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Abstract: This paper presents a comprehensive survey of state-of-the-art intelligent fault detection
and diagnosis in district heating systems. Maintaining an efficient district heating system is crucial,
as faults can lead to increased heat loss, customer discomfort, and operational cost. Intelligent fault
detection and diagnosis can help to identify and diagnose faulty behavior automatically by utilizing
artificial intelligence or machine learning. In our survey, we review and discuss 57 papers published
in the last 12 years, highlight the recent trends, identify current research gaps, discuss the limitations
of current techniques, and provide recommendations for future studies in this area. While there is an
increasing interest in the topic, and the past five years have shown much advancement, the absence
of open-source high-quality labeled data severely hinders progress. Future research should aim
to explore transfer learning, domain adaptation, and semi-supervised learning to improve current
performance. Additionally, a researcher should increase knowledge of district heating data using
data-centric approaches to establish a solid foundation for future fault detection and diagnosis in
district heating.

Keywords: artificial intelligence; data mining; machine learning; review

1. Introduction

In the next 30 years, the world’s population will grow by two billion [1], and urban-
ization level will grow by 13% [2], such that 68% of the world population will be living
in urban areas. In Europe, around 72% of the population resides in cities, and by 2050
urbanization this will continue to increase to approximately 83.7%. Currently, more than
half of the energy consumption in Europe is due to heating and cooling of buildings [3].
With the ongoing energy transition District Heating (DH) will have a crucial role and
can contribute to reaching the European Union’s goal of achieving climate-neutrality by
2050 [4], as DH can provide higher efficiencies than, e.g., localized gas boilers.

DH networks consist of four key components: heat production unit(s), a distribution
network, substations and building installations. The heat production unit(s) generate
heat in several ways, such as by burning fossil fuels, biomass, waste heat recuperation,
geothermal energy, or solar energy. The heat is then circulated as hot water through a
network of insulated pipes that constitute the distribution network and arrives at the
substation. The substation consists of a combination of heat exchangers, pumps, valves,
and control systems, to regulate the flow and temperature to the building installations.
The substation is the interface between the primary network (heat production unit and
distribution network) and the secondary network (building internal systems). The building
installation, or heat consumer, refers to a building or facility and their internal heating
system that consumes heat for space heating system, Domestic Hot Water system (DHW)
or industrial processes.
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Traditionally, DH utilities have primarily focused on increasing efficiency on the pro-
duction side. However, recent studies indicate that between 43% and 75% of the studied
substations [5,6] perform sub-optimal due to faults, resulting in high return temperatures,
which negatively impacts customer comfort, heat retention, hydraulic capacity, and produc-
tion efficiency [7]. Typical Fault Detection and Diagnosis (FDD) methods rely on manual
inspections; however, DH operators face several major challenges when it comes to FDD, in-
cluding aging infrastructure with limited sensors—many DH systems are decades old—and
the immense size of DH networks, as networks may contain thousands of heat consumers,
making identifying and diagnosing faults difficult. Moreover, manual FDD methods are
time-consuming, costly, and error-prone; therefore, automatic fault handling becomes vital
to retain an optimal network and reduce the impact of faults. Due to the ongoing trend of
digitizing DH systems across the world, such as in Sweden, where legislation mandates the
placement of automatic heat meters at every building substation for billing purposes, Ma-
chine Learning (ML) and Artificial Intelligence (AI) approaches have emerged as promising
tools to enhance FDD in DH. Automatic heat meters periodically collect usage data, and by
combining intelligent FDD using ML or AI, the methods have the potential to overcome
the challenges DH operators face. For example, ML can process large amounts of data
automatically and identify hidden patterns that may not be detected by manual methods.
ML models can also be trained to identify and diagnose faults in real-time, leading to faster
response times, reduced downtime, and reduce the impact of a fault.

In this paper, we have conducted a survey of 57 papers on the topic of intelligent FDD
in DH systems. We attempt to provide a structured and comprehensive overview of the
state-of-the-art in FDD in DH, as it is currently not present in the DH field. Additionally,
to overcome the preceding shortcomings in Section 3, we present an in-depth analysis
of FDD in DH and cover all relevant work from the past decade. We will highlight the
advantages and disadvantages of the techniques, as well as the recent trends and key
challenges in the field. Furthermore, we will provide suggestions for future research
directions, which can guide the development of more effective FDD methods. We conclude
the paper by summarizing the key findings for each topic to provide a clear understanding
of the research progress in this field. In summary, our main contributions are:

• We provide a comprehensive overview of state-of-the-art intelligent FDD in DH.
• We provide an elaborated overview in research papers based on fault detection, fault

diagnosis or data mining, as well as current trends, as depicted in Figure 1.
• We provide an in-depth Strengths, Weaknesses, Opportunities, and Threats (SWOT)

analysis to identify industry challenges, research gaps, and opportunities.
• We provide a clear list of research directions in the form of recommendations, and

explain several advantages and disadvantages.

Our main results are presented in Figure 1, which shows that in recent years there
has been an increase in intelligent FDD studies using AI and ML. Consequently, our main
conclusions are summarized in the form of a SWOT analysis in Section 7. Overall, our
study provides a comprehensive and exhaustive review of the current state of FDD in
DH, providing a structured and organized collection of information that can be helpful for
researchers and practitioners to understand the field and develop new methods.

We organize the rest of the paper as follows. In Section 2 we discuss some of the essen-
tial concepts in intelligent FDD in DH. In Section 3, we cover related work both in FDD and
DH. In Section 4 we explain our method and categorization of FDD methods. In Section 5
we briefly discuss current data collection in DH. In Section 6, we present the main results of
our survey and discuss the current intelligent techniques. We divide each of the studies into
their respective category: fault detection (Section 6.1) or fault diagnosis (Section 6.2). We
subdivide fault detection into data mining and knowledge discovery (Section 6.1.1), outlier
detection (Section 6.1.2), and leakage detection (Section 6.1.3). Furthermore, we subdivide
fault diagnosis into binary-label classifications, such as sensor failure (Section 6.2.1), fouling
(Section 6.2.2), valves (Section 6.2.3), and pipes (Section 6.2.4) and multi-label classification
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(Section 6.2.5). In Section 7, we discuss trends, key challenges, and opportunities. Finally,
in Section 8, we will provide a summary of key findings and future directions.

Figure 1. Overview of FDD studies and techniques in DH.

2. Background
2.1. District Heating

DH systems provide space heating and DHW to buildings. As seen in Figure 2, a DH
system consists of four elements: production unit(s), distribution network, substations, and
heat consumers. The production unit(s) are responsible for generating heat using various
resources, e.g., primary energy sources such as solar energy, geothermal, biomass, or fossil
fuels, but also through recovering surplus heat. In 2021, fossil fuels accounted for nearly
90% of the global DH [8]. For example, in Europe, gas and coal are the predominant
(40% gas, 29% coal) energy sources [3]; however, the newer generation of DH systems aim
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at introducing local, sustainable resources and low-grade heat sources such as geothermal
heat, residual heat, solar energy, and biogas. The use of these resources helps to reduce
greenhouse gas emissions and enhance the transition of the heating and cooling sector
towards a low carbon energy supply [9]. The distribution network is responsible for
transporting the heat from the production unit(s) to the heat consumers using a hydronic
system. Such a system consists of a network of pipes, pumps, fittings, coils, and control
valves. Once the heat arrives at a particular building, a substation redistributes the heat to
multiple heat consumers. The substation is an interface between the primary and secondary
network (see Figure 2). It typically includes components such as heat exchangers, pumps,
valves, and control systems to regulate the flow and temperature of the circulating hot
water. A heat consumer refers to a building or a facility that receives and uses heat from
a DH system, e.g., commercial, industrial, and residential buildings. The heat consumers
utilize the heat for space heating, DHW use, or industrial processes.

Figure 2. Illustration of a district heating network.

2.2. Automatic Fault Handling

As seen in Figure 3, automatic fault handling consists of three steps. Fault detection
is the process of identifying a problem or malfunction within a system. Typically, it is the
first step in the fault-handling process. Fault detection can alert network operators that
something is wrong. Fault diagnosis is the process of identifying the specific cause of the
problem or malfunction. It is the second step in the fault-handling process. Fault diagnosis
can determine the root cause of the problem or malfunction. Fault correction is the process
of taking steps to repair the problem or malfunction. This can be an online (automatic)
measure to restore the system to normal operation or by suggesting the required manual
action, such as repairing or replacing components.

Figure 3. The process of automatic fault handling.

2.3. Machine Learning

As the DH domain is transitioning to an increasingly digital environment, i.e., data
is getting increasingly abundant, there is a rise in ML and Data Mining and Knowledge
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Discovery (DMKD) applications. Manually analyzing this data is impractical, and ML
makes it possible to automate the analysis process. ML is a sub-field of AI that focuses
on the study and development of algorithms capable of improving their knowledge or
performance based on experience [10], i.e., by training on historical data. Below we describe
some of the most important and relevant paradigms.

(i) Supervised learning [11] (predictive) is concerned with learning mappings between
inputs x and outputs y given a labeled data set of input-output pairs, i.e., the output
is a label that represents the class type of the inputs x. Supervised learning can be
divided into two types: classification and regression. Classification refers to classifying
with discrete values as output, e.g., industrial or residential, i.e., classification attempts
to predict class membership (assign a label). If the labels are numerical in a continuous
range, it is called regression, i.e., regression attempts to predict numerical values,
e.g., energy demand in the next 24 h. The algorithms fit a model to the labeled data
set and can classify or predict new unseen data based on the independent variables
as input. Some techniques in supervised learning include Linear Regression (LR),
Support Vector Machines (SVM), Naive Bayes (NB), or Random Forests (RF).

(ii) Unsupervised learning [10] (descriptive) is the technique of discovering underlying
structures in data. Unsupervised learning can help identify essential (statistical) char-
acteristics and patterns within the data without human intervention. It is a crucial
paradigm in DMKD. Unsupervised learning is ideal for explanatory data analysis, out-
lier detection, and image or pattern recognition. Consequently, unsupervised learning
can also be used for data pre-processing, e.g., dimensional reduction techniques such
as Principle Component Analysis (PCA). Some techniques in unsupervised learn-
ing include k-Means (kM), Gaussian Mixture Model (GMM), or Linear Discriminant
Analysis (LDA).

(iii) Reinforcement learning [12] is the technique where an agent learns in a particular
environment through exploration and exploitation. The agent performs specific
actions that lead to a reward or punishment, aiming to maximize the reward. An
agent should perform actions known to produce a high reward; however, the agent
has to learn such actions by trial and error. That is, the algorithm rewards the agent
for reinforcing the preferred behavior. The model continues to learn until it converges
or achieves its stopping criteria. A well-known technique in reinforcement learning
is Q-learning, which has a broad set of application areas such as self-driving or
gaming AI.

(iv) Deep learning [13] applies to any of the paradigms mentioned above in case one or
more of the employed regressors or classifiers is a Deep Neural Network (DNN). Deep
refers to using a neural network consisting of three or more layers. DNN can handle
unstructured data sets, such as texts or images. Recently, deep learning has made
a significant impact in text and image generation[14,15]. Also, DNN can automate
feature extraction, such as Convolutional Neural Network (CNN), which reduces the
need for human interventions; a side effect is that reasoning about model behavior
becomes significantly more complicated, as the models are incredibly complex (black
box models). However, an upcoming field, called explainable AI, tries to mitigate
this problem. Explainable AI refers to the ability of complex models, such as in
deep learning, to explain their reasoning or decision-making process such that it
can be understood by humans, i.e., it can provide a transparent and understandable
explanation for how a model arrived at its output or recommendation. A brief
overview is given in [16]. Some techniques in deep learning include Multilayer
Perceptron (MLP), CNN, or Long short-Term Memory (LSTM).

(v) Semi-supervised learning [17], as the name indicates, provides hybrid solutions com-
bining supervised and unsupervised learning techniques. It can use smaller labeled
data sets to classify or extract patterns from larger unlabeled data sets. Compared to
a traditional classifier, semi-supervised learning can reduce the size of the original
labeled data set by 66%, at the cost of five times as many unlabeled data [18]. Semi-
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supervised learning is beneficial in scenarios where unlabeled data is abundant, but
labeled data is expensive—typical in most engineering scenarios. Compared to the
preceding paradigms, semi-supervised learning is less explored. Some techniques
include MixMatch [19], label propagation [20], or self-training [21].

(vi) Transfer learning [22] is a technique where a model trained for one task (source domain)
is reused, e.g., as a starting point, in a second but related task (target domain). Unlike
semi-supervised learning, where the model exploits the abundance of unlabeled data,
transfer learning exploits the models available in similar domains. A subcategory
of transfer learning is domain adaptation [23], which mainly focuses on using labeled
data in one or more similar domains—assuming the domains shares class labels. It is
similar to supervised learning, where the goal is to find a mapping based on training
data, and the model predicts test data assumed to be from the same data distribution
as the training data. In domain adaption, the training data comes from a particular
domain with a large set of labeled data. The model can predict in another similar
domain under the same assumptions as supervised learning—test data is from the
same distribution as the training data. Transfer learning and domain adaption can be
helpful in DH as it reduces the need for labeled data, which is currently scarce in DH.

3. Related Work

In [24], Lei, et al. present a comprehensive review of machine fault diagnosis over the
past 40 years and cover various application areas and learning methods. In [25], the authors
present an exhaustive review of anomaly detection in several industries, such as cyber-
intrusion, fraud detection, healthcare, industrial processes, image processing, linguistics,
and sensor networks. Zhao et al. [26] cover 20 years of development in artificial intelligence-
based FDD for building energy systems, such as economizers, chillers, air handling units,
heat pumps, or heating, ventilation, and air conditioning (HVAC) systems. In [27], the
authors present a comprehensive review of data mining in building energy systems and
cover both unsupervised and supervised data mining methods for building energy systems,
such as chillers and HVAC systems. Mbiydzenyuy et al. [28] present an overview of ML
in DH and opportunities for new solutions. The study consists of a workshop to create
domain insights, a literature review to refine ideas, an analysis of the information, and a
road map for DH. Buffa et al. [29] review advanced control and fault detection strategies
for DH and include topics such as peak shaving, demand response, fault detection, or
cost reduction. Zhou et al. [30] briefly reviewed leakage detection methods for DH by
classifying and discussing existing methods based on their technology into three topics:
physical model-based methods, data-driven methods, and unmanned airborne infrared
thermography methods.

There are several shortcomings in the previous reviews, which we will discuss here.
In [24,25], the authors did not include any techniques specifically used in DH. Since FDD
in DH has specific data constraints and DH systems are highly heterogeneous distributed
systems with many introduced ad-hoc solutions, it is crucial to discuss these techniques in
the context of DH. Both [26,27] cover some DH FDD solutions; it only includes a limited
number of papers. In [28], the authors do focus on DH; however, the review lacks important
references regarding FDD as the review only included studies found with a single search
string: “ML and DH”; thus, missing valuable papers. Consequently, in [29], DH is the main
topic but includes many other topics, resulting in a lack of depth in FDD, and its primary
focus is on leakage detection. Leakage detection is also the primary focus in [30]. While the
review covers leakage detection well, the studied fault is only one of many faults in DH,
thus missing other essential topics related to FDD in DH.

4. Method

We used two strategies to identify relevant papers for this research article. Initially,
we identified relevant search keywords related to FDD in DH. These keywords include
district heating, machine learning, artificial intelligence, data mining, fault detection, outlier
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detection, anomaly detection, and fault diagnosis. Any non-related keywords to DH, e.g.,
HVAC, are excluded, as the search domain becomes too broad and the constraints of the
topic differ too much from DH, e.g., the systems or data. We search in Scopus, or Web of
Science, based on title, abstract, and keywords. Table 1 presents the inclusion and exclusion
search criteria. We cover the last twelve years of work, as before 2010, there was not much
work on the FDD in DH (see Figure 1). Consequently, we only cover relevant work until
mid-2022, as a result of when we conducted this survey. The initial search resulted in
62 studies. We applied a backward snowballing approach [31] to increase the likelihood
that we have included the most relevant papers of the past decade. Snowballing led to an
additional 24 studies. After reviewing the studies, 57 studies are shown to be relevant for
this review.

Table 1. Inclusion and exclusion criteria for this survey.

Inclusion Exclusion

Available in electronic form Duplicates
Peer-reviewed journal and conference papers Non-relevant title or abstract

Written in English Non-indexed studies
Addresses FDD in DH Research thesis

Published between 2010 and 2022

Since automatic FDD is a three steps process (see Section 2.2 and Figure 3), the relevant
literature has been classified according to the three categories, namely fault detection, fault
handling, and fault correction, with several subcategories, as depicted in Figure 4. To our
knowledge, there are no relevant studies on fault correction in the considered period; thus,
this topic has been further excluded from this review.

Figure 4. Literature categories based on automatic fault handling.

Fault detection is divided into three subcategories: DMKD, outlier detection, and
leakage detection. As explained in Section 2.3, DMKD is the task of finding hidden
knowledge potentially useful for the fault detection task. It differs from outlier detection,
as the latter is mainly concerned with finding anomalies in data. Therefore, it is reasonable
to separate them. Since leakage detection is a more mature research topic within DH, much
literature regarding leakage detection is present; therefore, we have contained relevant
work in its subcategory.

Fault diagnosis is divided into two subcategories: binary classification and multi-label
classification. Binary classifiers are much less complex than multi-label classifiers; thus,
it is important to make this distinction to present a clear overview. Finally, the binary
classification is further divided into subcategories corresponding to their target label,
namely: sensor, fouling, valves, and pipe faults. Note that these subcategories only cover
some possible fault labels since the literature lacks a full cover of such categorizations.

5. District Heating Data Collection

In the last decade, DH systems have been increasingly digitized. For example, in 2015,
heat meters became standard equipment in Sweden and China [32,33]. A heat meter can



Electronics 2023, 12, 1448 8 of 34

collect close to real-time information; thus, data collection has changed from biannual manual
readings [34] to, e.g., automatic hourly readings. As seen in Figure 1, studies related to FDD
seem to increase, specifically after 2015. One of the reasons may be that data has become
more accessible, thus positively impacting the number of studies. However, many unsolved
challenges still need to be addressed related to data collection in DH, e.g., systematic collection
of ground-truth information, maintenance intervention, or building meta-data.

DH utilities measure and monitor different parameters in the distribution network
using various sensors. The most common sensors are temperature sensors, flow sensors,
pressure sensors, water quality sensors, and energy meters. Temperature sensors are used
to measure the temperature in the supply and return pipes to determine if there is any
temperature drop that may indicate a fault in the network, such as leakage. Flow sensors
measure the flow rate of the network fluid (typically hot water) to, e.g., detect any blockages
or changes in the flow rate that may indicate a fault. Pressure sensors measure the pressure
of the hot water in the network to detect any pressure drops that may indicate a fault,
such as a leak or a valve that is not working properly. Water quality sensors monitor the
quality of water in a DH network, these sensors measure various water parameters such as
pH, temperature, dissolved oxygen, and conductivity to ensure the hot water circulating
through the DH network is of sufficient quality to prevent corrosion and scale buildup,
which can cause damage to the pipes and reduce the system’s efficiency. And energy meters
measure the total amount of energy consumed by a DH network. Collecting data from
these sensors allows operators to monitor the performance of the district heating system,
detect faults, and optimize the system’s operation. The type and number of sensors in a
DH network may vary depending on specific requirements or design.

Currently, DH utilities collect data from buildings through automatic heat meters with
the main purpose of billing. A typical heat meter installed to monitor the consumption of a
building is placed in the substation and consists of two temperature sensors, a flow meter,
and a calculator. The temperature sensors measure the water temperature at the supply and
the return pipes of the substation’s primary side. The flow meter measures the flow at the
primary side, before the point where space heating and DHW circuits split and is usually
placed on the return pipe. The metering instruments are powered either via the public
power grid or via batteries [35]. The calculator performs calculations on the measured
data to derive some parameters such as energy. In Table 2, we present an overview of the
typical variables a heat meter collect. Other parameters, such as the average power over
a certain period of time, are also provided. While the data is useful for billing, it is not
necessarily useful for FDD for two reasons. At first, DH utilities install the sensors for the
purpose of billing and, therefore, mainly collect data relevant to billing rather than for FDD.
It must be determined whether the data is appropriate for automatic FDD and what kind
of additional information is needed to improve the FDD accuracy. For example, only a
single study reports FDD accuracy gains when including secondary side information [36].
While secondary side data is sometimes available, it is not consistently available due to,
e.g., privacy and practical issues. Consequently, currently, any building meta-data is not
collected, while it could be useful for FDD, e.g., building occupancy, energy label, or
building size. To our knowledge, no studies are researching this topic. Moreover, the data
is lacking labels of fault classes or optimal behavior, i.e., the ground-truth information
is missing. There is a need for a well-defined data set with verified faulty and optimal
behavior for the training and evaluation of models. Some studies [37–40] address this issue,
e.g., by creating a framework to label faults occurring in substations, however, this is still
an ongoing work, and there is still much work left to do.
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Table 2. Variables collected by a typical heat meter.

Feature Notation Unit

Primary supply temperature Tps
◦C

Primary return temperature Tpr
◦C

Volume flow V̇ m3/h
Accumulated volume V m3

Accumulated energy Q J

6. Current Intelligent Techniques for FDD

The results presented in this section provide a comprehensive evaluation of the pro-
posed methodologies and their performance in identifying patterns and detecting and
diagnosing anomalies in DH systems. Intelligent techniques refer to various methodologies
and algorithms that automatically extract knowledge and insights from data by employ-
ing AI, ML, or DMKD. Intelligent FDD is widely applied in various industries, such as
healthcare, finance, and energy, to solve complex problems and make informed decisions.
In particular, the field of DH has seen a growing interest in the application of intelligent
techniques for FDD to improve operational efficiency and reduce heat loss. In this context,
we present various studies that have been proposed to, e.g., identify heat load patterns,
cluster substations, and detect abnormal or unexpected behavior in DH systems.

6.1. Fault Detection

In this section, we present, in detail, different ML and DMKD techniques used for
fault detection in DH. Fault detection is an essential field of study within industrial process
control, machine monitoring, and condition-based maintenance. It involves identifying
abnormal or unexpected behavior in a system or process and is widely applied in various
industries, such as manufacturing, power generation, transportation, and building man-
agement. The primary objective of fault detection is to detect system problems early to
prevent significant damage or downtime. Techniques may include monitoring sensor data,
comparing current system behavior to historical patterns, or applying ML techniques to
identify abnormal behavior. These techniques enable the detection of faults at an early
stage, allowing for immediate corrective measures. Fault detection can help increase system
efficiency, reliability, cost savings, and improved safety.

6.1.1. Data Mining and Knowledge Discovery

DMKD is the process of identifying patterns and meaningful insights in large and
complex data sets. It involves techniques such as clustering or regression to identify
patterns, relationships, and trends (hidden) within the data, which can be used to make
informed decisions and predictions. As shown in Figure 5, the process of DMKD involves
multiple steps such as data cleaning, data integration, data selection, data transformation,
data mining, pattern evaluation, and knowledge presentation.

Figure 5. The steps of data mining and knowledge discovery.

Tureczek et al. [34] use kM algorithm to cluster DH heat meter data based on autocorre-
lation. The authors use hourly meter data from a single heating season from 49 substations
located in Denmark. The authors mention the choice for kM, as it is widely used in various
industries, and use default settings (ten iterations) to select the best clustering result. The
study uses four scaling techniques: Normalization, Standardization, Mean-centring scales,
and Mean-divide, to remove volume differences and retain the patterns—to avoid cluster-
ing the amount of energy consumed instead of the patterns. Leave-one-out cross-validation
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is applied to the cluster-validation indices to avoid overfitting. Furthermore, the authors
use four clustering validation metrics: Mean Index Adequacy (MIA), Cluster Dispersion In-
dicator (CDI), Davies-Bouldin Index (DBI), and Silhouette Index (SI) to identify the optimal
number for k, which in their case is 4. The study claims the method can help DH utilities to
optimize heat production and awareness campaigns. Also, the homogeneous consumption
clusters may help FDD. Furthermore, the authors confirm the existence of autocorrelation
in the data and utilize it for clustering.

Gianniou et al. [41] present a three-phase methodology for analyzing data utilizing a
clustering approach. Specifically, the authors use the kM algorithm with the KSC-distance
metric, utilizing hourly data from 8293 single-family households in Aarhus, Denmark.
The data set covers six years, starting in 2009, and encompasses building and customer
information. The authors use k = 5, as suggested by using Bayesian Information Criterion
(BIC) and employ SI for validating clustering results. Their proposed solution can poten-
tially assist DH utilities in optimizing operations, e.g., heat production and demand-side
management. Furthermore, the authors can segment the customers into five clusters based
on consumption intensity. Additionally, using LR, the authors found that factors such as
building age, area, and family size, significantly impact heat consumption. In contrast, the
effect of the age of the occupants is less substantial.

Ma et al. [42] propose a clustering method to identify heat load profiles using DMKD.
The authors employ the Partitioning Around Medoids (PAM) algorithm in combination
with the Pearson Correlation Coefficient (PCC) and validate clustering results using the
Dunn index. The study claims that PAM outperforms kM with Euclidean distance. The
authors utilize hourly data from nineteen higher education buildings in Trondheim, Nor-
way. Data cover a period of two heating seasons, beginning in 2011. The study results
demonstrate the effectiveness of the proposed method in identifying heat load profiles.
Furthermore, the authors claim that the approach can help in the development of advanced
building control, FDD, or cost-effective demand-side management strategies.

Lu et al. [43] present a clustering method using GMM and estimate hyper-parameters
using the Expectation Maximization (EM) algorithm. The authors apply BIC to determine
the number of mixture components. The study uses ten-minute interval data from a single
heating season from six office buildings in Tianjin, China; however, the authors solely
considered hourly mean values. Furthermore, the authors employ several evaluation
criteria such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and PCC.
Additionally, the study employs a multi LR, auto Regression (AR) model, and an Artificial
Neural Network (ANN) to extract additional information from the heat load variation. The
authors claim that the results improved heat load prediction and intend to employ the
proposed method for operation fault diagnosis.

Flath et al. [44] describes a clustering analysis method using the data warehouse
software SAP NetWeaver Business Intelligence. This tool is capable of preparing and
analyzing data, thereby supporting a range of data analysis techniques such as clustering
analysis, ABC analysis—an inventory categorization technique—and classification. The
authors use data with a fifteen-minute interval and divide the data into subsets of days,
similar to [45]. Through their analysis, the authors identified nine clusters and utilized this
information for clustering analysis. The clustering methodology adopted in their study
employs the kM algorithm with Euclidean distance. Finally, the authors evaluate clustering
results using DBI and visualize results using BEx Analyzer.

Hong et al. [46] present a Holistic Operational Signature (HOS) approach to provide
deeper insights into DH substations, such as detecting excessive water flow rates based on
heating load. The authors employ data from a single heating season consisting of both daily
and hourly measurements from multifamily residential buildings in South Korea. They use
kM to identify energy consumption patterns and HOS labels and evaluate results using DBI.
Furthermore, HOS labels include data on secondary temperature differences (∆T), heating
energy consumption, and outdoor air temperature. The approach incorporates multiple
Operation Signature elements (x-OS) for analysis and combines existing signatures such
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as energy, ∆T, and operational signatures. Finally, the authors visualize and interpret the
results and claim that the approach provides more information on the current operation,
control states, and opportunities for operational improvements.

Lu et al. [47] propose a method for reverse identification of control strategy using the
GMM algorithm, as the control strategy significantly impacts heating consumption. The
authors evaluate the operation effect and diagnose inefficiencies in the control strategy
by using Equivalent Supply-Demand Matching Coefficients (ESDMC) and daily mean
operation data to reduce the complexity of the dynamic heat transfer process. The study
employs hourly data, consisting of a single heating season, from an indirect DH system in
Tianjin, China. The authors claim that the approach successfully identifies four regulation
strategies, can evaluate the operation effect, and diagnose inefficient strategies. Further-
more, the authors suggest that GMM is an effective method for identifying regulation
strategies and combining their proposed ESDMC can help diagnose inefficiencies.

Calikus et al. [32] suggest a data-driven approach to identify heat load patterns and
deviating customers. The study utilizes one year of data from two DH networks in Hels-
ingborg and Ängelholm, Sweden. Data comprises six building categories: multi-dwellings,
commercial, public administration, health and social service, school, and industrial build-
ings. The approach consists of three steps: (1) heat load pattern discovery using the k-Shape
(kS) algorithm with k = 15, and evaluation of the clusters through SI, (2) identification
of customers of interest which deviate by three standard deviations (3σ) from their clus-
ters’ centroid (derived from Cantelli’s inequality), and (3) large-scale evaluation by an
expert through visualization of the results and their comparison with four existing con-
trol strategies (Continuous Operation Control (COC), Night Setback Control (NSB), Time
Clock Operation (during five workdays) (TCO5), and Time Clock Operation (during seven
workdays) (TCO7)). The study demonstrates the effectiveness of the proposed approach in
finding customer heat load patterns, identifying deviating customers, and finding control
strategies that are not suitable for specific customer categories.

Xue et al. [48] present an unsupervised DMKD approach for FDD and operation
optimization. They use ten-minute interval data consisting of two heating seasons from
two types of indirect DH systems in Changchun, China. The study includes secondary
side information calculated from the primary supply/return temperatures. The authors
use two DMKD techniques: cluster analysis, and association analysis. For clustering the
substations, the authors use Euclidean distance with the following algorithms: kM with
k = 6, PAM with k = 3, and Agglomerative Hierarchical Clustering (AHC) with k = 2.
They use DBI to evaluate clustering results. To discover hidden correlations, the authors
perform association analysis using the Apriori algorithm. Since the Apriori algorithm
requires categorical data, and DH data is mostly numerical, they apply discretization based
on kM with k = 3 (categories represent low, medium, high, according to original numerical
magnitude). The final generated rules can either be interpreted using domain knowledge
or used to detect anomalies in the DH system. The authors found useful diagnostic rules
for FDD in DH, which could further assist DH utilities.

Abghari et al. [49–51] propose a DMKD using Higher Order Mining (HOM) to iden-
tify outliers for fault detection in DH systems. HOM is a sub-field of DMKD that uses
non-primary, derived data or patterns [52]. In [50], the authors explain an approach for
sequential pattern mining using the PrefixSpan algorithm [53], clustering analysis using
the affinity propagation algorithm [54], consensus clustering using the algorithm proposed
in [55] with Levenshtein distance [56], and finally, Kruskal’s algorithm [57] to create an
Minimum Spanning Tree (MST) algorithm on the extracted patterns to find deviating
substations. The last three techniques utilize derived patterns instead of primary data, i.e.,
the last three are HOM methods. The authors discretize data to extract weekly patterns
and group the patterns into clusters. The method compares substation behavior every two
consecutive weeks to measure the discrepancy in its performance. Subsequently, substa-
tions that exceed a certain threshold are subjected to further analysis through consensus
clustering techniques. Finally, the approach creates a MST to identify outliers by cutting
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the tree’s longest edge(s). The authors empirically evaluate the method using hourly data
of two heating seasons from 10 randomly selected buildings (data set contains 82 buildings)
from a DH system in Southern Sweden. The results indicate that the method is effective in
identifying deviating substations. The authors continue their work in [50,51].

Sun et al. [33] present an anomaly detection method using Kernel Gaussian Mixture
Model (KGMM) for 17,000 DH apartments from 18 zones in China throughout three heating
seasons. The authors acknowledge the challenges associated with anomaly detection and
statistical methods in DH systems, as heat meter readings may not be accurate. Addition-
ally, linear models are unsuitable for nonlinear data. Due to the lack of accurate and labeled
data, the authors motivate their choice of unsupervised learning. The study employs kM,
GMM, and KGMM. The authors claim that KGMM outperforms GMM and kM in terms
of detection rate and false positive rate by computing the minimum sum of squared error.
Furthermore, the study identifies four types of anomalies: abnormal heat behavior, inaccu-
rate heat meters, exceptional temperature probes of intake pipes, and inverse temperature
probes of intake and return pipes. The method shows that it can assist DH utilities in
finding anomalies and detecting faults, thereby improving energy efficiency and thermal
comfort with a 5.4% reduction in heat demand.

Kiluk [58] suggests a DMKD method using regression analysis and clustering. The
author employs hourly data from an area containing 1000 buildings in Sweden, ranging
from multi-unit housing and offices to schools and hospitals. Additionally, the data includes
outdoor air temperature and building size. The author uses regression analysis to map
the relationship between outdoor temperature and energy consumption. For clustering,
the author employs the k-Nearest Neighbor (kNN) algorithm with the semi-Chebyshev
metric. Further improvements are in [59]. The method demonstrates the ability to retain
a high precision (>0.96) in current diagnostic classification and to detect new features,
thereby assisting operators in decision-making and significantly reducing the volume of
information.

In summary, the studies discussed in this section employ some form of DMKD to
identify patterns and structures in DH data. In Table 3, we provide an overview of each of
the studies’ methodologies, distance metrics, and validation metrics. Data mainly contains
primary-side unlabeled data. A majority of studies focus on clustering substations and
utilize the kM algorithm with Euclidean distance as the similarity metric. However, some
studies employ alternative distance metrics, such as those by [32,42,49]. Commonly used
validation measures include DBI, SI, and BIC. A minority of the studies utilize Gaussian
Mixture Models, with one study reporting improved performance in anomaly detection [33]
when using this technique over kM.

Table 3. Summary of applications of clustering approaches.

References Methodologies Distance Metrics Validation Metrics

Tureczek et al. [34] kM Euclidean distance MIA, CDI, DBI and SI
Gianniou et al. [41] kM K-Spectral Centroid BIC, SI

Hong et al. [46] kM Euclidean distance DBI
Flath et al. [44] kM Euclidean distance DBI
Xue et al. [48] kM, PAM Euclidean distance DBI

Ma et al. [42] PAM Pearson Correlation
Coefficient-based dissimilarity Dunn Index

Calikus et al. [32] kS Dynamic Time Warping SI
Kiluk [58] kNN Chebyshev distance

Lu et al. [43] GMM Probability distribution BIC, Mean Absolute Percentage Error and PCC
Lu et al. [47] GMM Probability distribution BIC
Sun et al. [33] kM, GMM, KGMM Euclidean distance, Probability distribution Minimum Sum of Squared error

Abghari et al. [49–51] Affinity, Consensus Levenshtein distance SI, Adjusted Rand score

6.1.2. Outlier Detection

Outlier detection is the process of identifying observations in a data set that deviate
significantly from normal or expected behavior. The deviating data points are often
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called outliers, anomalies, or deviations. Outlier detection aims to identify data that can
result from faults or errors in, e.g., DH equipment. Outlier detection can perform in one
of the following ways: supervised, semi-supervised, or unsupervised detection. The
latter is often used in the DH domain, as unlabeled data is readily available and labeled
data scarce; however, unsupervised outlier detection implicitly assumes that normal
data is far more frequent than anomalous data; if the assumption is violated, it will result
in a high alarm rate. In this section, we provide the research papers addressing outlier
detection.

Wang et al. [60] present a two-stage approach for condition monitoring and outlier
detection of heating and cooling equipment. In the first stage, the so-called “condition
prediction”, the authors apply an LSTM and compare the results to Lasso Regression
(LASSO), Support Vector Regression (SVR), and MLP. The authors evaluate performance
using RMSE, and state that the LSTM had a lower prediction error for six out of nine cases.
In the second stage, the so-called “anomaly detection”, the authors use the Exponential
Weighted Moving Average (EWMA) to detect outliers based on the prediction errors in the
previous stage. The study describes that performance evaluation cannot use traditional
methods, as the number of real anomalies is unavailable. Therefore, the authors use the
rate between detected anomalies and the number of samples to calculate the false positive
rate assuming that most anomalies are true positives. The authors claim that the LSTM
model successfully captures normal behavior and thus can detect outliers.

Månsson et al. [5] propose an automated statistical method for fault detection of DH
substations. The authors use piecewise LR on hourly data (converted to daily) of a single
heating season from 3000 substations in Sweden. Substations are ranked such that the
3000 substations are in descending order of their energy consumption, i.e., large energy
consumers are ranked higher, as larger consumers have a more significant impact on the
network. The authors use the following three signatures to identify the poor-performing
substations: cooling performance, return temperature level, and energy consumption.
Furthermore, the authors define ∆T = 45 ◦C as the optimal value and identify outliers
using three standard deviations (3σ). The study claims that approximately 43% of the
examined substations exhibit sub-optimal performance. The authors suggest that the
difference between supply and return temperature (∆T) is not constant under identical
conditions, e.g., the same outdoor temperature, as the heat demand is affected by factors
such as DHW preparation. Furthermore, the study raises the issue of the lack of uniform
definitions in DH, e.g., substation optimality, and as such, the findings differ from previous
studies, such as in [6].

Calikus et al. [61] suggest a method to rank abnormal substations based on their
power signature using Robust Regression (RR). The study describes three methods,
namely outlier-based, dispersion-based, and aggregated-based using the Borda count
method. The authors utilize RR to estimate an LR model, as Ordinary Least Squares
(OLS) is sensitive to outliers, which significantly impacts results. Observations that
fall outside a specified threshold are considered outliers. However, since the authors
have no prior knowledge of outlier ratio, they assume 20% of observations are outliers.
Furthermore, the authors compare their approach with a OLS method and evaluate
results using R2 and a Student’s t-test. The study employs hourly data from two DH
networks (approximately 1700 buildings) in Sweden for a single heating season. Each
of the methods produces a ranking of the most anomalous buildings. The authors
claim that the dispersion-based and aggregated method significantly outperforms the
OLS approach.

Gadd and Werner [6] present a manual method for fault detection in DH substations.
The study utilizes hourly data from two DH systems (after pre-processing 135 substations)
in Sweden. The data consists of six customer categories: industrial demand, one- and
two-family dwellings, multi-dwelling units, ground heating, public administration, and
others. The authors segment faults into three categories: unsuitable heat load pattern, low
average annual temperature difference, and poor substation control. The authors claim
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that 74% of examined substations are performing sub-optimal and that the poor correlation
between heat demand and outdoor temperature indicates poor substation control.

Farouq et al. [62–64] propose several studies for anomaly detection based on fleet
monitoring. In [62], the authors state their motivation for unsupervised learning as there
are three problems: (1) no large, labeled data sets are available, (2) the faulty behavior is
rare, and (3) the data is difficult to generalize. The study uses the Unit Level Ensemble
Model (ULEM), Subfleet Level Ensemble Model (SLEM), Combined Ensemble Model, and
for offline the Matrix-Profile (MP) method [65], to monitor DH substations and detect
anomalies. Furthermore, the authors use a kNN based method to construct the ensemble
instances for ULEM and SLEM. The study employs data from a single heating season, and
six substations are manually analyzed and labeled by domain experts based on the flow
variable. The author evaluates results through precision and Normalized Mean Detection
Delay (NMDD). In earlier work [64], the authors only considered a single operational
variable, and used a kNN based approach with Euclidean distance and k = 80 and used
Isolation Forests (IF) to detect anomalies. This study employs hourly data of a single
heating season from 778 substations in South-West Sweden. In [63], the authors extend
their approach to multivariate and compare the kNN based approach to a Conformal
Clustering (CC) approach while considering evaluating different non-conformity measures,
namely: 3-NN, 5-NN, 10-NN, median and IFor. The authors claim their approach is helpful
in monitoring, diagnosis, and knowledge extraction in DH systems, especially when no
labeled data is available.

Wang et al. [66] present a fault detection approach for the integrated energy system us-
ing ML. The authors combine regression analysis and exponential smoothing step averages
to predict deviating behavior. The authors evaluate the regression model using R2. The
study divides interface failures into sensor faults, drive faults, and part faults. Furthermore,
sensor faults often cause deviations, distortions, and drift. The authors use an SVM to
classify healthy and faulty operations and evaluate results with precision, recall, and F1.
The authors claim the approach reaches a 98.67% accuracy in identifying faults.

Zhang and Fleyeh [67] propose a method for anomaly detection of DH substations
using a simplified physical model, LSTM combined with a Variational Auto Encoder (VAE).
The authors compare several approaches, such as a VAE-based LSTM, Auto Encoder (AE)-
based LSTM, and LSTM. The study utilizes hourly labeled data from a single heating
season in Sweden. The authors evaluate results using Area under Receiver Operating
Characteristic (ROC) Curve (AUC) and F1, and state that for warm months (with a threshold
value of 99.5%), all anomalies are detected by the VAE-based LSTM approach, while the
other two approaches missed one outlier. For the cold months, all models performed
the same.

Palasz and Przysowa [68] present an approach to detect heat meter failures. The authors
use several ML algorithms: ANN, Gradient Boosted Decision Tree (GBDT), and SVM, and
increase accuracy by using hyperparameter optimization through sequential model-based
optimization with Random Forest Regression (RFR) and AUC. The authors state that common
heat meter failures are failure of the flow transducer, temperature meter failure, and battery
exhaustion. The study uses heat meter data collected from ten years of operations. Addition-
ally, the authors present an Exploratory Data Analysis (EDA) to find relevant information and
claim that only the state variables are enough for failure prediction—historical information
on the equipment (how and when) is not needed. Also, failure occurrence follows a Weibull
distribution. The authors utilize the ensemble learning paradigm by combining the models
from previous steps and evaluate results using AUC, Matthews Correlation Coefficient (MCC),
accuracy, recall, and F1. The authors claim their approach is successful in fault detection and
reached a detection rate of >95%.

Lee et al. [69] propose a delta-T-based clustering method for FDD. The authors present
several steps of data mining, such as: assigning labels from the clusters from the energy con-
sumption patterns and delta-T signature analysis to divide substations into three categories:
normal, extreme, and negative delta-T, and assigning labels from the clustering analysis,
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from the operational signatures, and faulty signatures. Signatures were defined manually
based on a set of variables. The authors employ hourly data collected from four months
of operation and use kM for clustering analysis—k is set to 3–6. The authors evaluate
clusters using DBI and the elbow method. The study results show that their approach can
detect operation patterns and faults. Additionally, the patterns can provide a profound
knowledge of operations.

Brès et al. [36] present an FDD approach using a Binary Decision Tree (BDT) and
building simulations to discover fault signatures and identify four issues that cause high
return temperatures. The authors calculate the correlation coefficient and quotient of
average values for each pair of variables. The authors simulate the scenario 1000 times,
with a ten-minute interval for a six-month simulation period. In 10% of the simulations,
the authors introduce four types of faults: (1) excessive hot water re-circulation, (2) lack of
space heating secondary temperature reset, (3) space heating heat exchanger valve leakage,
and (4) undersized space heat exchanger, resulting in a data set containing 40% faults,
60% fault-free behavior. The authors utilize the Classification and Regression Tree (CART)
algorithm, using five-fold cross-validation, to construct a BDT. Furthermore, the authors
evaluate the results using accuracy and claim that having secondary side measurements
increases prediction accuracy from 78% to 96%.

Theusch et al. [70] propose a fault detection and condition monitoring method using
DH using kNN, kM, LR and residual analysis. The authors utilize data from a single
heating season with a three-minute interval from 896 offices and households in the South of
Germany. The study follows several steps: in the pre-processing step, the authors remove
unrealistic values, convert values to hourly averages, and apply kNN (with Euclidean
distance) to the outdoor temperature and consumed power to detect outliers. In the next
step, the authors apply clustering analysis to identify heat load patterns using kM with
Euclidean distance and use DBI to find the optimal k. The study utilizes an LR to model the
relationship between heat demand and outdoor temperature. Finally, the authors detect
deviations through residual analysis. Results show that for a circulate pump breakdown,
the approach reached a cluster consistency of 0.94, while for a leaking control valve, the
approach reached a cluster consistency of 0.57. The authors state that regular load patterns
are useful for fault detection; however, learning the regular load patterns significantly
depends on the regularity of the substation.

Al Koussa and Månsson [71] present two fault detection approaches. The authors
use hourly data (single heating season) from 3000 substations in Sweden that had the
most significant energy consumption. The cluster-based approach uses the overflow
method and performance signatures to compare the substations. Here substations are
clustered, and the authors use a set of substations with the lowest overflow value
to produce an LR model to detect deviating substations. The instance-based method
employs a black-box model with various features to predict a substation’s behavior
and compare the predictions to the measured behavior. The authors utilize Tree-based
Pipeline Optimization Tool (TPOT) to optimize the fault detection algorithms. TPOT
uses genetic programming to automatically optimize feature selection, pre-processing,
model selection, and parameter optimization. The authors introduce two types of faults
into the data set: (1) communication loss between the energy meter and DH utility, and
(2) meter drifting. Furthermore, the authors evaluate performance with R2 and MAE
and claim the highest performance is combination number five with a R2 = 0.9740 and
MAE = 0.1301. The authors claim that both approaches can detect deviating behavior in
building substations.

Sandin et al. [72] present two basic methods for FDD in DH with primary side data, as
secondary side data is not commonly accessible. The first approach consists of correlation
analysis using supply temperatures and corresponding temperatures. The authors claim
that the correlation coefficient between two supply temperatures time series is superior to
their geographical distance as a similarity metric. The second approach uses the thermal
power with limit checking and clustering, e.g., kM, to define fault detection conditions. The
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authors suggest that de-trending the time series data is essential; otherwise, the seasonal
variations dominate the correlation coefficient. The authors use first-order differencing to
make the data stationary and claim that correlation analysis can help identify substations
with similar supply temperatures. Furthermore, the authors state that the second approach
helps detect faults affecting primary flow and temperature sensors.

Johansson and Wernstedt [73] present an n-dimensional statistical approach with
performance metrics. The authors describe that the relationship between the variables is
essential, not the variables themselves. The authors use parallel coordinates and scatter
plot matrices to visualize and evaluate the relationships between the variables. The au-
thors use Chauvenet’s criterion and regression analysis for outlier detection and evaluate
results using PCC. Both methods, visualizing and using performance metrics, were suc-
cessful in detecting outliers; however, the study states that the performance metrics help
remove subjectivity.

In summary, the studies discussed in this section utilize a wide variety of techniques
for outlier detection. In Table 4, we provide an overview of each of the studies’ method-
ologies and their respective category. Most studies chose unsupervised outlier detection,
as labeled data is scarce; however, it has an implicit assumption that normal data is far
more frequent than anomalous data, which might not be the case [5]. The unsupervised
approaches employ, e.g., a regression method to detect outliers, such as LR. Subsequently,
models that are based on geometry, including the kNN and SVM, are widely acknowledged
as prevalent alternatives. Few studies focus on deep learning or logical models, while none
utilize probabilistic methods for outlier detection.

Table 4. Summary of applications of outlier detection approaches.

References Methodologies Categories

Wang et al. [60] LASSO Regression
Wang et al. [60] SVR Regression

Månsson et al. [5], Theusch et al. [70], Calikus et al. [61],
Wang et al. [66], Sandin et al. [72], Johansson and Wernstedt [73] LR Regression

Calikus et al. [61] RR Regression
Al Koussa and Månsson [71] TPOT Geometric

Wang et al. [66], Palasz and Przysowa [68] SVM Geometric
Theusch et al. [70], Farouq et al. [62–64] kNN Geometric

Lee et al. [69], Theusch et al. [70], Sandin et al. [72] kM Geometric
Farouq et al. [63] CC Geometric
Sandin et al. [72] Limit-checking Geometric

Palasz and Przysowa [68] GBDT Logical
Brès et al. [36] BDT Logical
Brès et al. [36] CART Logical

Farouq et al. [64] IF Logical
Wang et al. [60], Palasz and Przysowa [68] MLP Deep learning

Wang et al. [60], Zhang and Fleyeh [67] LSTM Deep learning
Zhang and Fleyeh [67] AE Deep learning
Zhang and Fleyeh [67] VAE Deep learning

Johansson and Wernstedt [73] Visualisation Statistical
Gadd and Werner [6] Manual analysis Statistical

6.1.3. Leakage Detection

Leakage detection is the process of identifying and locating leaks in a DH system,
typically water for most DH systems. Leakage detection employs various techniques, such
as acoustic sensing, pressure monitoring, AI and ML, and computer vision using airborne
thermal imagery. Leakage detection aims to identify leaks in a network as quickly as
possible to minimize losses and reduce environmental and property damage.

Chen et al. [74] present a leakage detection method for DH networks using rein-
forcement learning. The authors employ data from leakage simulations with ten-minute
intervals, and state that leakage data is rare and does not cover all possible leakages. The
authors utilize Contextual Bandit (CB) with Linear Upper Confidence Bound (LinUCB) for
arm selection, as it performed best compared to random selection, ε-greedy method, and
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the Boltzmann method. To mitigate overfitting, the authors use Ridge Regression (RIDGE)
and emphasize the importance of a delayed alarm trigger, to reduce the effects of false
alarms due to peaks caused by measurement error and environmental noise. The authors
apply stratified sampling to train the model and cumulative take-rate replay to evaluate the
algorithm. The study achieves a high degree of accuracy, reporting an accuracy rate of 95%,
and outperforming algorithms such as Extreme Gradient Boosting (XGBoost), ANN, and
SVM (outperforming the second-best algorithm with 3%, and the worst algorithm by 15%).

Guan et al. [75] present an automatic leakage detection method using infrared thermal
images. The proposed algorithm consists of two parts: (1) image segmentation and (2)
fault diagnosis. The authors use image segmentation to eliminate irrelevant information
and enhance the detection of relevant information. Fault diagnosis consists of three parts:
(1) temperature analysis, (2) pipe diameter analysis, and (3) defect analysis. In temperature
analysis, the authors use Optical Character Recognition (OCR) and an LR model to define
the relationship between temperature and color and to construct the temperature matrix.
The authors employ 3σ to detect abnormal temperature values. In pipe diameter analysis,
the authors use an analytical-based approach to detect the pipes where the insulation
layer has fallen off. Once a pipe diameter violates a threshold, it indicates it is missing
an insulation layer. The authors state that if the insulation layer damage is shallow, the
temperature analysis may not be sufficient to detect faults; thus, the authors suggest in
defect analysis an edge detection approach using Canny’s algorithm to extract the outer
edge of the water pipe. Furthermore, the authors perform several computations to check
if the value violates a specific threshold. The authors evaluate the methods by accuracy,
precision, recall, and F1 and present a flowchart to classify faults. On average, the authors
claim their proposed approach reached robust efficacy (precision = 90.02%, recall = 88.99%,
and F1 = 89.49%).

Pierl et al. [76] propose a leakage detection method using three localization approaches:
pressure wave detection, model-based numeric-analytical, and ML. The authors create a
network model based on relevant data from a DH network and use simulations to generate
leakage data, as they mention little historical leakage data exists. The ML approach makes
use of three algorithms: SVM, NB, and RUS Boosted Trees (RUSBT). The authors motivate
their choice for the specific algorithms. The authors use SVM to transform data into a
higher dimension to make it separatable, NB as it can deal with noisy data, and RUSBT
increases the classification quality of unbalanced data sets. To compute the accuracy, the
authors evaluate the algorithms with the allocation rate to the affected exclusion area. The
pressure wave detection approach reaches the highest accuracy with an allocation rate
of 76%.

Xue et al. [77] suggest an ML-based leakage fault detection method using the XGBoost
algorithm. The authors use hydraulic simulations to generate leakage data and apply a
delayed alert-triggering algorithm to detect a potential leakage. The authors construct the
hydraulic simulation model when the DH network operates normally. If an alert is triggered,
the authors collect a variation rate vector and use it as input in the XGBoost algorithm. The
authors evaluate performance using accuracy and macro-F1, which are 85.84% and 0.99786,
respectively.

Xu et al. [78] present a leakage detection method using airborne thermal imagery, using
a human vision system assisted by Saliency computation (SC) [79]. The algorithm extracts
three visual features: color, intensity, and orientation, to generate a saliency map. The
authors remove thermal anomalies using buffer analysis (using ArcGIS). The authors claim
the solution has good accuracy (sensitivity of 79.79%), especially when prior knowledge
is scarce.

Hossain et al. [80] propose a leakage detection approach based on airborne thermal
imagery using a CNN. The authors compare their approach to eight common ML algo-
rithms. Four linear models: Logistic Regression (LOR), LDA, SVM, NB. Four non-linear
models: kNN, Decision Tree (DT), RF, and Adaptive Boosting (AB). The authors utilize
16-bit images from an unmanned aerial vehicle in twelve different cities in Denmark. The
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approach uses a region extraction algorithm to extract potential leakages (image patches)
from the full image. The authors use 243,082 images with 1345 leakages (labeled by an
expert). The method uses leave-one-out to train and test the model. As the original data
sets are highly imbalanced (around 99.7% are false patches), the authors remove data to
create a balanced data set. Finally, the authors evaluate performance using recall, precision,
false positive rate, unique ID, and accuracy. The study reports, on average, accurate results
for the CNN with a balanced data set (recall = 82.2%, precision = 90.2%, false positive
rate = 9.06%, unique ID = 98.6%, and accuracy = 0.866).

Berg et al. [81] present a leakage detection method using airborne thermal imagery.
The authors collect thermal images taken at night from an aircraft and use ground truth
data from seventeen Scandinavian towns and cities. Ground truth data has been manually
labeled (media leakages, energy leakages, or false detections). The authors employ building
information to remove false detections, using a building segmentation algorithm [82] and
OpenStreetMap. Furthermore, the authors use two linear classifiers: LDA, SVM, and three
non-linear classifiers: Radial Basis Function SVM, AB, and RF. The approach trains the
models using 10-fold cross-validation. Consequently, the authors combine the models
using a voting and layer invariant classification and evaluate performance using a true
positive rate and a false positive rate. Further work and an enhanced method are seen in
Berg et al. [83]. The authors report that the RF with 120 trees, average tree depth of ten,
and splitting nodes on a randomly selected feature produces the best results with a false
positive rate (42%) and positive rate (99%), respectively.

Friman et al. [82] propose a leakage detection method using airborne thermal imagery.
The study utilizes thermal images from 15 cities in Sweden and Norway. Data contains partial
ground-truth information, which the authors use for evaluation. The approach employs
automatic building segmentation with AB and creates a detection model based on temperature
field and heat flux around buried heating pipes. Furthermore, the authors construct a model
of normal temperature variations using the pixel probability density function and flag outliers
as potential leakages. The authors detect regions with significant temperature differences
compared to other regions as temperature anomalies, i.e., classify it as a potential leakage. The
study reports a high efficacy with a classification accuracy of 86%.

In summary, the studies in this section utilize either airborne thermal imagery or
leakage simulations to detect leakages in the primary side of the DH network. In Table 5,
we provide an overview of each of the studies’ methodologies and their respective category,
types of data, and DH segment. Only one study uses infrared thermal imagery to detect
leakages on the secondary side. Overall, the studies use a wide variety of algorithms to
achieve leakage detection and report a high detection rate. The most frequently employed
algorithms included: SVM, RF, and AB.

Table 5. Summary of applications of leakage detection approaches.

References Methodologies Categories Data DH
Segment

Chen et al. [74] CB, RIDGE Reinforcement learning Leakage simulations Primary
Pierl et al. [76] SVM, NB, RUSBT, AB Traditional learning Leakage simulations Primary
Xue et al. [77] XGBoost Traditional learning Leakage simulations Primary

Guan et al. [75] LR, OCR, Canny Computer vision Infrared thermal imagery Secondary
Xu et al. [78] SC Computer vision Airborne thermal imagery Primary

Berg et al. [81] LDA, SVM, AB, RF Computer vision Airborne thermal imagery Primary
Berg et al. [83] LDA, SVM, AB, RF Computer vision Airborne thermal imagery Primary

Friman et al. [82] AB Computer vision Airborne thermal imagery Primary
Hossain et al. [80] CNN, LOR, LDA, SVM, NB, kNN, DT, RF, AB Computer vision, Deep learning Airborne thermal imagery Primary

6.2. Fault Diagnosis

Fault diagnosis is the process of identifying the specific cause of a malfunction or
failure in DH system. In fault detection, the aim is to identify the presence of a fault. In
contrast, in fault diagnosis, the aim is to classify the fault, i.e., fault detection is the first
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step in identifying a potential fault in the DH system, while fault diagnosis is the next
step, and attempts to identify the specific cause of the problem. Fault diagnosis methods
can use both supervised and unsupervised methods. We have organized the following
section into several fault types: sensor failure (Section 6.2.1), fouling (Section 6.2.2), valves
(Section 6.2.3), and (Section 6.2.4) and multi-label classification (Section 6.2.5) such that
studies are grouped based on the same fault type they attempt to diagnose, to provide a
clear overview.

6.2.1. Sensor Failure

Zimmerman et al. [84] propose an FDD method for pressure sensors using a Bayesian
Network (BN). The authors use OpenModelica to simulate the DH system and faults. The
approach utilizes HUGIN to build a probabilistic tree that can determine pressure faults.
The study defines a fault as a discrepancy between sensor data and model predictions,
i.e., the authors compare the model predictions with the measured values. Furthermore,
the study classifies labels into normal, drifting, and jumping values. The authors define
values within 1% of the model predictions as normal behavior; drifting values are leaks or
deterioration of equipment, and jumping values are sensor faults. Furthermore, the authors
verify potential sensor faults by checking the state of the next sensor. The study claims the
approach shows potential for detecting network leaks and pressure sensor faults.

Aláiz-Moretón et al. [85] present a FDD methodology for sensor malfunctioning and
recovering missing data. The authors employ several ML algorithms to model the behavior
of the sensor: RF, XGBoost, Extremely Random Tree (ERT), AB, kNN, and a shallow ANN
on data from the sensors of a geothermal heat exchanger during one year of operation with
a ten-minute interval, i.e., the authors train predictive models to achieve a computational
representation of the sensor. The authors evaluate results using MAE, Least Mean Log
Squares (LMLS), Symmetric Mean Absolute Percentage Error (SMAPE), Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), and Normalised Mean Square Error
(NMSE). The study reports that a hybrid model with ERT performed best. The authors
have proposed to undertake future studies to evaluate the efficacy of alternate algorithms,
such as IF or one-class SVM.

Månsson et al. [86] suggest an ML approach for detecting sensor faults utilizing
Gradient Boosting Regression (GBR) and TPOT. The authors use hourly data from a single
heating season of a single substation in Sweden. The authors induce two types of faults
into the data set: (1) communication problems between DH utility and heat meters, and
(2) drifting meter faults. To automate parts of ML, the authors use TPOT, which creates
combinations of pipelines, data transformations, and ML models to optimize the process.
Furthermore, the authors evaluate the models using R2 and MAE. The authors use sixteen
training/testing sets, resulting in sixteen pipelines. The best-performing pipeline reached
an R2 = 0.9740 and MAE = 0.1301. The authors claim that the models are capable of
learning substation behavior and that the approach shows promising results for fault
detection.

6.2.2. Fouling

Guelpa et al. [87] propose an analytical fouling detection method for substation heat
exchangers. The authors use the primary side mass flow rate and the primary and secondary
side supply/return temperatures to develop an automated tool that shows capabilities of
detecting anomalies. Furthermore, the authors test the tool on 325 heat exchangers from
multiple DH networks in Turin, Italy. The authors expect that utilizing the approach leads
to an average annual decrease of primary heat consumption by 1.6%.

Cadei et al. [88] present an ensemble learning-based approach for fouling detection in
heat exchanger equipment. The authors combine two approaches, a short-term approach
using an Auto Regressive Integrated Moving Average (ARIMA) model and a long-term
approach using a RIDGE model. The authors employ data consisting of primary mass, flow
rate, and supply/return temperatures. The study detects anomalies when the behavior
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statistically deviates from the models. Consequently, the authors use a one-class SVM to
define the boundary of normal behavior. The study reports that the approach is currently
being applied in the field to optimize maintenance activities and successfully detected two
close fouling events.

Kim et al. [89] propose a fouling FDD approach using kM, MLP, and virtual assisted
sensors. The authors employ kM to identify system operation patterns and utilize the
identified clusters to divide data into training and testing data sets to evaluate the model
under different testing conditions. Furthermore, the authors built a model using MLP with
the system variables and measurements from the virtual assisted sensors, which estimate
the unmeasured system variables necessary for modeling. Finally, the approach detects
fouling when it violates a threshold by comparing the results of the predicted and measured
values. The authors use R2 (case 1: 0.89, case 2 and 3: 0.99) and RMSE for model evaluation.
Furthermore, the study reports that case 3 had, on average, a correct alarm rate of 89% false
alarm rate of 3% and that by employing virtual sensors and the 17-min fast alarm approach,
the prediction accuracy increased by 61%.

6.2.3. Valves

Park et al. [90] present an ensemble learning-based method to detect malfunctioning
differential pressure control valves by utilizing RF and Shapely Additive Explanations
(SHAP). The authors use weather data from the Korea Meteorological Administration in
combination with DH sensor data. The approach employs linear interpolation to compute
smaller-resolution weather forecast data. The authors utilize labeled data (by an expert)
from a single heating season. Furthermore, the approach utilizes stratified random sam-
pling to divide data into training (70%) and test (30%) data sets. To construct the model, the
authors employ RF and use SHAP to analyze the relationship between results and input
variables. The RF with 120 trees had the highest performance. The authors compare the
performance of RF with LR and DT using precision, recall, and F1, and report good results
on the RF for normal behavior: 0.98, 1.00, 0.99, and abnormal behavior: 0.95, 0.81, 0.87,
respectively.

6.2.4. Pipes

Langroudi et al. [91] describe an approach for predictive maintenance using backward
simulation and test a wide variety of ML algorithms: LR, Decision Tree Regression (DTR),
RIDGE, kNN, Partial Least Squares Regression (PLS), SVM, RF, LASSO, XGBoost and ANN.
The authors employ hourly data from three DH networks and combine it with data from
the Deutscher Wetterdienst. Furthermore, they replaced missing data with large negative
numbers, such that null values are outliers. The authors calculated the correlation between
features using PCC and claim that the non-temperature variables, such as relative humidity,
sunshine duration, month, and hour, increase prediction quality. The approach employs a
regression model trained using 10-fold cross-validation and evaluates results using MAE,
RMSE, and R2. From the specified algorithms, RF showed the highest efficacy, with the
accuracy of predictions for supply pipes (between 0.81 and 0.92) and return pipes (between
0.59 and 0.77).

Bahlawan et al. [92] propose an analytical FDD methodology to detect thermal and
hydraulic faults. The authors aim to detect faults such as water leakages, heat losses, and pres-
sure loss in DH pipes using the DH network of the University of Parma, Italy. Consequently,
the authors employ a digital twin of the DH network to verify results. The study simulates
faults to generate 23 data sets, each spanning ten days of operation. The model predicts six
health indices for each pipe, where a low value indicates a fault. The lower the value, the
higher severity of the fault. The authors claim their approach is capable of correctly detecting
and identifying all simulated faults, including the severity of the fault.

Manservigi et al. [93] suggest an FDD approach for DH pipes using an analytical
model. The authors aim to detect pipe faults, such as leakages, heat losses, and pressure
losses. The study performs fault diagnosis by modeling an DH system and combining
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it with an optimization algorithm. The authors report a high accuracy, with a RMSE of
<0.02%. Furthermore, the authors verify results by inducing six types of faults in the DH
network at the University of Parma, Italy. The study claims the model correctly identifies
all faults, including the exact magnitude.

6.2.5. Multi-Label Classification

Bode et al. [94] present an FDD methodology where the models are trained on labora-
tory data and applied in a real-world scenario. The synthetic data contains induced faults,
such as leakages, condenser fouling, evaporator fouling, or refrigerant overcharging. The
authors review a variety of algorithms, such as: LR, kNN, CART, RF, NB, SVM, and ANN.
The authors generate three data sets using three reduction techniques: (1) univariate feature
selection, (2) recursive feature elimination and cross-validation with linear regression, and
(3) feature importance of the CART algorithm. Furthermore, the study uses oversampling
to reduce the data imbalance. The authors evaluate results using accuracy and MCC and
found that the algorithms perform well on the synthetic data with accuracy between 0.85
and 0.95 and MCC between 0.65 and 0.92. The authors claim that CART and RF can
correctly identify faults before they occur; however, the algorithms performed poorly on
the real-world data set, with MCC scores between 0.58 and 0.7 respectively. However, the
methodology shows promising results, as typically, in engineering scenarios, (fault) labels
do not exist due to poor documentation of faults and maintenance interventions.

Li et al. [95] propose an FDD approach using a DH network simulation with kNN,
RF, ANN, and CNN. The authors can classify nine types of faults, such as sensor, actuator,
component faults, bias, drift, and complete failure faults. The study evaluates results using
precision, accuracy, and F1. The authors state that the difference in the characteristics
of a fault, such as an occurrence time, trend, amplitude, offset, or slope, makes faults
distinguishable. kNN, and CNN had the highest F1 (0.95); however, the latter had the
highest performance in noisy conditions, and choosing the right data window significantly
improves the accuracy. On average, the performance of the CNN, on most sub-faults, was
>95% for all metrics, and can detect and isolate most of the sub-faults accurately when the
data window is large enough.

Choi et al. [96] present two FDD methods utilizing an AE to generate useful features.
The approaches consist of residual-based and latent space-based. The two methods work
well with a variety of classification algorithms, such as: MLP, DT, and SVM. The authors
use a data set collected from a 27-story multifamily residential building in South Korea.
Data is recorded every minute and contains both primary and secondary supply/return
temperatures. The authors use an MLP to classify faults and evaluate results using accuracy,
precision, and F1. LSM reached an F1 of 0.920, while residual-based reached an F1 of 0.776.
Furthermore, in residual-based, according to the authors, the training data dependency
issue was present, which led to performance degradation.

In summary, the studies in this section utilize a wide variety of techniques and aim to
compare the performance of different algorithms. In Table 6, we provide an overview of
each of the studies’ methodologies and their respective diagnosis aim. Furthermore, many
studies face challenges in obtaining ground truth information; thus often resort to using
synthetic data or reducing the impact of the challenge. For example, one study [94] suggests
training on lab-generated data may overcome the challenge. Another study proposes to
utilize a one-class SVM [88] to reduce the need for labeled data, and another study exploits
feature engineering [96] to develop higher-performing models. Overall, it was not the
choice of ML algorithm, but primarily data quality, that impacted the performance the most,
which is specifically challenging in fault diagnosis, as there is a severe lack of labeled data.
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Table 6. Summary of applications of fault diagnosis approaches.

References Methodologies Diagnosis

Zimmerman et al. [84] BN Sensor failure
Aláiz-

Moretón et al. [85] RF, XGBoost, ERT, AB, kNN, ANN Sensor failure

Månsson et al. [86] GBR, TPOT Sensor failure
Guelpa et al. [87] Analytical Fouling
Cadei et al. [88] ARIMA, RIDGE, one-class SVM Fouling
Kim et al. [89] kM, MLP Fouling
Park et al. [90] RF Valves

Langroudi et al. [91] LR, DTR, RIDGE, kNN, PLS, SVM, RF, LASSO, XGBoost, ANN Pipes
Bahlawan et al. [92] Analytical Pipes
Manservigi et al. [93] Analytical Pipes

Bode et al. [94] LR, kNN, CART, RF, NB, SVM, ANN Multi-label
Choi et al. [96] AE, MLP Multi-label

Li et al. [95] kNN, RF, ANN, CNN Multi-label

7. Discussion

In this section, we will reflect on the results obtained from this study. We present the
findings through the topics in the SWOT analysis, seen in Figure 6. In Section 7.1 we will
highlight the strengths and research trends for both fault detection and fault diagnosis.
From Section 7.2, we will provide an extensive discussion on the most relevant threats,
weaknesses (Section 7.3), and opportunities (Section 7.4), as well as the limitations of the
methods and DH industry. Additionally, we will present recommendations and discuss
the practical implications of synthetic data generation. Furthermore, we will provide some
key opportunities in Section 7.4, which could further advance the understanding of FDD
in DH. Overall, we aim to offer a holistic and in-depth understanding of the research and
summarize the key findings in Figure 6 to provide a quick overview of the discussed points.

In the SWOT analysis, strengths refer to the positive characteristics in DH systems that
benefit current intelligent FDD. Weaknesses refer to negative characteristics in DH systems,
which are minor limitations but can be influenced in the short term. Opportunities refer to
potential future research directions to improve intelligent FDD for DH systems. Threats
refer to the negative characteristics in DH systems, which are major limitations and difficult
to change in the short term.

Figure 6. SWOT analysis from the perspective of intelligent FDD in DH.
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7.1. Strengths

S1—Increasing attention from research community. As Figure 1 reveals, there has been
a gradual increase in the number of DH FDD research publications. What stands out
in this figure is that before 2018 there was a tendency to make use of more traditional
ML methods, e.g., LR, kM, kNN, or RF; however, from 2018 onwards there seems to be
an increase in the variety of ML types used, e.g., regression, logical, geometric, or deep
learning. Although, what lags is the use of probabilistic models, which could be specifically
relevant to the current situation, as it can effectively deal with uncertainty. The increase in
research studies could be explained through the (increasing) digitization of DH networks,
as data is significantly easier to obtain. The number of studies peaked in 2019, and we can
see a slight reduction after 2019. It is unknown whether this is due to the challenges in DH
we highlight or to external events such as the pandemic. However, the number of research
studies is likely to increase after 2022, as it is expected for data to increase in amount and
quality and for the introduction of novel and optimized ML methods. Data quality will
play a key role in DH, and it is paramount for future successes in DH FDD.

S2—Increasing digitization of DH systems may explain the increase in research studies,
as it has led to an increase in the amount of data available for analysis. Digitization is
a key enabler for the development and implementation of intelligent FDD using AI and
ML, which can significantly improve DH systems’ efficiency and reliability. Additionally,
the digitization of DH networks enable predictive maintenance techniques, which can
forecast potential failures before they occur and take preventive measures to avoid them.
The preventive maintenance approach uses AI and ML techniques on real-time data to
analyze equipment performance, identify potential issues and provide recommendations
for maintenance or repairs of various parts depending on their current usage. It is different
from reactive maintenance—currently, the DH field primarily employs—which waits for
equipment to fail before taking action. Predictive and preventive maintenance based on
AI and ML can reduce downtime and improve overall performance and system reliability.
Understanding the physics of component failure can be beneficial for, e.g., predictive
maintenance. Incorporating knowledge of the physical processes that lead to component
failures into the ML models, could result in more accurate predictions. However, it is also
important to note that ML is capable of identifying patterns that are present in the data
which may not be directly related to the physics of component failure. Therefore, while the
physics of component failure can help improve the accuracy of FDD, it is not the only factor
that should be considered. Nevertheless, physics-based ML is an emerging field that aims
to integrate physics-based knowledge with ML techniques. Physics-based ML refers to the
integration of physical laws and principles into ML models. This approach can improve
the accuracy and interpretability of the models by incorporating domain knowledge, such
as knowledge of the underlying physics governing a system, into the learning process.
By using physics-based models, it is also possible to make predictions about a system in
scenarios where there is limited training data available or when extrapolating beyond the
range of training data. An example is given in [97].

S3—The abundance of unlabeled data is a strength that makes DMKD particularly relevant
for this field. In DMKD, we identify mainly two methods: kM and GMM. The most popular
method is kM, which is used primarily in conjunction with Euclidean distance [34,41,44,46,48].
kM often performs exceptionally well for its simplicity; however, while Euclidean distance
works well for two or three-dimensional data, it does not do well on higher-dimensional data,
which we will explain further in Section 7.3.

Another popular method is GMM [33,43,47]. The authors in [33] report better results
using GMM instead of kM. There is some experimentation in using different techniques
other than kM, such as in [32,42,49–51,58]. For example, [32], uses kS, which has a similar
iterative procedure seen in kM, but kS differs significantly in distance metric and centroid
computation. The authors have reported good results and are successful in identifying
deviating customers. In [49–51], the authors have used HOM and are successful in finding
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deviating substations. Consequently, a majority of DMKD studies utilize DBI or SI for
clustering validation.

In Fault detection, as seen in Figure 1, most of the references fall into this category,
i.e., most methods detect that there might be a malfunction. However, a significant chal-
lenge in this category is to conclusively state that a fault is a cause; thus, most studies
make assumptions or perform anomaly or outlier detection, where only deviating be-
havior may be detected. A majority of studies report successful results using geometric
models [5,60,61,66,70]; however, as we will explain in Section 7.3, there are substantial
implications when using, e.g., regression models, due to the lack of known ground truth
information. In [60], the authors mention that it is difficult to evaluate the performance
due to the lack of knowledge of the number of real anomalies. For example, in [61], the
authors have to assume that 20% of the data are outliers; however, it is difficult to verify
if this assumption is valid. The authors of [67] also refer to the issue, as they had to use
trial-and-error for choosing outlier thresholds. In general, with current data sets, there is no
prior knowledge or understanding of the underlying data, making it difficult to determine
whether an outlier indicates a faulty or optimal value.

A noteworthy study is [6], although not an automatic method, shows that a significant
number of the 135 examined substations in Sweden is performing sub-optimal. Addition-
ally, the authors in [5] also report that a high number of their examined substations is
performing sub-optimal; however, the authors suggest the lack of uniform definition in
DH makes it challenging to define the optimal operation of a substation, making compari-
son difficult. While it may be challenging to quantify an optimal substation, it could be
beneficial to study the data of known well-performing substations, e.g., using exploratory
data analysis, such that it uncovers essential correlations or statistical characteristics. This
information may help approximate the definition of an optimal substation and form a
solid foundation for future fault detection research. Also, both studies are concerned with
Swedish substations, which makes generalizing challenging. To our best knowledge, these
are the only two publications that try to quantify the sub-optimal operation of substations
in a DH system. Nevertheless, this is an important issue for future research, as several ques-
tions remain unanswered. For example, it is valuable to know whether this phenomenon
occurs in different countries and various DH systems.

Several studies show that deep learning methods may work well for FDD. The deep
learning studies for fault detection use either an LSTM [60,67] or an MLP [68]. For example,
the authors in [60] suggest that utilizing an LSTM outperforms several algorithms, such
as LASSO, SVR, and MLP. The work in [67] claims that combining an LSTM with a VAE
outperforms an LSTM combined with an AE as well as an LSTM only. However, in general,
the application of deep learning methods is limited for fault detection in DH. The lack
of training data could be the reason since deep learning methods need an abundance of
training data.

What stands out in Figure 1 is that for fault diagnosis, the most popular methods are:
kNN, RF, and ANN. Multiple studies compare several algorithms, such as in [85,91,94,95].
In [85], the authors suggest that using ERT results in the best performance. The authors
of [91] claim that RF regression had the best performance. In [94], RF also had the best
performance together with CART. Furthermore, the authors take an intriguing approach by
training their models on lab-generated data and transferring the knowledge to real-world
data. While the models did not perform as well, it might be a solution to counteract
the lack of labeled data from real-world scenarios. Consequently, their findings further
support the idea that ensemble tree algorithms are well-suitable for performing FDD. In
contrast to earlier findings, however, the results from [95] suggest that CNN performed
better than RF. It is important to note that caution must be exercised when interpreting the
results from models solely trained on synthetic data, as it is usually easier to achieve high
performance on such data sets. Also, as discussed earlier, while deep learning models are
known for solving complex problems, one typically needs a large set of labeled data, which
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currently does not exist in the DH domain. In general, ensemble learning methods tend to
perform well.

Noteworthy is [88], as the authors were the only ones using a one-class SVM. This
kind of approach solely needs a single class of data to find outliers, which might work well
for fault detection. Also, another interesting study is [96], which uses an AE to generate
useful features. To our knowledge, this is the only study that employs generative ML to
perform feature engineering and improve prediction models.

Overall, most studies in fault diagnosis are comparative studies. This might explain
the sudden increase of variety in ML methods from 2018, as seen in Figure 1. It might
suggest that the large variety of ML methods indicates a lack of knowledge regarding the
best-performing algorithms in DH scenarios and indicates that further work is required to
increase that knowledge. Consequently, these findings may be somewhat limited as most
studies only used synthetic data. More research must be conducted in real-world scenarios
to reinforce the findings.

7.2. Threats

T1—system complexity is one of the significant challenges in DH, as DH systems are highly
heterogeneous, with many ad-hoc solutions introduced over the past decades. Consequently,
space heating and DHW needs heavily depend on the end-user; for example, a hospital may
use heat day and night, while a school building may only use heat during the day. Another
problem is that DHW preparation is not measured separately, causing noise in the data. It is
currently unknown if the current data collection for billing contains enough information to
conduct accurate FDD, i.e., the data constraints might be too strict in DH systems. There is an
imperative need for knowledge of DH data, e.g., the effects of secondary data on accuracy.
Only one study shows the importance of having secondary side data [36], as it significantly
improves model prediction. Furthermore, some studies [5] chose to focus on the largest heat
consumers, which may sound reasonable as they impact the DH system the most; however,
it may be challenging to create a general model as these consumers are usually unique and
highly heterogeneous. On the contrary, a unique solution may not exist.

T2—Absence of unified definitions is another challenge in DH, such as having quantitative
parameters of optimal, sub-optimal, and fault operation. One study raises the issue of
optimality [5] as it significantly impacts conclusions in analysis. Some studies focus on
fault definitions or business innovations [37,38,40], but there is still significant work to be
done, as faults should be further investigated based on, e.g., type or operational impact.

Recommendation 1: Policymakers and industry should make serious attempts to cre-
ate legislation and facilitate standardization of (secondary) data collection and installation
of (monitoring) equipment.

Recommendation 2: Researchers should investigate the effects of secondary data or
additional sensor placement on model prediction performance, to generate knowledge for
standardization in DH (data collection).

T3—Data collection in DH constitutes another significant challenge. There is currently
no clear standard of data acquisition or logging technical interventions and faults for
FDD; resulting in low-quality unlabeled data sets—making intelligent FDD incredibly
difficult. There is an urgent need for improved data collection. Consequently, there are
currently not enough efforts made for preliminary data analysis and proper interpretation
of hidden patterns. This lack of attention will impede the acquisition of a comprehensive
understanding of the phenomena associated with FDD in DH and the development of
more precise ML models, i.e., there is a lack of data-centric approach to the FDD problems.

7.3. Weaknesses

W1—Lack of data-centric approaches. In the past five years, there was a significant
increase in FDD related studies. However, since the topic is still in its infancy, much
knowledge regarding DH data is not present, while it is important to successful ML, e.g.,
data drives model selection; thus, it is essential to understand the (hidden) characteristics
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of DH data. More research should focus on, e.g., DMKD to generate critical knowledge
regarding DH data. Few studies explain their choices regarding their methods or use default
settings. For example, many studies use Euclidean distance in clustering for no apparent
reason, even when the distance metric significantly impacts clustering results. Euclidean
distance works well for two- or three-dimensional data but does not do well on higher
dimensional data, and according to the authors in [98], the Manhattan distance metric (L1
norm) is preferred over Euclidean, i.e., the choice for methods is essential to the success
of intelligent FDD. Furthermore, few studies point out the problems of DH data, e.g., [33].
However, for example, unsupervised anomaly detection has an initial assumption that
anomalies are far less common than normal behavior [25]. Violation of such an assumption
lead to a high false alarm rate. There is some evidence [5,6] which suggests that the initial
assumption may not hold, as a large share of the examined substations is sub-optimal; thus,
the data may already include a large share of anomalous data, i.e., the regression models do
not necessarily predict the correct values for an optimal substation, and it would be difficult
to verify if they do so. While forecasting is helpful for billing and energy planning, as long
as the premise is incorrect, the prediction for FDD is also potentially faulty, even when
passing the statistical validation in training. It is evident that data-centric approaches will
help build more accurate and robust ML models by gaining knowledge on data structures,
distribution, (faulty) behavior, relationships, and features.

Recommendation 3: Improve and increase knowledge on characteristics and prop-
erties of DH data using data-centric approaches, which guides future work in intelligent
FDD, e.g., association analysis studies, dimensional reduction studies, and DMKD studies.

W2—Lack of labeled data. There are serious implications regarding labeling data, as
very little knowledge exists on the faults and their impact. For example, Månsson et al. [37]
investigated the types and occurrences of faults. The study concludes that the most common
faults in customer installations are leakages (33%), customer internal heating system (31%),
control valves (13%), actuators (10%), control system and controller (5%), inferior gaskets
(5%) and heat exchangers (3%). The paper may form a solid basis for labeling; however,
it is not comprehensive and needs further refinements to contain all possible fault labels
and their severity. To the best of our knowledge, there currently is a lack of labeled data
sets in the DH domain, and there is a severe need for known ground truth information.
Additionally, it is important to have a data set that includes many different contextual
aspects. For example, the environmental factor can influence the diagnosis process, as the
outdoor temperature affects the behavior of the system, and therefore affect the signature
of faults. For example, it may be the case, when outdoor temperatures are high, a fault
is less noticeable or has a different signature, than when the outdoor temperature is low.
Similarly, heat consumption can be affected by environmental factors, which can impact
the accuracy of FDD. It is therefore important to include various contextual aspects, to
create a comprehensive and representative data set. Also, including environmental data in
the modeling process can potentially improve the accuracy and robustness of intelligent
FDD approaches.

Recommendation 4: Increasing known ground truth information (optimal, sub-
optimal, faulty), which can be used to train more accurate models, but more importantly,
evaluate the performance.

W3—Simulations and emulations, by inducing faults, may counter the lack of labeled
data. While simulations solely mimic software features in a software environment, emu-
lations use a physical model to mimic both hardware and software features; thus can be
a step closer to reality. However, it is important to exercise caution with simulations and
emulations, as both can oversimplify reality. Additionally, there are two major limitations
to emulation. (1) it is expected that their use leads to the generalization of problems due to
the highly heterogeneous nature of DH, i.e., the models might work well on the synthetic
data from a specific substation but are not capable of generalizing to real-world data [94].
(2) it is very labor intensive to reproduce the entire temporal and spatial dynamic evolution
of a particular fault, e.g., a leakage emerges and progresses and evolves in numerous ways,



Electronics 2023, 12, 1448 27 of 34

i.e., data may not be sufficiently accurate in reflecting reality. Both limitations may lead
to a mismatch, and training on such data will generate useful insights. Simulations may
solve the latter limitation, as it is easier to generate the dynamics of a fault; however, if
not properly defined, the generated data would still be inadequate, thus leading to, e.g.,
generalization difficulties. Nevertheless, for example, generating synthetic data may be
relevant to quantify and prove accuracy gains with secondary side information or addi-
tional sensor placement. It could also provide useful insights to feature importance, e.g.,
through dimensional reduction techniques such as PCA, or patterns, e.g., using DMKD
techniques. This also highlights the importance of data-centric approaches, as much of the
foundational knowledge is currently lacking but essential for effective FDD in DH.

W4—Data imbalance is a common phenomenon in engineering scenarios, as faults
happen less frequently than optimal behavior. Data imbalance affects the decision boundary,
as it will be biased towards the majority class, and predicting the minority class becomes a
problem, i.e., data imbalance reduces the accuracy of the diagnosis model. It is, therefore,
important to be aware of this phenomenon, as metrics such as accuracy scores can be
misleading. We suggest utilizing metrics that provide more insights, such as Precision,
Recall, F1 score, Confusion Matrix, Area Under the ROC Curve, or a combination of metrics.
Furthermore, there are several ways to deal with imbalanced data sets [99], such as utilizing
resampling strategies or cost-sensitive training. Cost-sensitive training penalizes learning
algorithms to increase the cost of classification mistakes of the minority class. Consequently,
logical models and ensemble learning can further improve model prediction on imbalanced
data sets, e.g., using RF or GBDT. As a side effect, logical models have high interpretability,
leading to explainable FDD.

7.4. Opportunities

O1—Generative machine learning algorithms [100], e.g., such as VAE, could be relevant in
data generation. VAE is an unsupervised generative method that learns the underlying data
distribution. VAE transforms the original distribution into a latent distribution (encode)
and transforms it back into the original distribution (decode). Only a single study used the
algorithm [67]. Generative Adviserial Networks (GAN)s can generate realistic synthetic
data. GANs are two neural networks that compete against each other. The generator learns
to generate realistic instances, while the discriminator (adversarial) learns to distinguish
fake from real. To the best of our knowledge, none of the studies have employed GANs for
data generation; however, both techniques might be worth exploring.

Recommendation 5: Experiment and increase knowledge using ML methods for the
generation of realistic synthetic data, such as generative machine learning algorithms, e.g.,
using VAE or GAN.

O2—Hybrid models have the potential to counter, for example, data imbalance and the
issues related to synthetic data. Hybrid models are ML models that train simultaneously
on real-world and simulated data. This approach combines the strengths of both types
of data, allowing for more accurate and robust model predictions. While real-world
data provides a realistic representation of real-world scenarios, simulated data allows for
controlled experimentation and the ability to generate (unavailable) data, such as faulty
data. It can be beneficial to train on both data types, as training on a single type of data
may result in missing important patterns and relationships; however, there are some
limitations, as hybrid models introduce extra complexity, and it can be difficult to obtain
both representative real-world data as well as simulated data.

Recommendation 6: Implementation of hybrid models that combine real-world and
simulated data for FDD in DH. The approach can provide more insights and identify
patterns and relationships that training on one type of data may miss.

O3—Transfer learning [22] may help solve some of the challenges in DH. In general, deep
learning methods are very relevant for FDD, e.g., applications of 2D CNN with time-frequency
input data are successful in other fields [24]; however, these algorithms need an abundance of
labeled data with sufficient information on the health state. As previously discussed, this does
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not exist in the DH domain. Transfer learning—previously known as learning to learn—is an
ML technique where models from a certain task are reused for a model in another novel task.
Consequently, domain adoption [23], a subdomain of transfer learning, may also be effective
for FDD in DH, as it exploits labeled data in one or more related source domains, such that
the model can classify unlabeled data in a target domain. Transfer learning is applicable when
the source and target tasks are similar but have different data distributions. At the same
time, domain adaptation is applicable when the source and target tasks are related but have
different feature representations. Both techniques can reduce the need for labeled instances in
DH, as models can exploit information from a source task.

Recommendation 7: Explore the use of transfer learning and domain adaptation for
FDD in DH. The knowledge from other domains, e.g., building energy management or
industrial systems, can help improve the performance of FDD models in DH. Consequently,
both techniques are useful for reducing the need for labeled data.

O4—Semi-supervised learning also offers an opportunity for FDD in DH. Semi-supervised
learning combines both supervised and unsupervised learning, such that it leverages la-
beled instances to improve performance on unlabeled instances. This approach is useful
when labeled data is scarce, and unlabeled data is abundant, such as in DH. While overall,
the research on semi-supervised is lacking compared to, e.g., supervised learning, it still
offers many benefits, such as reducing the need for labeled instances, improved perfor-
mance, and handling missing, imbalanced, and noise data. Some common techniques
worth exploring might be label propagation, label spreading, pseudo-labeling, self-training,
co-training, multi-view learning, or related algorithms.

Recommendation 8: Investigate and utilize semi-supervised learning for FDD in DH
by combining both labeled and unlabeled data for training FDD models. The technique
can help improve performance by exploiting a large number of unlabeled data.

8. Conclusions

This study set out to review the topic of intelligent fault detection and diagnosis in
district heating from the past twelve years. We have presented a comprehensive overview of
state-of-the-art employed techniques, trends, challenges, and opportunities. Despite recent
advancements in the field, research on intelligent fault detection and diagnosis in district
heating is still in its infancy. Consequently, the lack of open-source high-quality labeled
data severely hinders and slows progress in district heating fault detection and diagnosis
research. The industry would benefit by increasing knowledge of data and should make
serious attempts to standardize data collection for fault detection and diagnosis purposes.
Nevertheless, we anticipate the trend of utilizing machine learning for fault detection and
diagnosis in district heating to continue to advance. As district heating systems become
more digitized, data becomes more accessible, machine learning will become increasingly
prevalent, and district heating has the potential to make a significant contribution to the
energy transition through its ability to provide efficient and sustainable heating solutions.

Future research should consider focusing on both the short and long-term perspectives.
In the short term, researchers should aim to explore techniques to reduce the need for
labeled data, such as:

• Transfer learning.
• Domain adaption.
• Semi-supervised learning.
• Hybrid models.

In the long term, research should direct efforts towards establishing a solid foundation
for intelligent fault detection and diagnosis in district heating, by exploring:

• Data-centric approaches.
• Improving (labeled) data quality.
• Quantifying district heating definitions.
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DH District Heating
CHP Combined Heat and Power
DHW Domestic Hot Water system
FDD Fault Detection and Diagnosis
4GDH 4th generation district heating
5GDH 5th generation district heating
DMKD Data Mining and Knowledge Discovery
AI Artificial Intelligence
ML Machine Learning
HOM Higher Order Mining
EDA Exploratory Data Analysis
GMM Gaussian Mixture Model
KGMM Kernel Gaussian Mixture Model
SVM Support Vector Machines
kNN k-Nearest Neighbor
kM k-Means
kS k-Shape
PAM Partitioning Around Medoids
MIA Mean Index Adequacy
CDI Cluster Dispersion Indicator
SI Silhouette Index
DBI Davies-Bouldin Index
BIC Bayesian Information Criterion
PCC Pearson Correlation Coefficient
CC Conformal Clustering
MST Minimum Spanning Tree
TPOT Tree-based Pipeline Optimization Tool
AHC Agglomerative Hierarchical Clustering
LSTM Long short-Term Memory
ANN Artificial Neural Network
CNN Convolutional Neural Network
DNN Deep Neural Network
GAN Generative Adviserial Networks
MLP Multilayer Perceptron
GBDT Gradient Boosted Decision Tree
BDT Binary Decision Tree
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DT Decision Tree
DTR Decision Tree Regression
CB Contextual Bandit
NB Naive Bayes
RUSBT RUS Boosted Trees
XGBoost Extreme Gradient Boosting
RF Random Forests
IF Isolation Forests
AB Adaptive Boosting
ERT Extremely Random Tree
LDA Linear Discriminant Analysis
PCA Principle Component Analysis
BN Bayesian Network
ARIMA Auto Regressive Integrated Moving Average
LinUCB Linear Upper Confidence Bound
CART Classification and Regression Tree
AE Auto Encoder
VAE Variational Auto Encoder
LR Linear Regression
RR Robust Regression
LOR Logistic Regression
RFR Random Forest Regression
AR auto Regression
LASSO Lasso Regression
RIDGE Ridge Regression
GBR Gradient Boosting Regression
PLS Partial Least Squares Regression
SVR Support Vector Regression
OLS Ordinary Least Squares
COC Continuous Operation Control
NSB Night Setback Control
TCO5 Time Clock Operation (during five workdays)
TCO7 Time Clock Operation (during seven workdays)
HVAC heating, ventilation, and air conditioning
OCR Optical Character Recognition
SC Saliency computation
SHAP Shapely Additive Explanations
EM Expectation Maximization
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