Light Field Dataset

The light field images spatial super-resolution algorithm put forward by us is com-
pared with several of the most advanced algorithms including an algorithm with a base-
line of bicubic interpolation, 2 traditional image super-resolution algorithms (EDSR [28],
RCAN [29]), 7 light field images super-resolution algorithms(resLF [10], LFATO [31], LF-
InterNet [32], LF-DFNet [33], MEG-Net [9], DPT [13] and DistgSSR [11]). In this research,
the light field super-resolution algorithms based on deep learning in the above methods
are trained and examined in the same train datasets and test datasets for fair performance
comparison of every method. Due to that model training takes a great deal of time, the
paper only provides experiment results of 2× and 4× super-resolution with ab angular
resolution of 5 × 5 and PSNR and SSIM of related experiments as shown in Table 4.

As shown in Table 3, our proposed model obtains the highest PSNR and SSIM points
from 5 datasets in the tasks of 2× and 4× LFSR. Under 2× and 4× SR, PSNR of our MFSR
is promoted by 0.208 dB and 0.274 dB compared to the baseline model DistgSSR [11].
From the perspective of the performance from different datasets, our MFSR is promoted
remarkably in the Stanford_Gantry and HCI_old and the PSNR is promoted by 0.447 dB
and 0.282 dB compared to the baseline model DistgSSR [11] on 4× SR.

To demonstrate the superiority of this algorithm, the visualization analysis of light
field test scenarios is shown in Figure 5. After the amplification of the local region, it could
be observed that super-resolution results obtained by direct up-sampling are blurry in the
details in rich texture. Compared with other algorithms for LFSR, due to the application
of spatial, angular, EPI, and global features integration and utilization of the gradient loss
function promoting the performance in the rich texture of super-resolution algorithm, the
performance of our MFSR is better in the rich texture. Compared to the most advanced
light field images spatial super-resolution algorithm currently, MFSR could produce more
realistic images with fewer ghosts.
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Table 4. PSNR/SSIM values achieved by different methods for 2× and 4× SR. The best results are in
red and the second best results are in green.

Methods Scale HCI_new Stanford_Granty EPFL INRIA_Lytro HCI_old

Bicubic ×2 31.887/0.9356 31.063/0.9498 29.740/0.9376 31.331/0.9577 37.686/0.9785
EDSR [28] ×2 34.828/0.9592 36.296/0.9818 33.089/0.9629 34.985/0.9764 41.014/0.9874
RCAN [29] ×2 35.022/0.9603 36.670/0.9831 33.159/0.9634 35.046/0.9769 41.125/0.9875
resLF [10] ×2 36.685/0.9739 38.354/0.9904 33.617/0.9706 35.395/0.9804 43.422/0.9932

LF-ATO [31] ×2 37.244/0.9767 39.636/0.9929 34.272/0.9757 36.170/0.9842 44.205/0.9942
LF_InterNet [32] ×2 37.319/0.9772 38.838/0.9917 34.298/0.9762 36.108/0.9847 44.534/0.9945

LF-DFnet [33] ×2 37.418/0.9773 39.427/0.9926 34.513/0.9755 36.416/0.9840 44.198/0.9941
MEG-Net [9] ×2 37.424/0.9777 38.767/0.9915 34.312/0.9773 36.103/0.9849 44.097/0.9942

DPT [13] ×2 37.355/0.9771 39.429/0.9926 34.490/0.9758 36.409/0.9843 44.302/0.9943
DistgSSR [11] ×2 37.838/0.9791 40.341/0.9940 34.306/0.9773 36.247/0.9853 44.826/0.9948

MFSR ×2 37.964/0.9943 40.560/0.9943 34.859/0.9791 36.518/0.9861 44.699/0.9947

Bicubic ×4 27.715/0.8517 26.087/0.8452 25.264/0.8324 26.952/0.8867 32.576/0.9344
EDSR [28] ×4 29.591/0.8869 28.703/0.9072 27.833/0.8854 29.656/0.9257 35.176/0.9536
RCAN [29] ×4 29.694/0.8886 29.021/0.9131 27.907/0.8863 29.805/0.9276 35.359/0.9548
resLF [10] ×4 30.723/0.9107 30.191/0.9372 28.260/0.9035 30.338/0.9412 36.705/0.9682

LF-ATO [31] ×4 30.880/0.9135 30.607/0.9430 28.514/0.9115 30.711/0.9484 36.999/0.9699
LF_InterNet [32] ×4 30.998/0.9166 30.537/0.9432 28.737/0.9143 30.701/0.9485 37.101/0.9714

LF-DFnet [33] ×4 31.136/0.9177 31.035/0.9481 28.685/0.9141 30.770/0.9497 37.175/0.9711
MEG-Net [9] ×4 30.882/0.9146 30.437/0.9415 28.538/0.9107 30.542/0.9463 36.861/0.9696

DPT [13] ×4 31.028/0.9161 30.770/0.9451 28.604/0.9142 30.681/0.9486 37.098/0.9706
DistgSSR [11] ×4 31.110/0.9175 30.891/0.9466 28.711/0.9149 30.836/0.9492 37.198/0.9715

MFSR ×4 31.327/0.9207 31.262/0.9506 28.985/0.9183 31.024/0.9515 37.519/0.9729

Figure 5. Comparison visualization of our MFSR and other LFSR methods.

5. Conclusions

We present an end-to-end LFSR model called MFSR that utilizes multiple features to
integrate spatial, angular, EPI, and global features. The MFSR extracts multiple features
from the LF using a feature convolutional neural network. To promote the performance
of LFSR, the global features are extracted from the sub-aperture images through 3D con-
volution. Furthermore, to preserve detailed texture information that may be lost during
the LFSR process, we apply a gradient loss based on Sobel operator [14]. Experimental
results show that our algorithm achieves the highest PSNR and SSIM scores in the task of
2× and 4× super-resolution. Even in complex textures, our algorithm can produce high-
quality super-resolution images. We also conduct ablation experiments to demonstrate the
effectiveness of our proposed MFSR.

Additionally, future research could also focus on exploring the possibility of integrat-
ing other imaging modalities with the light field, such as hyperspectral or polarimetric
information. Moreover, the application of reinforcement learning or generative adversarial
networks (GANs) could be explored to enhance the performance of LFSR. Lastly, the devel-
opment of a more extensive benchmark dataset for LFSR could facilitate the comparison
and evaluation of different algorithms, and promote the advancement of t he field.
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