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Abstract: The aim of this paper is to select a depth controller for innovative biomimetic underwater
vehicle drives. In the process of optimizing depth controller settings, two classical controllers were
used, i.e., the proportional–integral–derivative (PID) and the sliding mode controllers (SM). The
parameters of the regulators’ settings were obtained as a result of optimization by three methods
of the selected quality indicators in terms of the properties of the control signal. The starting point
for the analysis was simulations conducted in the MATLAB environment for the three optimization
methods on three types of indicators for three different desired depth values. The article describes
the methods and quality indicators in detail. The paper presents the results of the fitness function
obtained during the optimization. Moreover, the time courses of the vehicle position relative to the
desired depth, the side fin deflection angles, the calculated parameters of the control signals, and the
observations and conclusions formulated in the research were presented.

Keywords: biomimetic underwater vehicle; depth controller; genetic algorithms; particle swarm
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1. Introduction

In the 21st century, there has been dynamic development of mobile robots. One of the
fields is underwater robots, where we can distinguish between ROV (Remote Operated
Vehicle) and AUV (Autonomous Underwater Vehicle). Vehicles based on ROV technology,
which dates back to the 1960s, have been ideally developed and are successfully used
in all kinds of underwater operations [1–3]. A significant limitation of the mobility of
these vehicles is the use of cable tether, which leads scientists and engineers to develop
AUVs [4]. Autonomy, advanced control and positioning systems allow the realization of
many civilian and military tasks. The development of bionics resulted in a new trend in
the construction of underwater mobile robots, whose main idea is to imitate underwater
animals. These vehicles are called biomimetic underwater vehicles (BUVs) [5,6], which
mimic construction and motion kinematics. Most often, the prototype vehicle is inspired by
the shape and movement of aquatic creatures, although there are designed based on manta
rays, penguins and many others. Nevertheless, it is essential to carefully analyze the animal
movement and to develop an appropriate simplified mathematical model, which will be
used as close as possible to the BUV [7]. Artificial fins, similar in shape and appearance to
the real ones, propel the BUV. Such propulsion is called wave or undulating propulsion,
and it can be placed in different parts of the BUV’s hull, depending on the type of design,
its maneuverability and the speeds it can achieve. An electric motor usually drives it
to generate sufficient vehicle thrust through oscillating motion. A sinusoidal function
usually describes oscillatory motion, but different parts can be used depending on the
type and purpose of the undulating propulsion. To describe oscillatory motion, usually
use parameters such as the neutral position, which is the zero position for oscillation,
the amplitude of oscillation, which defines the maximum deformation of the fins, and the
frequency of oscillation [8].
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Control of underwater vehicles has been investigated quite thoroughly. However, still
many difficulties occur, among other things, due to environmental disturbance, highly
nonlinear behavior of vehicles, the complexity of the vehicle hydrodynamics or the appli-
cation of new innovative propulsion systems. The articles [9–12] present various systems
for controlling the depth of underwater vehicles. They concern both controllers tuned
classically and using artificial intelligence algorithms. However, the works presented above
concern, to a large extent, ROV or AUV vehicles using a classic screw drive propeller.
Biomimetic underwater vehicles can be equipped with an artificial swim bladder [13]
similar to a fish bladder, which controls buoyancy and depth. Another solution used to
control the depth of biomimetic underwater vehicles [14,15] is changing the locomotion
primitives of the fins, usually by changing frequency, amplitude or side fins’ phase shift. In
more advanced applications, changing the depth can be done by adjusting the angles of
attack of the vehicle’s control surfaces, their stiffness [16], or surface area of side fins [17]
while the vehicle is moving at a certain speed through its wave propulsion.

The main contribution of this paper is to present depth controllers’ different tuning
methods for innovative BUV wave propulsion drives. The proposed methods use artifi-
cial neural networks in the tuning process and the experimental verification system of
controller gains to evaluate its performance. In the presented literature, one can notice
the lack of use of neural network-based methods for tuning depth controllers based on
bioinspired wave propulsion drive. This research could have significant implications for
the development of biomimetic autonomous underwater vehicles for various applications
such as exploration of the ocean ecosystems, environmental monitoring, or even search
and rescue missions. The rest of the paper is organized as follows. The mathematical model
of the vehicle is based on the Fossen model [18] with modifications to include the new
wave drive used. Commonly used underwater vehicles are driven mainly by a set of screw
propellers, whereby the thrust generated by the propellers can be calculated using specific
mathematical formulas [19]. In the case of a new wave propulsion system that mimics the
action of fish fins, the forces and moments of force acting on the vehicle were calculated us-
ing the author’s method presented in the literature [20]. Then the applied depth controllers
and their control methods are presented. The following section offers the research problem
and the results obtained in the simulation process. The final section formulates conclusions
and plans for future research.

2. Materials and Methods

This chapter presents the simulation model and methods used in the tuning process of
the depth controller settings. It contains two main subsections. The first concern describes
biomimetic underwater vehicles with an innovative propulsion system. A mathemati-
cal model based on the above-mentioned vehicle is described in the further part of this
subsection. While the second main subsection deal with the description of controllers,
optimization methods and fitness functions used in the simulation process.

2.1. Control Object

This subsection describes the construction of a biomimetic underwater vehicle (mini-
Cyber Seal) with particular emphasis on the new propulsion system. In the next part,
the mathematical model of the vehicle is presented, where special attention is paid to the
proposed solutions for modelling the vector of vehicle forces and moments.

2.1.1. Mini CyberSeal

The study used a physical model of the BUV mini CyberSeal vehicle shown in Figure 1,
is a smaller prototype of the larger vehicle. The purpose of the downsized BUV was to test
the performance of the larger vehicle’s counterpart’s propulsion system and to test a new
type of control. Unlike its predecessors, the mini CyberSeal’s propulsion system had two
tail fins instead of one. They generate the major thrust and are additionally responsible for
changing course. In addition, a side propulsion system is mounted in front of the fuselage,
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which generates additional thrust and changes the depth. The rear and side fins are made
of polycarbonate and rubber.

Figure 1. Model of the BUV mini CyberSel [own source].

The rear fins can move at a frequency of up to 3 Hz within a range of about 80 degs
outward, and up to 12 degs to the vehicle’s inside axis of symmetry. The side fins can
also move at up to 3 Hz over a range of ±45 degress. All electronic components, sensors,
servos and a 7.2 V 10 Ah li-ion battery were enclosed in a sealed tube made of POM-C
material. The servos with a 1:1 gearbox, responsible for the movement of the fins, are
controlled via POLOLU-1353 miniMaestro servo controllers via RS232. The base station
communicates via a WiFi network supported by a TP-Link TL-WR702N access point and a
WIZNET Wiz-145SR server port providing four serial ports. The vehicle has an internal
artificial buoyancy bladder, which is responsible for the vehicle’s static depth adjustment or
buoyancy control. The mini CyberSeal vehicle has been equipped with an OS-5000 digital
compass from Ocean Server and an A-10 depth sensor from Wika with a measurement
range of 0–1 bar. The sensors mentioned above make it possible to read current depth
values and vehicle motion parameters, i.e., angle of an inclination concerning individual
axes of the coordinate systems.

2.1.2. Mathematical Model

The model captures the underwater vehicle’s rigid body dynamics, hydrostatics and
hydrodynamic effects. Critical issues for the modelling and simulation of BUVs are model
complexity, ease of implementation and accuracy of prediction. Therefore, for the mathe-
matical description, some simplifications are adopted for the vehicle: it has three planes of
symmetry, moves at low speed in a viscous fluid, and has six degrees of freedom. When
analyzing the motion of an underwater vehicle, two reference systems are defined:

(1) a stationary xyz coordinate system associated with the Earth,
(2) a moving xoyozo coordinate system associated with the underwater vehicle.
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The moving coordinate system is commonly called the “vehicle reference system”,
and its origin corresponds to the geometric center of the vehicle. The different axes of this
coordinate system correspond to the following:

(1) xo—the longitudinal axis directed from the stern to the bow,
(2) yo—transverse axis directed to the starboard side,
(3) zo—vertical axis directed towards the bottom.

Changes in the position of the moving xoyozo coordinate system are described relative
to the adopted xyz coordinate system associated with the Earth. Due to the low velocity
of the vehicle, the acceleration of points on the Earth’s surface due to its spin is neglected,
and the xyz system is considered stationary. It is suggested that angular and linear veloc-
ities be described in the reference system associated with the vehicle while the vehicle’s
orientation is described in a stationary coordinate system. The quantities describing the
vehicle’s movement are defined according to the SNAME notation in Table 1 .

Mν̇ + D(ν)ν + g(η) = τ (1)

where:

ν—vector of linear and angular velocities, i.e., ν = [u, v, w, p, q, r];

η—vector of vehicle position and Euler angle coordinates in the stationary system;

M—inertia matrix (equal to the sum of the rigid body mass matrix MRB and the
associated masses matrix MA);

D(ν)—hydrodynamic damping matrix;

g(η)—matrix of restoring forces (gravity forces P and buoyancy forces B);

τ—vector of forces and moments acting on the vehicle.

Table 1. Notation used in describing the movement of underwater vehicles.

Degrees of Freedom Name of Movement Forces and Moments Angular and Linear Velocities Position and Euler Angles

1 Movement in the direction of the xo axis X u x
2 Movement in the direction of the yo axis Y v y
3 Movement toward the zo axis Z w z
4 Rotation about the xo axis K p φ
5 Rotation about the yo axis M q θ
6 Rotation about the zo axis N r ψ

Given the assumptions mentioned above, a nonlinear model of motion in six degrees
of freedom is adopted for simulating the movement of the mini CyberSeal. The action of
the vehicle is described by six differential equations, which, presented in matrix form, have
the following format: The right side of Equation (1) represents the vector of forces and
moments of force acting on the vehicle generated by the vehicle’s propulsion system (2).

τ = [X, Y, Z, K, M, N] (2)

where:

X, Y, Z —forces acting on the vehicle in the longitudinal, transverse and vertical
symmetry axis, respectively;

K, M, N—moments of forces acting in relation to the longitudinal, transverse,
and vertical symmetry axis, respectively.

The vector of forces and moments of forces generated by the wave propulsion can
be calculated by considering the propulsion system set-up in each design. Figure 2 shows
the mini CyberSeal propulsion model consisting of two counter-phased tail fins and two
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independently controlled side fins. The thrust produced by each fin should be conveyed to
the center of gravity O (Figure 2) using simple vector transformation formulas:

X = Xtl + Xtp + Xl + Xp (3)

Y = Ytl + Ttp (4)

Z = Zl + Zp (5)

K = 0 (6)

M = Ml + Mp (7)

N = Ntl − Ntp + Nl − Np (8)

where:
tl, tp, l and p—subscripts referring to the action of the left rear fin, right rear fin,

left-side fin and right-side fin, respectively.

Figure 2. Mini CyberSeal propulsion model [own source].

The individual components of the vector, e.g., Xtl , Ytl , Ntl can be calculated using the
position of these fins with respect to the centre of gravity according to the equations:

Xtl = cos(βl) ∗ Ttl (9)

Xtp = cos(βp) ∗ Ttp (10)

Ytl = sin(βl) ∗ Ttl (11)

Ytp = sin(βp) ∗ Ttp (12)

Ntl = r2 ∗ Xtl + r1 ∗Ytl (13)

Ntp = r2 ∗ Xt p + r1 ∗Yt p (14)

Xl = cos(αl) ∗ Tl (15)

Zl = sin(αl) ∗ Tl (16)
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Ml = r3 ∗ Zl (17)

Nl = r4 ∗ Xl (18)

More information on the mathematical dependencies of the novel drive used is con-
tained in the [21]. As shown in Figure 1 or Figure 3, the Mini CyberSeal has two side fins
and two tail fins, which generate time-varying thrust.

Figure 3. Mini CyberSeal thrust measurement stand [own source].

The value of the thrust Ttl , Ttp, Tl , Tl depends on the control parameters, including
the frequency and amplitude of the deflection of each fin. The thrust values generated by
each fin for different frequencies and amplitudes were determined experimentally. Finally,
the vehicle’s speed is variable and dependent on the frequency of fin oscillations. The
method of measuring the thrusts generated by the mini CyberSeal used in the mathematical
equations is presented in the literature [20]. The thrust T generated by the fin is the sum of
two components:

T = Tav + Tosc (19)

where:

Tav—constant thrust component at a specific fin oscillation frequency;
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Tosc—variable component modelled by a sinusoidal wave with a specific ampli-
tude (at a specific fin oscillation frequency).

At the same time, the test stand is shown in Figure 3. In addition, the right side of
Equation (1) considers the effect of environmental disturbances such as wind, waves and
sea currents, which significantly impact the BUV. The left side of Equation (1) describes the
forces and moments of force caused by physical phenomena, such as rigid body inertia and
the inertia of masses accompanying viscous fluid, the hydrodynamic drag exerted by water,
and the balance of gravity and buoyancy forces. Using the mathematical relationships
included in the literature [18], the matrix parameters describing the left side of Equation (1)
can be calculated.

2.2. Methods

This subsection deals with the main part of the work concerning the selection of depth
controllers’ settings. The first subsection describes the controllers used, i.e., PID and SM. The
following subsections describe the optimization methods and the fitness functions based
on which the aforementioned methods realized optimization of used controllers settings.

2.2.1. Depth Controllers

Two classic controllers were used as depth controllers for the mini CyberSeal vehicle.
The first one is about a PID controller that calculates the error value e(k) as the difference
between the set depth value and the value received from the depth sensor and applies
a correction based on proportional, integral and derivative terms (denoted P, I, and D,
respectively). Hence the name [22,23]. The action of the PID controller is described by the
following formula presented in the discrete form:

u(k) = kpe(k) + ki

kmax

∑
k=1

e(k) + kd∆e(k) (20)

where:

u(k) is a control signal in k step of simulation;

e(k) is an error signal in k step of simulation;

∆e(k) is a change of error signals in k step of simulation, i.e., e(k)− e(k− 1);

kp, ki and kd are constant quantities called gain factors.

The second controller used is the sliding mode controller (SM) [24,25], where sliding
mode control is achieved by controlling nonlinear systems, which changes the dynamics of
a nonlinear system by applying a discontinuous control signal, which forces the system to
“slide” along upstream of the expected behavior of the system. It is calculated using the
following formulas, also presented in the discrete form:

s(k) =
λe(k) + ∆e(k)

ϕ
(21)

if |s(k)| > 1, then s(k) = sign(s(k)) (22)

u(k) = kss(k) (23)

where:

u(k) is a control signal in k step of simulation;

s(k) is a normalized control signal in k step of simulation;

e(k) is an error signal in k step of simulation;

∆e(k) is a change of error signal in k step of simulation, i.e., e(k)− e(k− 1);

λ, ϕ, ks is a constant settings of SM controller.
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2.2.2. Optimization Methods

To tune controller settings, used the Global Optimization toolbox of the MATLAB envi-
ronment [26,27]. The following three optimization methods were used: Genetic Algorithm
(GA), Particle Swarm Optimization (PSO) and Pareto Simulation (PSA).

The genetic algorithm, first formalized as an optimization method by Holland, is a
global optimization technique for multi-dimensional, nonlinear, and noisy problems and
a stochastic search technique based on the mechanism of natural selection and natural
genetics [28,29]. A genetic algorithm (GA) solves both constrained and unconstrained
optimisation problems based on a natural selection process that mimics biological evolu-
tion. The algorithm repeatedly modifies a population of individual solutions. At each step,
the genetic algorithm randomly selects individuals from the current population and uses
them as parents to produce the children for the next generation. Changes are introduced
into the offspring through mutation, crossover and other genetic operators. The procedure
ends when satisfactory genotypes (a set of traits of an individual) are obtained, which
are matched by phenotypes with a high fitness function (an individual from the popula-
tion). Over successive generations, the population “evolves” toward an optimal solution.
An initial population of 40 individuals was generated using a MATLAB random generator
during optimization. Individuals in the current generation are estimated using one of the
three fitness functions described in the following subsection. After calculating the fitness
function, the reproduction algorithm creates children for the next generation. The following
operators are used in reproduction: fitness rank scaling, Stochastic uniform selection func-
tion, Crossover fraction equal to 0.8, and Gaussian mutation function. The GA optimization
was stopped when the maximum number of 100 generations was reached and/or when no
change in the best fitness function value for new generations was detected during the next
50 steps [30].

The PSO algorithm is based on a simplified social model closely tied to swarming
theory. It solves a problem by having a population of candidate solutions, here dubbed
particles, and moving them around the search space according to simple mathematical
formula over the particle’s position and velocity. Each particle’s movement is influenced by
its local best-known position. Still, it is also guided toward the most notable positions in the
search space, updated as better places are found by other particles [31]. A physical analogy
might be a swarm of bees searching for food sources. In this analogy, each bee (referred to
as a particle here) uses its memory and knowledge gained by the swarm to find the best
available food sources. This is expected to move the swarm toward the best solutions. Based
on the literature [32,33], the following PSO parameters were assumed: (1) MaxStallIterations
(relative change in the value of the best objective function): 20, (2) MinNeighborsFraction
(setting both the initial neighborhood size for each particle and the minimum neighborhood
size): 1, (3) SwarmSize: 200. As in the case of GA, one of the critical problems is to properly
define the fitness function to get the correct optimization rates. The fitness functions used
were analogous to GA and are presented in the following subsection.

Pareto optimization (PSA) is a field of multi-objective decision-making that deals
with mathematical optimization problems involving more than one objective function for
simultaneous optimization. Multi-objective optimization has found application in many
scientific areas, including engineering, economics and logistics, where optimal decisions
must be made during trade-offs between two or more conflicting objectives. When we have
several objective functions that we want to optimize simultaneously, these solvers find
optimal trade-offs between competing objective functions. This method can also be applied
to a single-objective problem. PSA uses pattern search on a set of points to iteratively search
for non-dominated points. It should fulfil all constraints and linear constraints in each
iteration. Theoretically, the algorithm converges to points near the true Pareto front [34].
In the algorithm used, in the beginning, the PSA creates an initial set of 200 randomly
selected points and then checks whether these points are feasible concerning the bounds
and linear constraints. If impossible, the algorithm projects the initial points into a linear
subspace of linearly feasible points by solving a linear programming problem and removing



Electronics 2023, 12, 1469 9 of 17

duplicate points. The PSA then divides the points into two sets named “archive” and
“iterative”. The archive set contains non-dominated points associated with a mesh size less
than 10−6 and satisfying all constraints within 10−6. PSA checks the location of each point
in the ‘iterative’ set. Success is achieved if the polled points yield at least one dominated
point. PSA then extends the probing in successful directions multiple times, doubling the
6e grid to find a dominant point. If any non-dominated point is obtained, the grid size is
halved. The algorithm stops when: (1) the mesh size exceeds the value (+Unity), (2) the
fitness function decreases to the value (-Unity), (3) it reaches the maximum number of
iterations equal to 400.

2.2.3. Fitness Function

It is necessary to determine proper fitness functions to obtain appropriate optimiza-
tion results for the depth controller. For this paper, three functions commonly used in
mathematics were formulated [35,36]. The first is Integral Absolute Error (ISA), the sum
of the absolute values of the error signals e(k) in all simulation steps. Its task is to select
the controller parameters so that the error rate between the desired depth and the present
depth value is as low as possible throughout the simulation period. The ISA in discrete
form is shown in Equation (24).

f f it1 =
kmax

∑
k=1
|e(k)| (24)

The second fitness function is an Integral of Squared Error (ISE) in the discrete form
Equation (25). The ISE integrates the square of the error over time. ISE will penalize for
significant errors more than smaller ones (since the square of a large error will be much
bigger). Control systems specified to minimize ISE will tend to eliminate significant errors
quickly but will tolerate minor errors persisting for an extended period. Often this leads to
fast responses but with considerable, low amplitude oscillation.

f f it2 =
kmax

∑
k=1

e(k)2 (25)

The third proposed fitness function is based on combining two direct control quality
indexes and is presented in the following Equation (26).

f f it3 =
imax

∑
i=1

tr(i) + kM

imax

∑
i=1

Mp(i) (26)

It takes into consideration rising times tr in [s] and first overshoots Mp in [rad] for all
imax changes of the desired course. Because of the small value of Mp in [rad] compared to
tr in [s] additional gain factor of the sum of first overshoots was introduced kM = 25.

3. Research Problem and Results

The research problem of this work is to find a solution for the most effective depth
control of the mini CyberSeal vehicle. With a mathematical model of the vehicle, two types
of controllers (PID, SM), three different methods for optimizing controller settings, and three
fitness functions, an attempt was made to select a suitable controller and its parameters. All
regulators, methods and functions should be examined in the tuning process and verified
for each combination (Figure 4). The tuning process was carried out for three different
immersion changes: (1) 0.2 [m]—shallow immersion, (2) 0.5 [m]—deep immersion, (3) and
then two immersion changes—first 0.5 [m] then second 0.2 [m] depth change after 20 s
of simulation. In contrast, the verification process was based on the tuning process for
each combination of 25 randomly selected depths from 0 to 0.7 [m] (in 0.1 [m] increments).
The average value of the fitness function was conducted from 25 verification tests.
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Figure 4. Flowchart optimization process to receive the best controllers settings.

Results and Discussion

The test results are shown in Tables 2–4 for the corresponding fitness functions 1–3.
The table includes three different combinations of depth change for both the testing (T)
and verification (V) processes. Also included in the table are combinations of controller
type and its optimization method, e.g., SM-GA means SM controller was optimized by GA
method, PID-PSA means PID controller was optimized by PSA method, etc. The initial
study’s objective was to find the optimal barriers for the controllers to avoid going into local
minima. The research was carried out by an expert using a designed model of the CyberSeal,
designed depth controllers and various tuning methods. As a result of the preliminary
study, the upper and bottom barriers assume the following values: (a) for PID controller
[kp, kd, ki]—bottom barrier equals [200, 10,000,−1] and upper barrier equals [600, 40,000, 1],
(b) for SM controller [λ, ks, ϕ]—bottom barrier equals [−5, −100, −2] and upper barrier
equals [5, 100, 2]. The main objective of the primary research was to compare two classic
controllers, three methods optimized by fitness functions in response to changing the
desired immersion value. The only quality control criterion optimized during tuning depth
controllers was the minimized value of three different fitness functions. It means that all
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phrases describing the “best results”, “most effective”, etc., which are used later in the
article, refer to the smallest fitness function values.

Analyzing the results contained in Table 2 obtained for fitness function no. 1, the fol-
lowing conclusions can be drawn: (1) in the verification process, the best results for both
controllers and all methods were obtained for a large change in immersion value, (2) in
the tuning process, the best results for both controllers for all methods were received for a
slight change in the immersion value, (3) PID-GA obtained the best result in the verification
process. In contrast, SM-PSO and SM-PSA got the best result in the tuning process consid-
ering all of the depth changes, (4) optimization methods present similar efficiency for all of
the desired depth changes, (5) the smallest values of the f f it1 were obtained during tuning
and verification for the SM controller than for the PID controller.

Table 2. Values of fitness function no. 1 for tuning (T) and verifying (V) BUV’s depth controllers for
three changes of desired immersion: shallow, deep and two following depth changes.

Controller Shallow Immersion Deep Immersion For Two Changes
Type (T) (V) (T) (V) (T) (V)

PID-GA 30.5 48.6 73.3 55.5 128.6 54.2
SM-GA 29.2 88 71.3 54.3 126.2 96.2

PID-PSO 29.8 67.4 75.4 57.2 124.6 94.2
SM-PSO 30.1 92.1 65.6 55.2 116.5 95.1
PID-PSA 33.7 77,2 72.8 58.5 126.8 108.2
SM-PSA 32.1 116.1 67.6 96.8 120.1 99.7

Considering the results shown in Table 3 for fitness function no. 2, the following
conclusions can be formulated: (1) in the verification process, the best results for both
controllers and all methods were obtained for two changes in immersion value, (2) similar
to earlier, the best results for both controllers for all methods in the tuning process were
obtained for a slight change in the immersion value, (3) PID-GA obtained the best result in
the verification process, while SM-PSO and SM-PSA obtained the best result in the tuning
process taking into account all of the depth changes, (4) optimization methods present
similar efficiency in the tuning process for all of the desired depth change.

Table 3. Values of fitness function no. 2 for tuning (T) and verifying (V) BUV’s depth controllers for
three changes of desired immersion: shallow, deep and two depths changes.

Controller Shallow Immersion Deep Immersion For Two Changes
Type (T) (V) (T) (V) (T) (V)

PID-GA 11 36.4 84.2 53.2 141.8 30.8
SM-GA 11.2 75.1 85.6 81.2 167.8 80.1

PID-PSO 10.8 70.5 78.9 88.8 138.9 241.2
SM-PSO 11.4 165 72.2 78.2 129.8 77.2
PID-PSA 11.21 140.3 83.8 242 139.2 65.2
SM-PSA 11.2 199.8 76.8 358 134.4 92.6

Table 4 shows the results for fitness function no. 3. Analyzing its results, one can
deduce: (1) as earlier, the best tuning process of both controllers was obtained for shallow
immersion, while the best results for the verification process were received for two depth
changes, (2) the smaller f f it3 was obtained during tuning and verification process by PID
controller than SM, (3) PID-PSO received the smallest value of f f it3 in tuning for shallow
immersion and verifying process for two depth changes, (4) optimization methods present
similar efficiency for all of the desired depth change.
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Table 4. Values of fitness function no. 3 for tuning (T) and verifying (V) BUV’s depth controllers for
three changes of desired immersion: shallow, deep and two following depths changes.

Controller Shallow Immersion Deep Immersion For Two Changes
Type (T) (V) (T) (V) (T) (V)

PID-GA 8.21 14.1 9.26 15.9 20.1 9.11
SM-GA 8.9 22.41 14.76 24.2 26.2 15.6

PID-PSO 8.08 23.2 9.34 14.5 18.9 9.74
SM-PSO 9.01 24.6 11.45 24.31 27.6 30.41
PID-PSA 8.41 28.3 9.98 14.8 19 9.41
SM-PSA 9.5 25.5 12.32 15.81 31.2 15.81

Analyzing the above results in Tables 2–4, it can be concluded that the best results were
obtained by PID-GA using objective function no. 3 for two depth changes. The result of f f it3
indicates that the selected controller settings in the optimization process performed best in
the verification process for random desired depth (for 25 random changes in depth from 0
to 0.7 m). From Figures 5–7 show the simulation results for the controller settings obtained
for the PID-GA method, using the f f it3 function and two depth changes. Figures 5–7 show,
respectively, the results for each desired depth, i.e., 0.2 m, 0.5 m and two depth changes,
first of 0.5 and then of 0.2. The simulation was carried out for 35 s. Considering the third
case, the second desired depth signal occurred in 20 s of simulation. The timing was chosen
so that the following depth changes occurred when there were no fluctuations in depth
after the first change. The depth change was realized by the parallel swing of the side fins
by the angle set by the control signal. In all the simulations, the oscillation frequency of the
vehicle’s side fins was constant and equal to 2 [Hz]. In the simulation, the side fin deflection
angles were limited to 60 [deg] to avoid too excessive a vehicle trim angle. Each figure
shows plots of the various parameters as a function of time: (1) graph of the dependence of
the current vehicle depth on the desired, (2) values of the angular deflections of the side
fins responsible for changing the depth of the vehicle based on the control signal along
with the value of the vehicle trim (pitch), (3) error of depth over time. Analyzing the graphs
presented, it can be noticed that selected controller gains are appropriate, and their selection
is important for achieving good performance and stability of the system. The above graphs
show that the object obtains satisfactory stability not only for the depths for which it was
optimized (Figure 7) but also for other desired depths (Figures 5 and 6). The controller,
in each case, reaches the required immersion quickly, and there is minimal overshoot.
The controller’s gains are not too large, so the system avoids exhibiting chattering, which
is rapid switching between different control modes, which can lead to wear and tear on
the actuators. The vehicle achieves stability within 12 s for all desired depths. To confirm
the correctness of the adopted solution, i.e., tuning the controller for a specific value and
then checking its settings for 25 random values, the simulation results for other controller
settings are presented in Figure 8. For this figure, the controller settings were obtained
for the PID-GA method, using the f f it3 function and small depth changes. Comparing the
simulation results for the same depth change (in Figures 5 and 8), but obtained for two
different controller settings, it can be observed that the controller tuned for the specific
depth reached the desired depth faster, i.e., 8 s (Figure 8). This is confirmed by the results
in Table 4, wherein the tuning process for a small change in depth, the PID-GA obtained
the value of the fit function 8.21, while for two changes in depth is 20.1. However, better
results were obtained in the verification process for two depth changes for the entire depth
spectrum (from 0 to 0.7 m). The value of f f it3 for two depth changes was better by 50 per
cent than for a small depth.
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Figure 5. Changes of immersion and side fins deflection in time in response to desired depth: 0.2 [m]
obtained for PID controller settings using GA method and fitness function no. 3 for two depth changes.

Figure 6. Changes of immersion and side fins deflection in time in response to desired depth: 0.5 [m]
obtained for PID controller settings using GA method and fitness function no. 3 for two depth changes.
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Figure 7. Changes of immersion and side fins deflection in time in response to subsequent desired
depths: 0.5, 0.2 [m] obtained for PID controller settings using GA method and fitness function no. 3
for two depth changes.

Figure 8. Changes of immersion and side fins deflection in time in response to desired depth: 0.2 [m]
obtained for PID controller settings using GA method and fitness function no. 3 for small immersion.
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4. Conclusions

This paper presents the tuning process of two classical depth controllers (PID, SM)
of the biomimetic underwater vehicle with undulating propulsion. The tuning of the
parameters of the controllers was carried out by applying three optimization methods and
three fitness functions (GA, PSO, PSA), which provided a quality criterion. The optimization
process was conducted for three different desired depth values, as shown in Figure 4.

Summarizing the research results obtained, several conclusions can be reached. The best
results were not received with a slight change in immersion value. The results shown in
Tables 2–4 confirm that despite the best values of the fitness function in the tuning process,
the values for the verification process are several times higher. It can be recognized that
the values of controller setting gains work efficiently only for small values. At the same
time, they are not necessarily optimal for larger values used in the verification process.
Also, the values of the fit function for different controller and optimization methods for
the tuning and verification process are similar. Therefore, it is expected that the tuning of
the controllers should be carried out for a larger desired depth or two or more changes
of depth.

Furthermore, it can be deduced that, in most cases, better control quality was obtained
for the PID controller than for the sliding controller. The differences can be seen in Table 4,
where in all cases, both in the simulation and verification process, the fitness function
obtained better values for the PID controller. The three optimization methods used to adjust
the controller settings achieve comparable efficiency. Although the PSO and PSA methods
achieved better tuning, the GA method achieved the best results in the verification process
for each of the three different fitness functions.

Comparing the quality indicators, we can see that the ISE ( f f it2), which strongly
penalizes any large deviation, obtained the worst results for a large change or two depth
changes. In contrast, the best results were obtained for fitness function no. 3 ( f f it3) where
used direct quality indicators, i.e., the rise time and the value of the first overshoots. It
is because the fitness function obtained the most repetitive results for the tuning and
verification process, and the values of fitness function no. 3 were the best compared to the
other functions ( f f it1) and ( f f it2) using the classic indicators.

The presented results could be more comprehensive. An interesting issue would be
further systematic testing of new multi-criteria indicators. In this way, it would be possible
to use, for example, an LMS indicator or the like to limit sudden changes in the control
signal and a more aggressive indicator such as ISE or ISE to increase the speed and accuracy
of the process control. As part of future research, it is also planned to implement the applied
regulators on a real object (mini CyberSeal) and verify them in natural conditions.
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Abbreviations
The following abbreviations are used in this manuscript:

AUV Autonomous Underwater Vehicle
BUV Biomimetic underwater vehicles
GA Genetic algorithm
ISA Integral Absolute Error
ISE Integral of Squared Error
LMS Least Median of Squares
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PID Proportional–integral–derivative controller
POM-C Polyacetal (copolymer)
PSO Particle Swarm Optimization
PSA Pareto Simulation
ROV Remote Operated Vehicle
SM Sliding Mode controller
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