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Abstract: Autonomous vehicle systems rely heavily upon depth estimation, which facilitates the
improvement of precision and stability in automated decision-making systems. Noteworthily, the
technique of monocular depth estimation is critical for one of these feasible implementations. In the
area of segmentation of medical images, UNet is a well-known encoder–decoder structure. Moreover,
several studies have proven its further potential for monocular depth estimation. Similarly, based on
UNet, we aim to propose a novel model of monocular depth estimation, which is constructed from
the benefits of classical UNet and residual learning mechanisms and named URNet. Particularly, we
employ the KITTI dataset in conjunction with the Eigen split strategy to determine the efficacy of
our model. Compared with other studies, our URNet is significantly better, on the basis of higher
the precision and lower error rate. Hence, it can deal properly with the depth estimation issue for
autonomous driving systems.

Keywords: autonomous vehicle systems; monocular depth estimation; residual mechanism; UNet

1. Introduction

Autonomous vehicle systems rely heavily upon depth estimation, which facilitates the
performance of decision-making processes. Currently, active and passive sensing are the
two main types of depth estimation techniques. Active sensing, such as LiDAR and infrared
sensors, measures distance via the reflection of signals. On the other hand, without emitting
signals, passive sensing predicts the depth information via computer vision techniques.
For autonomous vehicle systems, the decision-making process needs to detect the type of
each object, as well as the relative position between each object and the vehicle to make the
optimal decision. Hence, passive sensing is more suitable, since it can realize both at the
same time, monocular depth estimation especially. More importantly, monocular depth
estimation (MDE) has attracted a large number of researchers, due to its relevance to crucial
deep learning topics, including augmented reality (AR) [1], robotics [2], and autonomous
vehicle systems [3].

Traditionally, passive depth estimation is reliant on multi-angle geometry, i.e., stereo
imaging [4,5]. Nonetheless, its extreme complexity, stringent alignment, and requirements
of data input make it tricky for implementation. Over the past decade, convolution neural
network (CNN) has undergone significant development. Thus, passive depth estimation
has taken a significant turn: monocular depth estimation based on CNN is appealing, due
to its utility and ease of implementation. Numerous researchers have proposed various
network architectures to generate a depth map from a single image [6–8], where there are
two main techniques for implementation, i.e., self-supervised learning and supervised
learning based on the utilization of ground truth during the training procedure. Notice that
ground truth is the information that is known to be real and provided by measurement.
Here are some instances:
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• Supervised monocular depth estimation: The ultimate objective of supervised learning
is to determine the relationship between the RGB (red–green–blue) image and depth
map from the public RGB-D (red–green–blue depth) datasets, such as the KITTI
dataset [9] and the NYU V2 dataset [10]. Several researchers have focused on and
achieved great success with this technique. Eigen et al. [11] proposed the architectures
of coarse-to-fine network and applied the concept of scale-invariant error to measure
depth relations to significantly improve depth prediction performance. Fu et al. [12]
proposed the spacing-increasing discretization (SID) method to save time and cost.
Particualrly, the elimination of the sub-sampling layers and the incorporation of the
dilated convolution enable SID to reduce cost and training time and improve accuracy.
Teed et al. [13] proposed a DeepV2D model, which estimates monocular degrees on
video by combining two classical geometric algorithms in an end-to-end architecture.
Hence, DeepV2D needs additional information to produce its depth map.

• Self-supervised monocular depth estimation: Since the depth label is not required for
the training procedure, data preparation and reprocessing can be reduced or elimi-
nated. Thus it can save considerable time and energy in the training procedure. In the
field of monocular depth estimation, self-supervised learning has gained popularity
and made significant advancements. Godard et al. [14] proposed a flexible architec-
ture, which can address the issue of dynamic object of self-supervised learning. They
conceptualized, crafted, and enhanced the automatic mask loss and reprojection loss.
Next, to improve the accuracy of depth prediction at the boundaries, Wong et al. [15]
implemented the concept of residual-based adaptive weight and bilateral cyclic con-
sistency constraint. Ling et al. [16] developed a model of deep learning for completion
of monocular depth, which is incorporated with the attention block. To enhance
the capabilities of the network, they also designed the notion of multi-warp loss for
monocular depth estimation.

UNet is a convolution neural network that was developed and widely applied for
the segmentation of medical images. Many researchers have developed their UNet-based
models to enhance the performance in medical image segmentation [17–21]. They use a
variety of different strategies to alter the conventional model of UNet. As a result, numerous
UNet-based networks with improved performance have emerged. Their studies improve
the accuracy of automated medical systems. In the depth estimation field, several studies
have yielded fruitful results on optimizing the UNet architecture. The authors in [22] came
up with the idea for a mixed-scale UNet network called MAPUnet. It had a dense atrous
pyramid and was based on the extensively used encoder–decoder structure. The results
of a comparison among the proposed network and state-of-the-art methods indicate that
the proposed network has superior performance, in terms of error rate and precision.
The authors in [23] proposed a new algorithm employing a simple two-tower convolutional
neural network, which was designated 2T-UNet. The research eliminated the need for
a stereoscopic matching step. Additionally, 2T-UNet not only achieves a high level of
accuracy, but is also compatible with mobile devices. Noteworthily, the concepts of encoder,
decoder, and skip connection are the primary characteristics of UNet. The encoder is
responsible for extracting image features, while the decoder restores the image to its original
size and outputs the final result based on the extracted features. The skip connection
connects the encoder and decoder, and it is responsible for combining low-level features in
the encoder and high-level features in the decoder. Recently, due to the potency of UNet for
monocular depth estimation, several researchers have focused on altering and enhancing
the internal architecture of encoder [24], decoder [23], and skip connection [22] to improve
the efficiency of the depth estimation issue.

On the other hand, the residual mechanism was widely adopted for various CNN
researches because it overcame the problem of network degradation in the deep learning
domain. Consequently, the efficiency of the feature extraction in deeper layers of deep
learning networks has been improved via the using of the residual mechanism. He et al. [25]
presented a residual learning framework, which has improved precision and convergence
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speed of deep learning in deeper networks. Additionally, in comparison to the state
of the art, the network has a higher degree of precision. Furthermore, based on [25],
Laina et al. [26] proposed a new model with a completely convolutional architecture.
The model simultaneously permitted more in-depth training and a reduction in the number
of parameters. The results of the comparison indicate that the proposed model has superior
performance, in terms of both the increased precision and lower execution time.

In this paper, we introduced URNet, a new network architecture based on the tra-
ditional UNet model and residual connections to solve the depth estimation problem.
Specifically, we modify the UNet to deal properly with the issue of monocular depth esti-
mation for autonomous vehicles. First, each node from the original UNet is altered based
on the residual blocks. Next, most UNet-based models ignore the output feature, where
they only concentrate on the last output of a node. However, in our model, additional
connections are added between the encoder and decoder, in order to provide a stronger
feature map for the decoder. Note that the encoder/decoder is composed of at least one
node. The contributions of the paper are summarized as follows:

• We propose URNet, a novel model for monocular depth estimation based on the
traditional UNet model and residual blocks. More specifically, we use the attention and
ASPP (atrous spatial pyramid pooling) blocks to improve the prediction performance.

• We evaluate the performance of our URNet via the KITTI dataset and compare it with
several existing researches.

The remainder of this work is structured as follows: In Section 2, we provide an
overview of the topic of monocular depth estimation. In Section 3, we detailedly describe
our model, URNet, and the results of the experiments are described in Section 4. Finally,
a brief conclusion is presented at the end of this study.

2. Related Work

Early researches regarding monocular depth estimation was realized based on the
hand-crafted features. As the first, Torralba and Oliva [27] proposed a source of information
for absolute depth estimation that did not rely on specific objects and was derived from
the entire scene structure. The authors in [28] estimated the depth information by utilizing
the planar layout, which included 3D position and orientation. These were estimated
using the Markov random field (MRF), which contains various types of feature values,
e.g., edge orientations, chromatic values, and so on. Next, Karsch et al. [29] presented a
method that can automatically generate plausible depth maps from videos by making use
of non-parametric depth sampling.

Next, with the significant development of convolution neural networks over the past
decade, the estimation methods have shifted to the deep learning area. In the literature,
several researchers have devoted a great deal of effort to improve the methods for achieving
better outcomes, where the KITTI dataset [9], and the NYU V2 dataset [10] are frequently
adopted in the experiments. These datasets provided exceptionally precise depth informa-
tion. The depth information acquired by 3D sensing equipment (such as LiDAR, Kinect,
and other similar sensors) is generally employed as the ground truth in supervised learning
systems. On the other hand, many researchers use stereo inputs for the monocular depth
estimation in unsupervised learning. This research was performed with variety methods
and strategies.

The approaches of depth estimation in the field of deep learning are classified accord-
ing to the type of input images. Numerous studies use unlabeled images as the input data
in the training procedure [14–16,30–33]. Wong et al. [15] proposed an adaptive weight
design that allows for the regulation of the bilateral cyclic relationship between the left and
right disparities. Their model is with high performance on the KITTI dataset. On the other
hand, the attention mechanism is extremely well-known for natural language processing
(NLP). Ling et al. [16] proposed a new unsupervised architecture for monocular depth
estimation by incorporating the concept of attention block. On the KITTI dataset, the ar-
chitecture demonstrated its superior performance. Noteworthily, the authors confirmed
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that the location of attention block is crucial while applying the concept of attention block
to a deep learning model. Moreover, utilizing additional features of stereo images is a
difficult and crucial task, since the number of features directly influences the performance
of a deep learning model. Thus, Ye et al. [34] proposed a novel unsupervised architecture
for monocular depth estimation to solve the aforementioned issue. Generally, a network
with better depth estimation results is more complex, with a large number of parameters,
where both hinder the system performance during the implementation. To address this
issue, Liu et al. [35] proposed a real-time and lightweight architecture for unsupervised
depth estimation. Due to its lightweight design, the proposed network can operate in real
time and small devices, allowing it to be utilized in embedded systems.

Alternatively, numerous researchers employed labeled images as the input data in
the training procedure [30,36–40], where the models can achieve superior performance,
depending on the quality of input data. More specifically, several researchers proposed
their new model for monocular depth estimation using multiple-scale features [30,41,42],
and the performance of these models is exceptional. Next, Xu et al. in [40] proposed a
pyramid network with the concept of an adaptive fusion block to improve the exploiting
capability of the input depth map and the depth estimation performance. DPNet [37] was a
comprehensive solution to the problems of inaccurate depth inference and the loss of spatial
information, where both the contextual branch and spatial branch were described in detail.
In conclusion, they suggested using a refinement module to combine the disparate features
obtained from the two different branches, in order to generate a depth map of superior
quality. Next, Fu et al. [12] presented the idea of a deep ordinal regression network (DORN)
to use the dilated convolution to obtain the high-resolution depth map. Furthermore,
Alhashim et al. in [38], proposed a new design for monocular depth recovery by employing
transfer learning. This technique acquires the boundaries of objects more accurately than
previous researches.

On the other hand, due to the limitation of labeled data, some researchers joined the
areas of segmentation and monocular depth estimation. Here, the segmentation results
facilitate a more thorough comprehension of the image scenes. Chen et al. [43] proposed
SceneNet, which improves location depth estimation by enforcing semantic consistency
between stereo pairs. Next, Zhu et al. [44] proposed a monocular self-supervised depth
estimation architecture, where the information of segmentation and depth edges was
utilized to estimate the boundaries of objects for the purpose of ensuring consistency, as
well as optimizing the depth estimation model.

3. Our URNet

In this section, we start to describe our method detailedly, which is named URNet. More
specifically, it is based on the concept of UNet and further with the following modifications:

• Modifying the UNet-based nodes with the residual blocks.
• Adding connections between the encoder and decoder.
• Adding the attention blocks to the decoder.
• Utilizing the ASPP block to replace transfer blocks.

The network architecture is shown in Figure 1, and the detailed settings of the network
architecture are presented in Table 1. In Figure 1, the encoder and decoder are the two
primary building constituents of the proposed scheme, and each consists of four nodes that
are inspired by the residual mechanism of ResNet architecture [25]. In addition, the ASPP
block plays a critical role as the unique transfer node of the model, which is first placed at
the base of the network. After the decoding procedure is complete, the ASPP block is used
again to improve the quality of the output. Notably, our method connects the encoder and
decoder blocks via two connections, as opposed to the single connection of conventional
UNet. The relationship of one pair of nodes between the encoder and decoder of our
method is shown in Figure 2.
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Figure 1. The overall design of our network architecture.

Table 1 provides the outline of the structure of our URNet model. The model makes
use of 3 × 3 convolutions. Moreover, the dropout rate is set to 0.3 of ASPP blocks, and the
attention blocks are incorporated into four nodes of the decoder to improve the efficiency
of feature extraction. Finally, the additional connections are added between the encoder
and decoder to gain more features than the conventional UNet.

Table 1. The architecture of URNet.

Node Encoder Decoder

1 [64× (BN + ReLU + Conv)2] + Max pooling + AD + SE AT + Up-sample + BN + ReLU + Conv + AD
2 [128× (BN + ReLU + Conv)2] + Max pooling + AD + SE AT + Up-sample + BN + ReLU + Conv + AD
3 [256× (BN + ReLU + Conv)2] + Max pooling + AD + SE AT + Up-sample + BN + ReLU + Conv + AD
4 [512× (BN + ReLU + Conv)2] + Max pooling + AD + SE AT + Up-sample + BN + ReLU + Conv + AD
Tr ASPP

Note that the transition, squeeze excite, addition, and attention block are denoted by the abbreviations Tr, SE, AD,
and AT, respectively.

Next, two important components, attention and ASPP blocks, are introduced, and the
detailed network architectures are shown in Figure 3.

• Attention blocks: Natural language processing is the main area where the attention
mechanism has been utilized [45–47]. Recently, it has also been used in depth estima-
tion tasks, such as pixel-wise prediction [48–50]. The attention blocks are responsible
for focusing and extracting additional features. Therefore, the implementation of
attention blocks facilitates the enhancement of performance of our model. Because
of the effectiveness of the attention blocks, in both the topics of natural language
processing and computer vision, we decided to include the design of attention blocks
in the decoder part of our architecture. This helps us to zero in on the most crucial
aspects of the feature maps. More specifically, our attention blocks are composed
of three smaller blocks, shown in Figure 3a. The first block receives the input from
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the encoder, and the second block receives the input from the decoder. Then, the
outputs of the above two blocks will be concatenated as the input for the third block.
Finally, the result will be the multiplication of the outputs of the third block and the
second block.

• Atrous spatial pyramid pooling (ASPP): Chen et al. [51] came up with the idea of
ASPP. Because of its benefits, ASPP has been used more in the topics of segmentation
and depth prediction in the past few years [33,42,52]. The authors in [33] suggested
a novel algorithm, called DenseASPP, for densely connected atrous spatial pyramid
pooling. The blocks accept scales of various sizes, including larger and smaller sizes.
In our model, the ASPP is used to extract multiple rates of network endpoint and
transfer node characteristics. More specifically, our ASPP block is composed of three
smaller blocks. Each block is comprised of the 3× 3 convolution, ReLU activation,
and Batch normalization (Figure 3b), where the dilation parameters in the convolution
layers of three blocks are set to 1, 2, and 3, respectively. Finally, the outputs of three
blocks are concatenated and then subjected to the 3× 3 convolution.

Figure 2. The relationship between the encoder and decoder.
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Figure 3. (a) the structure of attention mechanism and (b) the structure of ASPP block.

4. Experiments and Results
4.1. Dataset

The KITTI and NYU datasets have distinct depth collections, since KITTI employs
Lidar, while NYU uses Kinect to sense environments. The KITTI data collection is renowned
for its coverage of outdoor environments. Hence, we chose the KITTI dataset [9] for
model training and evaluation, due to the fact that URNet was designed specifically
for autonomous driving systems. The dataset consists of numerous road configurations
from different driving situations, where the resolution of an image is 1242× 375 pixels.
Noteworthily, the Eigen split strategy [30] for performance comparison among different
models is adopted in this paper. Namely, the testing set contains 697 images selected from
29 scenarios, and the training set includes 23,488 images chosen from 32 scenes.

4.2. Detailed Settings

The PyTorch framework [53] is utilized to construct our design, and the detailed
settings are listed below:

• Epochs: 50.
• Batch size: 4.
• Optimizer: AdamW [54].
• Values of power and momentum: 0.90 and 0.999.
• Values of weight decay: 0.0005 (encode) and 0 (decode).
• Values of learning rate: 10−4 (initially) and 10−5 (finally).

Moreover, the training images from the KITTI dataset are randomly cropped to
704× 352 pixels. Then, the probability of these images of being horizontally flipped is
set to 50%, and the values of brightness, color, and gamma of these images are also mod-
ified randomly during the interval [0.9, 1.1]. More importantly, the two extra settings of
the training images will increase the level of confidence, while realizing our design in
real-world environment, since we also consider the tolerance of computer vision.

On the other hand, the loss function is one of the important aspects during the training
procedure. In order to train URNet, we implemented the loss function that Eigen et al. [11]
suggested, based on the basis of a scale-invariant error. This allowed us to train the network
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more effectively. The loss function was utilized for the training process in a great number
of UNet-based models [22,42]. The specification of the loss function is as follows:

D(g) =
1
T ∑ g2

i − (
1
T ∑ gi)

2 + (1− λ)(
1
T ∑ gi)

2, (1)

and it can be simplified as:

D(g) =
1
T ∑ g2

i −
λ

T2 (∑ gi)
2, (2)

where gi = log(γ̃i)− log(γi), γi is the ground truth depth value of pixel i, γ̃i the predicted
depth value of pixel i, T representing the number of pixels with valid ground truth values,
and λ = 0.85. Next, since scaling the range of the loss function properly will improve
convergence and the final result, the final version is set to:

L = δ
√

D(g), (3)

where δ is s a constant and set to 10.

4.3. Evaluation Metrics

Several metrics are often used to evaluate the efficiency and robustness of the network.
We refer to part of these measure methods introduced in [30] for the evaluation in this
paper, i.e., root mean squared error (RMSE) (Equation (3)), Root Mean Squared Logarithmic
Error (RMLSE) (Equation (4)), Mean Relative Error (MRE) (Equation (5)), and accuracy
(Equation (6)).

RMSE =

√
1
|T| ∑

γ∈T
‖ γ− γ∗ ‖2, (4)

RMLSE =

√
1
|T| ∑

γ∈T
‖ log(γ)− log(γ∗) ‖2, (5)

MRE =
1
|T| ∑

γ∈T

‖ γ− γ∗ ‖
γ∗

; (6)

Accuracy = % o f γi s.t. max(
γ

γ∗
,

γ∗

γ
) = σ < th, th ∈ (1.25, 1.252, 1.253), (7)

where γ represents the predicted depth value of pixel i, γ∗ the ground truth depth value of
pixel i, and T is the number of valid ground truth pixels.

4.4. Depth Estimation Performance

First, we use the preliminary comparisons between the image results of Alhashim’s
method [38] and ours to show some interesting viewpoints. Particularly, in Figure 4,
the original RGB images (column (a)), the results of our URNet (column (b)), the results of
Alhashim’s method (column (c)), and ground-truth from LiDAR (column (d)) are provided.
The images indicated that our method produced more accurate estimates of the boundaries
of distant signs, people, and vehicles. To clearly highlight the performance of the proposed
method, we have marked those with red boxes. However, the test images contain gaps in
either the sky or the top sections. We believe that this is due to the extremely sparse ground
truth depth data. Due to the lack of proper depth values in certain regions of the images
throughout the whole dataset, it is incredibly difficult to train the network appropriately
for these regions.
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Figure 4. The KITTI qualitative results of different methods for six images (Eigen split): (a) RGB
images, (b) our results, (c) results of Alhashim [38], and (d) ground-truth from LiDAR.

Next, to demonstrate the effectiveness of URNet in comparison to [38] further, we
computed the error of depth estimation of each pixel, and it is the difference between the
prediction of algorithm and the ground truth from KITTI dataset. The statistics presented
in Figures 5 and 6 have shown some more detailed information. In Figure 5, which includes
the mean error of an image of the 652 images in KITTI, we can observe that our algorithm
possesses lower mean error of depth estimation and obviously more stabler. In the Figure 6,
the entire range of depth estimation is separated into 10 intervals to observe more detailed
comparisons among different sensed range. According to the Figure 6, we also possess
better performance, especially for the intervals of shorter distance, [0, 9.4) and [9.4, 18.8),
that are more important for collision avoidance of smart vehicles. Hence, on the basis of
above two statistics, the level of confidence of the improvement of our algorithm can be
guaranteed.

On the other hand, Table 2 displays the comprehensive results and comparisons among
various depth recovery algorithms and ours, where parts of the materials are from [40].
In this table, the type “Stereo” indicates self-supervised learning by utilizing stereo super-
vision, and the type “Depth” indicates the supervised learning methods by utilizing depth
supervision. Our method is compared to these existing works [14–16,30–32,34–38,40,41].
More specifically, consider the first three comparisons, RMSE, MRE, and RMLSE, where
the lower the better. Our method has the best performance, with values of 3.249, 0.088,
and 0.131, respectively. Then, in the last comparison, accuracy, where the higher the better.
Again, our strategy produced the best results for different thresholds, δ < 1.25 , δ < 1.252,
δ < 1.253, with respective values of 0.912, 0.981, and 0.995. The experimental results
indicate that our method is superior to those listed in Table 2. The results also confirmed
that applying residual blocks, attention blocks, and ASPP blocks to conventional UNet
is effective.
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Figure 5. The mean error of each image in the set of test images.

Figure 6. The mean error for various distance intervals.



Electronics 2023, 12, 1450 11 of 13

Table 2. KITTI dataset-based comparisons.

Methods Type RMSE MRE RMLSE δ < 1.25 δ < 1.252 δ < 1.253

Godard et al. [14] Stereo 4.863 0.115 0.193 0.877 0.959 0.981
Watson et al. [31] Stereo 4.695 0.106 0.193 0.875 0.958 0.980
Wong et al. [15] Stereo 4.172 0.126 0.217 0.840 0.941 0.973
Tosi et al. [32] Stereo 4.714 0.111 0.199 0.864 0.954 0.979
Ling et al. [16] Stereo 5.206 0.121 0.214 0.843 0.944 0.975
Ye et al. [37] Stereo 4.810 0.105 0.196 0.861 0.947 0.978
Eigen et al. [30] Depth 7.156 0.190 0.246 0.692 0.899 0.967
Liu et al. [35] Depth 4.977 0.127 NR 0.838 0.948 0.980
Fang et al. [36] Depth 4.075 0.098 0.174 0.889 0.963 0.985
Ye et al. [34] Depth 4.978 0.112 0.210 0.842 0.947 0.973
Pei et al. [41] Depth 4.054 0.098 NR 0.893 0.968 0.987
Alhashim et al. [38] Depth 4.170 0.093 NR 0.886 0.963 0.986
Chen et al. [49] Depth 3.597 0.0955 0.159 0.893 0.970 0.989
Gan et al. [39] Depth 3.933 0.098 0.173 0.890 0.964 0.985
Xu et al. [40] Depth 3.842 0.092 0.185 0.895 0.974 0.990
Our results (URNet) Depth 3.249 0.088 0.131 0.912 0.981 0.995

5. Conclusions

In this paper, our URNet is presented, which is a new model for monocular depth
estimation based on the enhancement of UNet with the residual learning mechanism,
the additional linkages between the encoder and decoder, and the ASPP and attention
blocks to improve its performance. Particularly, we use the KITTI dataset to realize our
experiments. In the comparisons, four different evaluation metrics with various parameters
are adopted. The results show that our system is the best among those algorithms both
error rate and precision. Hence, our proposed model can deal properly with depth esti-
mation issue and improve the performance of decision-making processes of autonomous
driving systems.

For the future work, we intend to design some novel methods for different data of
depth estimation for the purpose of getting better performace. Additionally, the fusion
of distinct data is an interesting topic for us. However, if excessive data are used, it is
obvious that the model would make a demand for a lot of system memory and may not
acquire the better performance. This is the tricky part of trade-off as well. Not all devices
are compatible due to the huge number of URNet parameters. The forthcoming edition
will have a lightweight architecture as one of its most important characteristics.
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