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Abstract: Lithium-ion batteries are crucial building stones in many applications. Therefore, modeling
their behavior has become necessary in numerous fields, including heavyweight ones such as electric
vehicles and plug-in hybrid electric vehicles, as well as lightweight ones like sensors and actuators.
Generic models are in great demand for modeling the current change over time in real-time applica-
tions. This paper proposes seven dynamic models to simulate the behavior of lithium-ion batteries
discharging. This was achieved using NASA room temperature random walk discharging datasets.
The efficacy of these models in fitting different time-domain responses was tested through parameter
identification with the Marine Predator Algorithm (MPA). In addition, each model’s term’s impact
was analyzed to understand its effect on the fitted curve. The proposed models show an average
absolute normalized error as low as 0.0057.

Keywords: lithium-ion battery; characterization of lithium-ion battery; generic model; NASA
datasets; MPA optimization algorithm; modeling

1. Introduction
Rechargeable lithium-ion batteries have revolutionized mobile electronics and are the

preferred technology for electric cars [1]. Lithium chemistry gives much higher power and
energy densities in gravimetric and volumetric terms than other battery chemistries [2],
which are the basic parameters for applications in versatile gadgets such as smartphones,
laptops, and advanced cameras. They also have an indispensable role in enabling deeper
penetration of intermittent renewable energy sources in power systems for a more sustain-
able future [2].

Lithium-ion batteries are widely used and have become popular for battery packs in
EVs due to their advantageous behavior over other battery types. The battery manage-
ment system in electric vehicles monitors the battery’s voltage, current, and temperature.
In addition, the battery management system must precisely assess the battery’s internal
states, such as state of charge and state of health. Thus, it is vitally important to de-
termine the parameters of a lithium-ion battery cell, which may aid in comprehending
the underlying physicochemical processes responsible for aging degradation physics for
lithium-ion batteries.

Many lithium-ion batteries have lower rates of self-discharge and hence, a longer
shelf life [3]. Thus, there has been a significant push toward the electrification of vehicles
using lithium-ion battery technology, and several commercial electric and plug-in hybrid
electric vehicle models have entered the market [4]. Additionally, due to continued cost
reductions in recent years, aqueous redox flow batteries are no longer a practicable option
for large-scale (grid) energy storage applications due to the high level of competition that
lithium-ion batteries now enjoy [4].

Equivalent circuit models (ECMs) are widely applied in the modeling and characteriz-
ing of energy-storage systems. Compared to electrochemical models, ECMs are easier to
analyze, have fewer parameters, and need less effort to identify the parameters without
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sacrificing performance. Equivalent components such as resistors, capacitors, inductors,
constant phase components, and ZARC components make up ECMs. Each component has
its impedance spectrum, allowing the battery model to be built using the battery spectrum
response to determine each component’s shape. Such ECMs with ZARC elements are
frequently used to model other storage elements such as supercapacitors [5–8]. These
models also aid in estimating the energy stored within storage devices [9].

To adequately describe lithium-ion batteries, there is a wealth of impedance models
in the literature. One of the most straightforward forms, thus, consists of a resistor and a
parallel branch of a constant phase element with a resistor. However, it requires a database
to operate in continuous mode due to its simplicity, which requires lots of computations
and significant memory [10]. Other models are primarily created to enhance monitoring
of the battery voltage dynamics [11]. Nonetheless, identifying lithium-ion battery models
while being charged and discharged is still absent in the literature.

Different generic-based battery models are used to more accurately simulate the be-
havior of batteries while being charged and discharged in real-time applications. A generic
battery model is presented in [12] and may be applied to much electrochemical battery
modeling. The battery’s internal resistance was considered constant throughout the model,
and the temperature had no impact on the battery’s capacity. Additionally, battery self-
discharge and the memory effect are ignored. The memory effect appears as a reduced
working voltage, which can be seen in the discharge curves of batteries that have been shal-
lowly discharged over and over again for a long time [13]. The memory effect is prominent
with lithium-ion batteries, as witnessed in [14]. Further, a modified generic battery model
is introduced, which is utilized in modeling the traction of electric and hybrid vehicles
in [15]. In such models, only battery charge and discharge are considered. The effects of
temperature, aging, and self-discharge are neglected. In [16], a different modified generic
battery model is introduced, which simulates the traction of electric and hybrid vehicles.
A new dynamic model is developed in [17] based on the generic Standard battery model
in [18]. The battery capacity is a function of the temperature, self-discharge rate, discharge
current, and cycling life. The model findings are compared with the standard model for
lithium-ion and nickel-metal hydride batteries and those of the manufacturer’s datasheet
for Sinopoly lithium-ion batteries.

There are numerous datasets for various battery chemistries available online. For ex-
ample, and not as a limitation, LiFePO4 Graphite 26,650 cylindrical cell dataset is presented
in [19]. The SOC of a Panasonic 18650PF lithium-ion battery is determined in [20] us-
ing Panasonic 18650PF lithium-ion Battery Data. In [21], they present a one-dimensional
convolutional neural network (CNN)-based state of charge estimate approach for elec-
tric vehicles. Two publicly accessible battery datasets [22,23] are used to train the CNN.
Additionally, NASA released many datasets for various battery kinds and test method-
ologies. For instance, the NASA HIRF Battery dataset was used to evaluate a full-vehicle
all-electric model plane for radiated emissions in [24]. The same dataset was utilized
in [25] to address the issue of developing trust in online estimates of the remaining flying
time of a battery-powered aircraft. Furthermore, we note the NASA Randomized Battery
Usage dataset published in [26], in which batteries are continually cycled with randomly
generated current profiles.

This research provides seven dynamic generic battery models developed using the
standard generic model as a reference model. These models aim to fit discharging cycles
for lithium-ion batteries the best; therefore, they are tested using the first and last random
walk discharging cycles datasets and compared with Standard model results. All of the
proposed models outperform the standard model. Furthermore, this paper introduces a
study for each term of the models’ equation to see how this term’s parameters affect the
final fitted curve.

The main contributions of this work can be summarized in the following points:
• Proposing seven dynamic generic battery models for lithium-ion batteries;
• Analyzing each model’s equation to see how each term affects the final fitted curve.

The rest of this paper is structured as follows: the reference battery model, NASA
Room Temperature Random Walk Discharging datasets, the proposed generic battery
models, the marine predator algorithm, and problem formulation are all discussed in
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Section 2. The fitting results and discussion are reported in Section 3. Finally, Section 4
contains the paper’s concluding observations.

2. Generic Battery Model
2.1. Standard Generic Battery Model

Figure 1a shows the equivalent circuit for the generic battery dynamic model that can
be used for the most rechargeable battery types. In this paper, lithium-ion battery type
is chosen, and the model uses the following equation for lithium-ion battery type in the
discharging mode:

f1(it, i∗, Exp, Li− ion) = E0 − K
Q

Q− it
i∗ − K

Q
Q− it

it + Ae(−Bit), (1)

where it is extracted battery capacity, i∗ is the low-frequency current dynamics, i is battery
current, Exp(·) represents exponential zone dynamics, E0 is the initial operating battery
voltage which represents the full charge value. k is the polarization constant (represented
as k1) or polarization resistance (represented as k2), Q is the maximum battery capacity, A
is exponential zone amplitude, and b is Exponential zone time constant inverse.
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Figure 1. (a) Generic battery model equivalent circuit and (b) the proposed generic battery model
equivalent circuit.

2.2. Proposed Generic Battery Models
A general equivalent circuit for the proposed generic battery models is shown in

Figure 1b. The models and their equation are described in Table 1, where y =
∫ t

0 t dt,
m = q

q−y and z = −by. Table 2 indicates the difference between each model, the parameters
used, and their number.
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• Model 1 is the reference model, where it has 5 parameters only, which are Vo, k, a, b,
and q;

• Model 2 has the same equation as the reference model, except it has the k constant as
two independent constants since they represent the polarization constant in V/Ah
and the polarization resistance in Ω, as witnessed in [15];

• Model 3 has ir as an additional term to the previous equation to consider the battery
resistance;

• Model 4 has q = q0 + α1t + α2t2, and r = r0 + β1t + β2t2. It takes into account the
aging effect on battery capacity and resistance;

• Model 5 adds (k1 + k2)m term to the previous equation. It tries to find the polarization
constant and resistance effects with the current battery capacity.

Models 6, 7, and 8 try to find the effect of the exponential term on the final curve.

• Model 6 replaces the exponential term—in the previous equation—with a positive
one;

• Model 7 adds the constant c to the positive exponential term;
• Model 8 has negative and positive exponential terms with the constant c.

Table 1. Models Equation.

Model Equations Differences

1. Vbat = v0 − kim− kym + aez Reference model.

2.

Vbat = v0 − ir
−k1im− (k1 + k2)m− k2ym

+aez + deey+c

km(i− y).

3. ir term.

4. q = q0 + α1t + α2t2.
r = r0 + β1t + β2t2.

5. (k1 + k2)m.

6. aeby

7. aeby+c

8. ae−by + deey+c

Table 2. The Proposed Generic Models.

Model Parameters # Parameters

Common r K2 α1 α2 β1 β2 c d e

1

Vo
K1
a
b
q

5

2 X 6

3 X X 7

4 X X X X X X 11

5 X X X X X X 11

6 X X X X X X 11

7 X X X X X X X 12

8 X X X X X X X X X 14

2.3. NASA Room Temperature Random Walk Discharging Datasets
A set of long-term (more than 50 h) published data was utilized to test the standard

and the proposed models. Four lithium-ion batteries were repeatedly charged to 4.2 V
and then discharged to 3.2 V using a randomized series of discharging currents between
0.5 A and 4 A. This discharging profile is annotated as “random walk (RW) discharging”.
The RW discharge profiles are made up of intervals of battery resting (zero current) and
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5-minute battery discharges at a specific current. Figure 2 presents the voltage and current
test profiles.

(a)

(b)
Figure 2. Voltage and Current test profiles for the (a) first RW cycles and (b) last RW cycles.

2.4. Marine Predator Algorithm
The Marine Predators Algorithm, MPA, has been recently proposed by [27] as a

biologically inspired optimization algorithm. It models interactions between marine prey
and predators using governing strategies for optimal foraging and memory in predators.
Further, marine predators have been discovered to use Levy and Brownian motions in
habitats with low and high prey populations, respectively. However, when individuals
move through numerous places throughout their lives, they apply both RW approaches.
Utilizing their great memory, predators constantly remind themselves and those around
them of crucial details [27].

Similar to the majority of meta-heuristic algorithms, the MPA population is started
by taking samples from a uniform distribution throughout the viable area of the search
space. The Prey and Elite matrices are then developed, which are two crucial matrices.
The dimensions of both matrices are ntimesd, where n is the total number of search agents
and d is the search space size. The prey positions from the starting stage are initially
included in the rows of the Prey matrix. The Prey matrix updating strategy will then
differ based on the optimization stage. Whenever the Elite matrix is constructed, the top
predator’s location is duplicated across all rows [27,28].
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2.5. Problem Formulation
In the parameter identification problem, the objective function is considered as the

average normalized absolute error. The MPA optimizer aims to minimize this objective
function, which is defined as:

fmin =
1
N

N

∑
i=1
|Vest(ti)−Vmeas(ti)

Vmeas(ti)
|, (2)

where Vest is the estimated voltage value at a specific time ti, Vmeas is the measured voltage
value, from each RW dataset, at the same time, and N is the number of time samples. In the
problem, MPA is employed to find each model parameter. For Model 1, the search space
vector is decided to be: [Vo K a b q]. The search agent’s number is 10 times the search space
dimension. Therefore, the number of search agents is 50 for Model 1. For Models 2, 3, 4, 5,
6, 7, and 8, the search space vector is [Vo K a b q r], [Vo K1 K2 a b q r], [Vo K1 K2 a b q r α1 α2
β1 β2], [Vo K1 K2 a b q r α1 α2 β1 β2], [Vo K1 K2 a b q r α1 α2 β1 β2], [Vo K1 K2 a b q r α1 α2 β1
β2 c], and [Vo K1 K2 a b q r α1 α2 β1 β2 c d e], respectively. The search agents are 60, 70, 110,
110, 110, 120, and 140 for the proposed models in order.

3. Results and Discussion
Tables 3 and 4, and 5 and 6 provide the fitted curves for the first and last RW datasets,

respectively. They demonstrate the best fit for the proposed models to the chosen datasets.
Moreover, as seen in Table 3, most models almost fit by an absolute error of 0.0057. All of
the suggested models outperform the standard model which cannot fit the upper half of
the data, as shown in Tables 3 and 5. The fitting behavior of the other models is almost
comparable; the few differences are visible in the plot’s details. Moreover, this behavior
is valid for all models except Models 6 and 7, which act differently in the upper portion,
hitting 4.4V every cycle. For the first dataset, Models 4, 5, and 8 are the best-fitted models,
as shown by the absolute error plot in Figure 3a, and they also have the lowest fmin. The
fitted plots for the last RW dataset are displayed in the first column of Table 5, where the
best fit is Model 7.

(a) (b)
Figure 3. The absolute error for the proposed models (a) first RW data, and (b) last RW data.

The standard model displays the most significant absolute error across each cycle
for the first RW dataset, where it is practically constant at 0.15. The rest of the models,
in contrast, only exhibit absolute peak error at the 5 H cycle and have significantly lower
values for the remaining cycles. Even so, the maximum absolute error for Models 2, 3, 4, 5,
and 8 is 0.08, whereas the absolute error for the remaining cycles is 0.03. Model 6 has a 0.2
peak absolute error. The remaining cycles of Models 3, 4, and 5 have a value of 0.3, while
the cycles of Models 6 and 8 have values of 0.1 and 0.01, respectively. The absolute error
values of Model 7 are variable, with a maximum of 0.3 and other cycles ranging from 0.14
to 0.06.

For the last RW dataset, the standard model also has the largest absolute error of
0.2 for most of the cycles. All models have nearly the same absolute curve, where they
peak at 0.102 and 0.02 for most cycles. The models’ peak absolute error is at 35 H cycle.
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The curves also have two spikes at 5 H and 9 H cycles with absolute errors of 0.06 and 0.08,
respectively.

According to Table 7, vo values range from 3 to 4 V, except in the case of Model 8, where
vo equals 0.5 V. K1 ranges from pV/Ah, where Model 4 equals 0.35 pV/Ah, and terminate
at 16 V/Ah in Model 8. Additionally, the value for Model 2 is 0.23 µV/Ah, for Model 6,
it is 4.7 µV/Ah, and for Model 1, it is 4.05 µV/Ah. Consequently, for Models 3 and 7, K1
eauals 1.88 and 6.8, respectively, in terms of V/Ah. Despite that, there are no reliable data
for the polarisation resistance, K2. For Model 4, it is equal to 0.1 nΩ, and for Models 6 and
2, it is equal to 1.2 and 2.3 µΩ. Following that, K2 equals 1.7 mV for Model 5. Last but not
least, 0.3 and 1.2 V correspondingly for Models 3 and 7. a, in (Ah)−1, is nearly constant at
0.62. It is nearly zero at Model 5. Models 1 and 6 have values of 0.78 and 0.92, respectively.
For the majority of models, b has constant values at 0.24 mV. The value of Model 7 is very
close to zero. Models 1 and 6 have values of 0.57 and 120 in mV, respectively. The Model 3
value, however, is the highest at 2.43 V. For q, in Ah, Models 2, 6, 4, and 7 have values 0.1,
0.11, 1.29, and 1.58. Additionally, the values for Models 5, 1, and 3 are 0.28, 1.56, and 4.87,
respectively. The battery resistance in Ω, r, almost always equals 0.13, except for Models 7
and 6, for which it is, respectively, 0.17 and 0.18. Except for Model 5, α1 and α2, t coefficients
for q, have very small values.

In Table 3, Vo − ir term has the same pattern among all models for the first RW dataset.
However, it differs in its peaks and troughs. Excluding Models 7 and 8, all models peaked
around 3.8 V and troughed around 3 V. Models 7 and 8 reached their highest point at 3.5 V
and their lowest point at 2.1 and 2.1 and −0.06 V, respectively. Each model’s k1im term
has a unique form and set of values. Model 5, for example, has a reciprocal shape for
the Vo − ir term in the same model. Other models have different spike values with time.
The lowest valued models are 5 and 7, which are in the nano range. Whereas, Models 4,
1, and 8 have the highest values. Model 7 has the highest value in the (k1 + k2)m term,
with a peak value of 30 mV. Multiple peaks are present in various periods with random
forms, some of which are in the negative part. Low values in the micro range are found for
Models 5 and 8, whose peaks are 20 µV and 50 µV, respectively. Models 5 and 6 peak at the
beginning of the period, but the curve thereafter follows a straight line until the end of the
period. K2ym term takes the form of straight lines with minor swings, a pulse followed by
a straight line, or a straight line with a slope. Additionally, the values range from picovolts
to millivolts. For instance, Model 7 has a straight line with a negative slope and a peak
of −20 mV. Models 2 and 4 have the same shape, but Model 2’s voltage value is −1.6 mV,
while Model 4’s voltage value is −470 mV. The pulse of Model 8, which has a value of
−0.57 pV, is present at the start of the timeline and varies somewhat along it. Model 6 is the
next model, with a value of 0.18 µV. Finally, the values of Models 5 and 3 are 1 and 100 mV,
respectively.
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Table 3. First RW Model Results.

Model Fitted Plot Vo − ir k1im (k1 + k2)m k2ym

1

2

3

4
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Table 3. Cont.

Model Fitted Plot Vo − ir k1im (k1 + k2)m k2ym

5

6

7

8
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Table 4. Cont. First RW Model Results.

Model aeby aeby+c ae−by deey+c

1

2

3

4

5

6

7

8

In Table 4, the aeby term in Model 6 has relatively low values. Along the time frame, it
has several pulses with varied values. In Model 7, term aeby+c behaves as a straight line
with voltage value 1 V. Except for Model 5, all models have the same form for the ae−by

term, which has many peaks throughout time. They also share the same voltage values,
ranging from 0.2 to 0.6 V. Model 1 has a 0.2 V higher than the rest. Model 5, nevertheless,
has extremely low voltage, ranging from 0 to 6 µV. In Model 8, the term deey+c behaves as a
straight line at 3.1 V.

In Table 5, the last RW dataset shows that Vo fluctuates somewhat. Models 6, 1, and 7
have voltages of 1.57, 2.63, and 3.38 volts, respectively. However, Models 2, 3, 4, and 5 have
equal values. The value of Model 8 is the lowest, coming in at 0.57 mV. Similar to those in
the Frist dataset, K1 has low values as in the range of ×10−14 for Models 2 and 6. Models
8, 4, and 7 are next, with, correspondingly, 0.28, 0.34, and 0.56 nV/Ah. 37 nV/Ah is the
Model 1 value. The values for Models 3 and 5 are, respectively, 0.54 and 0.12 mV/Ah. K2
values range from nearly zero to millivolts. Models 4 and 5 have the lowest values. Model
3, which is in the microvolt range, comes next and then Models 6, 7, and 8, which are in the
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millivoltage range. The values for Models 2, 3, 4, and 5 are equal, indicating some stability
in a values. The value of Model 7 is 0.15 (Ah)−1, while the value of Model 8 is 4.17 (Ah)−1.
The constant b has the highest and lowest values in Models 4 and 8, respectively, compared
to the other dataset. Other models are measured in mV. q values have some consistency,
where most models are in mAh. Nonetheless, Models 1 and 3 are valued more than others,
at 1.38 and 4.32, respectively. At 0.25 Ω, the values of r remain constant. Except for Model
5, all models have an α1 of 1. The same holds for α2. While β2 roughly equates to zero, β1
values are low compared to the other values, falling to 10−8. The values for fmin are similar.
For example, the values of Models 4, 5, and 6 are all 0.0071, while those of Models 2 and 3
are 0.0072. Model 6 has the highest value among the suggested models, equaling 0.037.

On the other hand, for the last RW dataset in Table 5, all models except Models 7 and
8 have the same form, peaks, and troughs for the Vo − ir term. The peak values for the
models are 1.5 V and 0.8 V, while the trough values are 0.6 V and −0.005 V, respectively.
They have the same shape as those in the first dataset but have different peak values. Peaks
and troughs for the remaining models are 3.8 V and 2.6 V. Except for Models 7 and 8, which
are identical, no model with k1im term has a constant shape. Further, Models 7 and 8 have
the highest values, 7 mV and 5 mV, as peaks for the models, respectively. Model 4 has the
lowest value and goes up to 1 nV. The behavior of Models 3 and 6 is the same with the
same values, with peaks and troughs of 100 µV and −100 µV, respectively. Model 7 has
relatively low values in the micro range.

Roughly all models have the same shape for the (k1 + k2)m term, which has a pulse in
the first time slot and then continues in a straight line with slight fluctuations. Except for
Model 5, whose peak equals 1.2 V, its values range in mV. Peak values for Models 7, 6,
and 8 are, respectively, 0.3, 0.5, and 1.9 mV as shown in Table 8. K2ym term typically has
numerous peaks along the timeline, each with a different value. For instance, the shapes of
Models 4, 6, and 7 are identical, as well as those of 1, 2, and 3. Model 5, on the other hand,
behaves like a low-pass filter, producing a voltage pulse at the beginning of the timeline
and a gradual attenuation toward the end. Voltage for this term is very low. Model 4’s
value is equal to 0 mV, and Model 2’s value is 0 mV. Models 8, 5, 6, and 7 are thus equal to
0.3 V, 1.2 V, 1.5 V, and 2 V, respectively.

In Table 6, aeby term behaves similarly to K2ym in the same model. Nevertheless, its
values are higher than those in the first dataset. Its maximum value is 3.8 V. It also features
several peaks that cycle throughout time, ranging from 2.8 V to 3.6 V. aeby+c term has
multiple peaks during the timeline. Its maximum value is 4.5 V, and its minimum value
is 4 V. There are 3 alternative plot forms for ae−by term. Models 1 to 4 all have the same
shape, whereas 5 and 8 have different shapes. Models 3 and 4 are common in their shape
and voltage ranging from 0.3 V to 0.6 V. The lowest value in the picovolts region belongs
to Model 5. On the other hand, the highest one, which equals 1.6 as a peak, is found in
Model 1. The voltage ranges for Models 2 and 8 are 0.4 V to 0.6 V and 0.05 V to 0.15 V,
respectively. deey+c term acts similarly to the K2ym term in the same model but at different
voltage values ranging at 3.5 V.
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Table 5. Last RW Model Results.

Model Fitted Plot Vo − ir k1im (k1 + k2)m k2ym

1

2

3

4
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Table 5. Cont.

Model Fitted Plot Vo − ir k1im (k1 + k2)m k2ym

5

6

7

8
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Table 6. Cont. last RW Model Results.

Model aeby aeby+c ae−by deey+c

1

2

3

4

5

6

7

8
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Table 7. First RW cycles Parameters’ values for the proposed models.

Parameter
Model Number 1 2 3 4 5 6 7 8

V0 (V) 3.4 3.57 3.57 3.57 3.57 4.03 3.03 0.46

K1 (V/Ah) 4.49×10−5 15.83 2.38×10−7 1.88 0 14.95 4.73×10−6 6.86

K2 (Ω) 2.38×10−6 0.36 1.02×10−8 0.0017 1.21 4.03×10−6

a (Ah)−1 0.78 0.62 0.62 0.623 0.62 0 0.92 0.62

b (V) 5.76×10−4 2.43×10−4 2.43 2.4×10−4 2.4×10−4 0.0125 0 2.4×10−4

q (Ah) 1.56 1.07×10−4 4.87 0.00129 0.28 1.1×10−4 0.00159 1.42×10−5

r (Ω) 0.13 0.13 0.13 0.18 0.17 0.13

α1 0 1 0 7.3×10−7 0

α2 0 0.001 0 0 0

β1 2.55×10−8 2.05×10−8 0 0 2.56×10−8

β2 0 0 0 0 0

c 0.02 0.03

d 3.01

e 0

f min 0.0406 0.005.8 0.0058 0.0057 0.0057 0.0377 0.0374 0.0057

Table 8. Last RW cycles Parameters’ values for the proposed models.

Parameter
Model 1 2 3 4 5 6 7 8

V0 (V) 2.63 3.57 3.57 3.57 3.57 1.57 3.38 5.73×10−4

K1 (V/Ah) 3.79×10−5 0 5.46×10−4 3.44×10−8 1.22×10−4 0 5.6×10−8 2.84×10−8

K2 (Ω) 1.62×10−6 0 0 5.95×10−4 4.16×10−4 2.28×10−4

a (Ah)−1 1.58 0.64 0.64 0.63 0.63 2.63 0.15 4.17

b (V) 2.21×10−4 3.69×10−4 3.68×10−4 3.69 3.69×10−4 1.41×10−4 2.38×10−4 2.35×10−7

q (Ah) 1.38 0.58 4.32 0.71 0.12 0.08 0.04 0.09

r (Ω) 0.25 0.25 0.25 0.25 0.25 0.25

α1 0.99 0.3 1 1 1

α2 0.93 0.008 1 1 1

β1 3.91×10−8 9.91×10−9 4.76×10−8 4.49×10−8 4.3×10−8

β2 0 0 0 0 0

c 1.68 10.85

d 5.4×10−7

e 8.44×10−4

fmin 0.0474 0.0072 0.0072 0.0071 0.0071 0.0377 0.0061 0.0071

4. Conclusions
Seven dynamic generic models for characterizing well lithium-ion batteries are pro-

posed. In addition, a detailed look at each term in each model’s equations to better
understand its effect on the fitted curve is introduced. Using the MPA algorithm and
NASA RW discharging dataset, the fitted results of the proposed models were obtained and
compared to those of the Standard model. For the first RW data set, the best-fitting models
are 4, 5, and 8, which account for the impact of aging on battery capacity and resistance.
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Also noted are the polarization constant and resistance effects in Model 5, as well as the
negative and positive exponential components in Model 8. Model 7 is the top performing
model on the last RW dataset, with 0.0061 fmin. It considers the influence of polarization,
the aging of the battery, and the positive exponential-term effects.

The performance properties of lithium-ion batteries are temperature-sensitive [29].
The recoverable power and capacity may be decreased dramatically when used or stored at
temperatures over 50 °C [30]. On the other hand, when the battery is charged at tempera-
tures below −10 °C, lithium plating reduces capacity. These low temperatures diminish
extractable energy [29]. Hence, lithium-ion batteries used in electric vehicle and hybrid
electric vehicles applications must be kept below 50 °C but promptly heated or self-heated
by cycling within permitted limits before functioning at cold temperatures [31]. For future
work, other datasets and testing scenarios will be considered, in addition to studying
different battery issues, including thermal issues.
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