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Abstract: The conductive bridge random access memory (CBRAM) device has been widely studied
as a promising candidate for next-generation nonvolatile memory applications, where Cu as an
electrode plays an important role in the resistive switching (RS) process. However, most studies only
use Cu as one electrode, either the top electrode (TE) or the bottom electrode (BE); it is rarely reported
that Cu is used as both TE and BE at the same time. In this study, we fabricated CBRAM devices by
using Cu as both the TE and BE, and studied the RS characteristic of these devices. With Al2O3 as the
switching layer (5~15 nm), the devices showed good bipolar RS characteristics. The endurance of
the device could be as high as 106 cycles and the retention time could be as long as 104 s. The Al2O3

thickness influences the bipolar RS characteristic of the devices including the initial resistance, the
forming process, endurance, and retention performance. The Cu electrode-based RRAM devices also
present negative bias-suppressed complementary resistive switching (CRS) characteristics, which
makes it effective to prevent the sneak path current or crosstalk problem in high-density memory
array circuits.
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1. Introduction

Resistive switching random access memory (RRAM) provides attractive prospects
for next-generation non-volatile memories due to its outstanding characteristics, high
memory capacity, simple structure, excellent scalability and compatibility with the standard
complementary metal oxide semiconductor (CMOS) process [1–3]. Typically, the RRAM
device shows a metal–insulator–metal (MIM) structure, where an insulator (oxide) material
is simply sandwiched between the metal top electrode (TE) and bottom electrode (BE).
With this structure, metal electrodes have a great influence on the resistive switching (RS)
characteristics of RRAM devices [4,5]. So far, various kinds of metal electrodes have been
studied for RRAM devices with RS behavior, such as Cu, Pt, TiN, Ag, Al, W, Ti, etc. [6–11].
Herein, Cu is an important electrode material in conductive bridge random access memory
(CBRAM) as it can supply metal ions into a switching layer (SL) to form a metal conductive
filament (CF). Li et al. [12] indicated that RRAM devices with Cu TE exhibited more stable
bipolar RS behavior compared with Au and Al. Yang et al. [13] investigated the reset
switching of bipolar Cu/HfO2/Pt RRAM devices with a statistical methodology, and they
determined that the ON state resistance (RON) describing the initial state of the CF has
considerable influence on the distributions of the reset current and voltage. Until now, there
have been many studies on RRAM devices with Cu electrodes, such as Ag/ZnO/Cu [8],
Cu/AlOx/W [9], Cu/HfO2/Pt [10], etc. However, most of these studies only use Cu
as either the TE or the BE, and very few studies address the topic of RS characteristics
with Cu as both the TE and BE in the device. For the formation mechanism, a filamentary
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switching mechanism has been proposed to explain the RS characteristic of CBRAM [14–18],
where the conductive filament formation can be ideally explained by the electrochemical
metallization model [19], i.e., when a positive voltage is applied on the oxidizable Cu
electrode, the generated Cu+ or Cu2+ ions will migrate through the electrolyte onto the inert
cathode and then will be reduced to Cu atoms at the cathode, leading to the CF growth from
the cathode towards the anode. The mechanism of the CF rupture is more complicated,
usually involving the oxidation of CF under the reverse electrical field and the dissolution
of CF by the Joule heat [15,19–21]. However, whether the electrochemical oxidation or the
thermal dissolution dominates the reset is still unaddressed.

In this study, we investigated the RS characteristics of RRAM devices with Cu as both
the TE and BE, which helps to further explore the CF formation and rupture mechanism of
Cu-based RRAM devices. In the meantime, the study on the RS characteristics of RRAM
with Cu as both TE and BE is important for the wide application of RRAM. By utilizing
Al2O3 as the SL material, we also studied the effect of SL thickness on the RS characteristics.

2. Materials and Methods

The RRAM devices with Cu as both TE and BE were fabricated as follows: first, a
60 nm Cu layer was successively deposited by direct current (DC) sputtering onto the
low-resistivity silicon wafer (0.001~0.005 Ω·cm) to form the BE. Then, the SL of Al2O3 with
a certain thickness (5~15 nm) was deposited by atomic layer deposition (ALD) at 300 ◦C.
Finally, square-shaped Cu TEs (60 nm) with areas of 100 × 100 µm2 were deposited by DC
sputtering through a lift-off process. Agilent B1500A semiconductor parameter analyzer
was used to measure the RS characteristics with the bias voltage applied on the TEs while
the BE was grounded.

3. Results

Figure 1 shows the structure diagram of the Cu electrode-based RRAM device. In this
study, different kinds of RRAM devices (Cu/Al2O3/Cu devices with the Al2O3 thickness
of 5 nm, 10 nm, and 15 nm) were fabricated to study the effect of SL thickness on the RS
characteristic of Cu electrode-based RRAM device. For the Cu/Al2O3/Cu RRAM, the
initial resistance of devices with 5 nm, 10 nm and 15 nm Al2O3 was tested at 12.8 MΩ,
17.7 MΩ and 51.9 MΩ, respectively, as shown in Figure 1b, which indicates an initial high
resistance state (HRS). To trigger the resistive switching behaviour of these devices, a
forming process with large voltage was conducted, and the results are shown in Figure 1c.
The forming voltage used for devices with 5 nm, 10 nm, and 15 nm Al2O3 are 6 V, 8 V, and
9 V with the compliance current of 100 µA, 300 µA, and 500 µA, respectively. Therefore,
the SL thickness obviously influences the performance of the RRAM device. With the
increase in SL thickness, the initial resistance of the device increases, resulting in a larger
forming voltage and compliance current. In any cases, once the RRAM device undergoes
the forming process, it is easy to achieve the RS behaviour with a small voltage. Figure 1d
shows the RS characteristic of the three devices. Under the compliance current of 500 µA,
the set processes that the RRAM changes from HRS to low resistance state (LRS) occurred
at 4 V, 4 V, and 3 V for devices with 5 nm, 10 nm, and 15 nm Al2O3, respectively. When the
negative voltage was applied, a reset process (from LRS to HRS) occurred for these devices,
where the on/off ratio can be estimated at approximately 86, 880, and 5388, and thus it can
be roughly judged that CF formed in 15 nm Al2O3 is thicker than those formed in 10 nm
and 5 nm under current conditions.

The on/off ratio is related to the testing parameters, and by properly adjusting the
applied voltage or compliance current, the Cu/Al2O3/Cu devices can achieve multi-level
states. Taking the device with 10 nm Al2O3 as an example, as shown in Figure 2a, it can
be seen that by increasing the voltage from 4 V to 5 V as well as the compliance current
from 0.5 mA to 10 mA, the on/off ratio increases from 880 to almost 20,000, which is
important for its applications. Under suitable testing parameters, we tested the endurance
of these devices in the SPGU module of B1500A with the SET pulse (4 V, 200 ns) and RESET
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pulse (−3 V, 200 ns) respectively, and the results are shown in Figure 2b–d. Compared
with the Cu/Al2O3/Cu devices with 10 nm or 15 nm Al2O3. The device with 5 nm Al2O3
presented larger fluctuation in its HRS and LRS during the cycles. In any cases, all three
Cu/Al2O3/Cu devices showed good endurance since their HRS and LRS showed stable
trends in up to 106 cycles. In addition, the retention performances of these devices were
also tested by applying a small voltage of 0.1 V on the HRS or LRS, and the results are
shown in Figure 3. All the devices were tested for up to 104 s. During the process, the
device with 5 nm Al2O3 showed obvious fluctuations in its HRS, but it was better in
its LRS. For comparison, the devices with 10 nm or 15 nm Al2O3 showed more stable
retention performance in both HRS and LRS. Therefore, Cu electrode-based RRAM devices
with thicker Al2O3 layers tended to have better endurance and retention performance in
this study.

In addition to the above bipolar RS characteristic, the Cu electrode-based RRAM de-
vices also showed special RS behaviours during the testing process, as shown in Figure 4a–c.
For this RS characteristic, the set and reset processes were finished in positive bias, and
the devices kept in HRS within the whole negative bias, which is important in crossbar
array application as it can prevent the sneak path current during the process (Figure 4d).
Assume that when a read voltage (Vread) is applied to the RRAM of HRS, theoretically,
there should be a small current (Iread) flowing along the black solid line path; however, in
fact, there is Isneak flowing along the red dotted line path. As a result, RRAM-a as originally
HRS is misread as LRS. The special RS behaviours in Figure 4a–c can address this problem
effectively. Take the Cu/(15 nm)Al2O3/Cu with a positive voltage as an example. The set
process occurred (from HRS to LRS) at 2.28 V under the compliance current of 500 µA; then,
when the voltage decreased back to 0.96 V, the reset process occurred (from LRS to HRS).
However, the device keeps HRS when a negative voltage is applied, which is called nega-
tive bias suppression. Therefore, when it is applied to the crossbar array, any sneak path
current involving the negative bias is blocked. It should be noted that the LRS only exists in
a specific voltage range in this case, such as 0.96~4 V in the device of 15 nm Al2O3, which
is similar to the complementary resistance switching (CRS) RRAM [22], while the simple
structure and fabrication process of this device make it preferred in various applications.
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4. Formation Mechanism of the Bipolar RS Characteristic

Based on the filamentary switching mechanism of the electrochemical metallization
model [15,19–21], the mechanism of formation of the bipolar RS characteristic can be
explained, as shown in Figure 5. Under the positive voltage (+V), Cu atoms in the TE
are oxidized and converted into Cu ions. These Cu ions then drift from TE to BE with
the electric field. During the process, some of these Cu ions are trapped at defect sites,
meanwhile they are combined with the electrons from BE to form Cu atoms [10]. With
the increase in positive voltage, more and more Cu ions are trapped and form Cu atoms.
When the voltage increases to Vset, the trapped Cu atoms form a CF connecting the TE
and BE, and the RRAM changes from HRS to LRS; that is the set process. When the
negative voltage is applied, Cu2+ is formed in BE, which is drifted from BE to TE, and then
neutralized by electrons from the TE. During the process, a high current is flowing through
the filament with a large compliance current. When the voltage increases to Vreset, Joule
heating/localized thermal heating caused by the high current [11] leads to the rupture of
CF and the device changes from LRS to HRS; that is the reset process. However, further
research is needed to study the negative bias-suppressed CRS characteristic in the device to
control it and make it play a valuable role in various applications.
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5. Conclusions

The RS characteristic of Cu electrode-based RRAM devices was studied in this work.
Results demonstrated that the RRAM devices showed good bipolar RS characteristics, and
by adjusting the applied voltage or compliance current, the devices presented a multi-level
state with an on/off ratio as high as 20,000. The endurance test indicated that the devices
can be stable for up to 106 cycles, and the retention test showed that the resistance kept at
HRS (or LRS) for up to 104 s with little fluctuation under the read voltage of 0.1 V. With
the increase in Al2O3 thickness from 5 nm to 15 nm, the initial resistance of the devices
increases from 12.8 MΩ to 51.9 MΩ, thus requiring the forming voltage from 6 V to 9 V.
In addition, the smaller thickness may make the resistance more fluctuating during the
endurance and retention test. Most importantly, the Cu electrode-based RRAM devices
also showed negative bias-suppressed CRS characteristic, which can prevent the sneak
path current in the crossbar array applications. Finally, the mechanism of formation of
the bipolar RS characteristic was explained, while further study is needed for the negative
bias-suppressed CRS characteristic. Overall, the results presented in this work provide
valuable information for establishing high-performance-based RRAM devices.
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