
Citation: Gumiński, M.; Kruszewski,

M.; Zabołotny, B.M.; Zabołotny, W.M.

Beneš Network-Based Efficient Data

Concentrator for Triggerless Data

Acquisition Systems. Electronics 2023,

12, 1437. https://doi.org/10.3390/

electronics12061437

Academic Editor: Alexander

Barkalov

Received: 11 February 2023

Revised: 13 March 2023

Accepted: 15 March 2023

Published: 17 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Beneš Network-Based Efficient Data Concentrator for
Triggerless Data Acquisition Systems
Marek Gumiński 1,* , Michał Kruszewski 1 , Bartosz Marek Zabołotny 2 and Wojciech Marek Zabołotny 1,*

1 Institute of Electronic Systems, Faculty of Electronics and Information Technology,
Warsaw University of Technology, Nowowiejska 15/19, 00-650 Warszawa, Poland

2 Institute of Telecommunications, Faculty of Electronics and Information Technology,
Warsaw University of Technology, Nowowiejska 15/19, 00-650 Warszawa, Poland

* Correspondence: marek.guminski@pw.edu.pl (M.G.); wojciech.zabolotny@pw.edu.pl (W.M.Z.)

Abstract: The concentration of data from multiple links to a single output is an essential task
performed by High-Energy Physics (HEP) Data Acquisition Systems (DAQs). At high and varying
data rates combined with the large width of the concentrator’s output interface, this task is non-trivial.
A high-speed dense packing of data from possibly non-continuous streams with preserving their time
order requires complex and real-time adjustable routing. This paper presents a concentrator based
on the Beneš network, which provides efficient concentration without using a high-frequency clock
internally. It warrants that empty data are eliminated and does not disturb the data time-ordering
if the data rates significantly differ between inputs. The concentrator uses simple data-routing
primitives resulting in low resource consumption. If necessary, the pipeline registers may be added
after each routing stage, shortening the critical path and increasing the maximum acceptable clock
frequency. These features render the design well-suited to FPGA implementation.

Keywords: FPGA; DAQ; data concentration; Beneš network

1. Introduction

Most detectors in high-energy physics (HEP) experiments deliver massive data streams
in multiple channels. Reception of this data and its delivery to the analyzing computers
is the task of the readout chains. In the case of experiments using a trigger, the data
must be processed locally to elaborate the level one (L1) trigger decision. Preparing it for
concentration may be a side effect of this process. The data are zero suppressed—invalid or
empty data words are removed from the stream. Finally, the data are buffered in memory,
which may offer the data width conversion. It may be written with single data words and
read with multiple words in parallel, as required by the DAQ interface.

In the triggerless readout, the situation is different. The readout system does not need
to perform complex local processing of data. Extraction of interesting events is carried out
in further stages of the DAQ (“event builder” and “event filter” [1] or “event selector” [2]).
The responsibility of the readout system is different in this configuration. It should almost
transparently transfer the detector data to DAQ. Therefore, a popular triggerless readout
architecture is where the data streams from detector front-end boards are delivered to
the DAQ computers without modification. Usually, the streams are only multiplexed for
efficient transport via high-speed optical links (e.g., using the GBTX ASIC and GBT-FPGA
core [3]). The reception of those streams and data concentration is performed by FPGA-
based PCIe cards hosted in DAQ entry nodes. The PCI Express blocks in FPGA require
specific data bus width in the AXI interface. Table 1 shows the available AXI data widths
depending on the speed of the link, the width of the PCIe lane and the AXI clock frequency.
For PCIe 8xGen3, it is necessary to work with 256-bits wide data.

Electronics 2023, 12, 1437. https://doi.org/10.3390/electronics12061437 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061437
https://doi.org/10.3390/electronics12061437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5451-6083
https://orcid.org/0000-0002-3638-8516
https://orcid.org/0000-0002-3364-1766
https://orcid.org/0000-0002-6833-4846
https://doi.org/10.3390/electronics12061437
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061437?type=check_update&version=1


Electronics 2023, 12, 1437 2 of 17

Table 1. Width and clock frequency of AXI interface for PCI Express blocks. Results obtained from
various configurations of AMD/Xilinx DMA/Bridge Subsystem for PCIe Express (4.1).

Lane Width
Maximum Link Speed

2.5 GT/s (Gen 1) 5 GT/s (Gen 2) 8 GT/s (Gen 3)

1 64 bits @ 62.5 MHz 64 bits @ 62.5 MHz 64 bits @ 125 MHz
64 bits @ 125 MHz 64 bits @ 125 MHz 64 bits @ 250 MHz
64 bits @ 250 MHz 64 bits @ 250 MHz

2 64 bits @ 62.5 MHz 64 bits @ 125 MHz 64 bits @ 250 MHz
64 bits @ 125 MHz 64 bits @ 250 MHz 128 bits @ 125 MHz
64 bits @ 250 MHz

4 64 bits @ 125 MHz 128 bits @ 125 MHz 128 bits @ 250 MHz
64 bits @ 250 MHz 64 bits @ 250 MHz 256 bits @ 125 MHz

8 128 bits @ 125 MHz 256 bits @ 125 MHz 256 bits @ 250 MHz
64 bits @ 250 MHz 128 bits @ 250 MHz

16 128 bits @ 250 MHz 256 bits @ 250 MHz 512 bits @ 250 MHz

The detector data generated by the particle detection are usually short. For example,
for the STS-XYTER (also known as SMX) [4]), the data are 24 bits long. In the concentrated
stream, the data must be accompanied by metadata describing its origin, resulting in a final
size of 32 bits. Hence, the data concentrator must efficiently pack 32-bit detector data into
256-bit PCIe data.

The problem may be generalized as described in the next section.

1.1. Formulation of the Problem

The system receives the data words from N inputs at frequency fin, and puts them
into the records able to store M words, which are read at fout frequency. The system has
sufficient bandwidth. The following condition is met:

N · fin ≤ M · fout

The intensity of the data stream delivered by the inputs may be different and may vary
in time. Therefore, each piece of input data is associated with the “valid” flag. If the input
is idle in the current clock period or contains data that should not be transferred to DAQ,
the flag is deasserted. Otherwise, it is asserted confirming that the particular input delivers
“valid data”. When the data are concentrated, the inputs with the deasserted “valid” flag
should be skipped, not creating “holes” in the output stream. For event reconstruction
in the triggerless DAQ, the data must be assigned to a particular time period (Of course,
certain tolerance is unavoidable. Therefore, some overlap between consecutive analysis
periods is used). Therefore, an essential requirement is that the concentrator disturbs
the time-ordering of the input data as little as possible. The inputs should be scanned
sequentially using a round-robin approach. A single data word should be copied to the
lowest free location in the output record if valid data are found. After all M positions are
filled, the output record is sent to DAQ and cleared afterward (Even the incomplete (but
properly marked) output record may need to be sent at the end of the analysis period.
However, this mechanism remains outside the scope of this paper.).

In the next chapter, the existing solutions to the concentration problem are presented,
and their disadvantages are discussed.

2. Existing Solutions for Concentrators

Unfortunately, finding published information about the data concentration methods
used in existing FPGA-based data concentrators is difficult. The presented review is based
on the few available publications and presentations, publicly available source code analysis,
or the authors’ experience.



Electronics 2023, 12, 1437 3 of 17

Most existing solutions may be grouped into two categories described in the follow-
ing sections.

2.1. High Speed Polling

The trivial solution is a direct implementation of the procedure described in Section 1.1,
based on browsing all inputs at the frequency fscan = N · fin (see Figure 1).

Input 0

Input 1

Input 2

Input N-1

[...]

Counter

0 to N-1

Filter of
valid data

Width
converting


asynchronous

FIFO1 

w
or

d

M
 w

or
ds

Clock domain N finClock domain fin

fout

Clock domain fout

Figure 1. Structure of the concentrator based on high-speed polling. The central area must work
with clock frequency N · fin, which may be too high for FPGA.

If valid data are found, it is copied to the asymmetric FIFO queue with an input width
of one word and an output width of M words. This warrants that no valid data are skipped,
and the output words are filled with valid data only. The only problem with that solution
is that the necessary fscan may be too high to be acceptable for FIFO in FPGA. Therefore,
this method may be used only in case of low input clock frequency or concentrating data
from a small number of inputs.

This solution is used for concentrating the data from STS-XYTER2 [4] front-end ASICs
transmitted through GBT Links [5] in the readout chain of the STS detector in the CBM
experiment. In that readout, each GBT Link transports data from 14 E-Links working with
a 320 Mb/s rate. The 8b/10b encoded hit data occupy 30 bits in the E-Link. Therefore, the
hit data rate in the individual E-Link is not higher than 320 Mb/s

30 bits ≈ 10.67 MHz. This is a
low frequency. Because 14 × 10.67 MHz < 160 MHz, the data can be safely concentrated
by consecutive scanning all 14 E-Link outputs at 160 MHz.

Another example is the firmware for the CRU board [6] used by the ALICE experiment
at LHC at CERN. It uses a round-robin scanning of the output of FEE links (see [6], Figure 8).
Then, only the valid data are packed into the 256-bit wide FIFO, delivering the data to PCIe.
The authors do not describe at which frequency the inputs are scanned.

2.2. Width Conversion in Input Channels

High-speed scanning may be avoided if width conversion is performed in the input
channels. In this solution, the small FIFOs with one-word wide input and M-words wide
output are placed in each input channel, as shown in Figure 2.



Electronics 2023, 12, 1437 4 of 17

Input 0

[...]

Filter of
valid data

Width
converting


FIFO1 
w

or
d

M
 w

or
ds

Clock domain fin

Input 1 Filter of
valid data

Width
converting


FIFO1 
w

or
d

M
 w

or
ds

Input N-1 Filter of
valid data

Width
converting


FIFO1 
w

or
d

M
 w

or
ds

Asynchronous
FIFO

Clock domain fout
Data-driven multiplexer
with round-robin policy

Figure 2. Structure of the concentrator with width conversion in each input link.

This solution does not require using a very high clock frequency. However, it has other
disadvantages. If the link occupancy significantly differs between inputs, the concentration
may significantly change the time-ordering of data. The data from low-rate links may get
significantly delayed until M data words are collected. This problem may be solved by
introducing the timeout, after which the non-empty FIFO outputs its content even if it
contains less than M words. However, this modification results in inserting “holes” into
the concentrated stream. Another disadvantage is the necessity to use a separate width-
converting FIFO in each input channel. Those FIFOs may have limited depth, enabling
implementation based on distributed RAM, but they may still increase resource consump-
tion. Finally, this solution cannot use a simple counter-driven multiplexer periodically
browsing the data. This solution requires a more complex data-driven multiplexer, which
automatically selects the first input providing the complete data record after the previously
serviced one (i.e., it implements the round-robin policy).

This approach seems to be used in the firmware for the FELIX board in the ATLAS
experiment readout at CERN [7]. Unfortunately, the operation of the data concentrator
in the FELIX firmware is not described in detail in any paper. However, the sources
of that firmware are publicly available, enabling analysis of the concentrator code. The
concentration is carried out in the CRToHostdm module [8] containing the asymmetric
FIFO responsible for concatenating a few words and width conversion. Outputs of FIFOs
from multiple channels are scanned in the CRToHost module [9].

2.3. Need for Another Concentration Method

None of the above methods matches all the requirements described in Section 1.1.
Therefore, a new method is proposed in the next section.

3. Proposed Solution—Concentration with the Direct Routing of Data

It is possible to avoid the disadvantages of the previously described solutions by
directly routing data from inputs to the proper position of the output record. Such a
solution is shown in Figure 3.

The key functionality needed in this method is the capability to write the data from
each individual input to a selected position in the output record. A dedicated controller
calculates the desired location of data from each input. The controller must keep track of
the occupancy of the output data. Additionally, it receives the “valid” flags from the input
words. The controller starts with an output record occupancy equal to zero. If, for example,
it receives valid words in three inputs, it routes them to positions 0, 1, and 2 in the output
record and changes the occupancy to 3. The next valid word will be routed to position 4,
and so on. When the output record is filled, the output strobe is generated, the collected
words are transferred to the output FIFO, and the occupancy is set to 0.



Electronics 2023, 12, 1437 5 of 17

Input 0

Clock domain fin

Input 1

Input N-1

Clock domain fout
Classic multiplexers

[...]
[...]

[...]

O
ut

pu
t r

ec
or

d

Controller

Data valid

flags

Asynchronous
FIFO

MUX

control

M write

strobes Output

strobe

Figure 3. Structure of the concentrator with the direct routing of data. The controller keeps track of
the current output record occupancy and routes each valid input word to the right position in the
output record. When the word is completely filled, the output strobe is generated.

There is, however, a problem if the concentrator receives more valid data than needed
to fill the output record. Those superfluous words must be stored somewhere. For that
purpose, an “auxiliary record” register is introduced. The controller generates a write
strobe for both registers. The output strobe causes the transfer of the output record to
FIFO and, at the same time, of the auxiliary record to the output record. The modified
concentrator is shown in Figure 4.

Input 0

Clock domain fin

Input 1

Input N-1

Clock domain fout
Classic multiplexers

[...]

[...]

[...]

O
ut

pu
t r

ec
or

d

Controller

Data valid

flags

Asynchronous
FIFO

MUX

control

M write

strobes

Output
strobe

Au
xi

lia
ry

 re
co

rd

M write

strobes

Figure 4. Structure of the concentrator with the direct routing of data and added auxiliary record.
The controller keeps track of the current output record occupancy and routes each valid input word
to the right position in the output record. When the word is completely filled, the output strobe is
generated. If the number of valid words exceeds the number of empty positions in the output record,
these extra words are stored in the auxiliary record. When the output strobe is generated, the content
of this record is moved to the output record.



Electronics 2023, 12, 1437 6 of 17

The presented concentrator should work correctly, but its implementation in FPGA is
inefficient. Implementing M multiplexers routing the data words consumes many resources
and generates long critical paths in the FPGA. Therefore, yet another modification is needed.
The multiplexers must be replaced with more efficient blocks for routing the data.

3.1. Concentrator Based on Beneš Network

A similar problem had to be solved in telecommunication networks for routing connec-
tions. Networks enabling arbitrary data permutation between their inputs and outputs are
known as Beneš networks and have been described in [10]. An example of such network
routing eight inputs to eight outputs is shown in Figure 5.

0,0

0,1

0,2

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

3,0

3,1

3,2

3,3

4,0

4,1

4,2

4,30,2

Input 0
Input 1

Input 2
Input 3

Input 4
Input 5

Input 6
Input 7

Output 0
Output 1

Output 2
Output 3

Output 4
Output 5

Output 6
Output 7

Operation of
switches

"bar" (0)

"cross" (1)

Figure 5. The Beneš network able to perform any permutation of eight inputs to eight outputs [11].

The Beneš network uses simple switches with two inputs and two outputs, trans-
mitting the data transparently or swapping them. They may be efficiently implemented
in FPGA. The lengths of all data paths are the same, so this network can be efficiently
pipelined, which results in a short critical path. The general scheme of the concentrator
based on the Beneš network is shown in Figure 6.

Input 0

Clock domain fin

Input 1

Input N-1

Clock domain fout

Beneš network

[...]

O
ut

pu
t r

ec
or

d

Controller

Data valid

flags

Asynchronous
FIFO

Switches
control

M write

strobes

Output
strobe

Au
xi

lia
ry

 re
co

rd

M write

strobes

Figure 6. General structure of the concentrator based on the Beneš network.

The problem with the Beneš network is that its complexity quickly grows when the
number of inputs and outputs increases. For example, the 4 × 4 Beneš network requires
six switches in three layers, the 8 × 8 Beneš network—20 switches in five layers, and the
16 × 16 Beneš network—56 switches in seven layers. Generally, for 2N inputs and outputs,
the network requires 2N−1 · (2 · N − 1) switches in 2 · N − 1 layers.

Additionally, finding the configuration of switches that provides the required data rout-
ing is a complex task [11]. For small networks, it is possible to use a “brute force” approach



Electronics 2023, 12, 1437 7 of 17

to check all possible configurations and create a table with configurations needed for all pos-
sible routings. For an 8 × 8 network, it is necessary to analyze 220 = 1, 048, 576 possibilities
and find the right configuration for 8! = 40, 320 possible permutations. For a 16 × 16
network, the number of possible switch configurations is 256 ≈ 7.2 × 1016, and the number
of possible permutations is 16! ≈ 2.1 × 1013. Therefore, neither analysis of all possible
configurations nor storing the right configuration for each possible permutation is viable.
Therefore, an 8 × 8 network is used as a basis for the concentrator with the structure shown
in Figure 7.

0,0

(0)

0,1

(1)


0,2

(2)

1,0

(4)

1,1

(5)

1,2

(6)

1,3

(7)

2,0

(8)

2,1

(9)

2,2

(10)

2,3

(11)

3,0

(12)

3,1

(13)

3,2

(14)

3,3

(15)

4,0

(16)

4,1

(17)

4,2

(18)

4,3

(19)

8-
w

or
d 

au
xi

lia
ry

 re
co

rd

Concentrator
controller

8 write
strobes

Output strobe

8 
In

pu
ts

8-
w

or
d 

ou
tp

ut
 re

co
rd

8 assembly
strobes

0,3

(3)


Valid

flags


O
ut

pu
t F

IF
O

Figure 7. Data concentrator based on 8 × 8 Beneš network.

A simple C utility was written to investigate the switch settings providing different
data permutations, as shown in Listing 1. It generates a simple file with lines containing
the value of the switch configuration word and the data permutation it generates. This
generated file is then read by the Python utility, which creates a dictionary where the key is
the particular permutation, and the value is the smallest value of the switch configuration
word that provides it.

The routing of data required by the HEP data concentration procedure described in
Section 1.1 does not require all possible permutations. The concentrator always takes all
valid data from the inputs and writes them without changing their order (in modulo M
sense) to the output record or the auxiliary record. The number of possible “valid” flag
combinations is equal to 28 − 1 (the trivial combination with all “valid” flags cleared is ex-
cluded). There are eight possible values of the first free position in the output record
(0 to 7, depending on occupancy). Therefore, the number of required permutations
equals 8 × (28 − 1) = 2040, much smaller than the number of all possible permutations
(8! = 40, 320). Such a vast reduction in the number of needed permutations should allow
significant simplification of the data routing network. Finding the structure of the necessary
simplified network was performed again using the “brute force” approach. The Python
utility iterated over all eight possible occupancies of the output record and all possible
combinations of the input data valid flags. The smallest values of the configuration word
producing the necessary permutation were stored. It appeared that all so-produced con-
figuration values were below 0 × 400. Only the lowest 11 bits controlling the switches
in layers 0 to 2 were changing. The switches in layers 3 to 5 always transmitted the data
without swapping. It enabled removing layers 3 to 5. The simplified network is shown in
Figure 8.



Electronics 2023, 12, 1437 8 of 17

Listing 1. C model of the 8 × 8 Beneš network.

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

typedef uint8_t t_data;

inline void swap(t_data * i1, t_data * i2,
t_data * o1, t_data * o2, uint32_t sw)

{
if(sw) {

*o1 = *i2;
*o2 = *i1;

} else {
*o1 = *i1;
*o2 = *i2;

}
}

int main(int argc, char * argv[]) {
uint32_t isw = 0;
uint8_t sw[5][4];
FILE * fout=fopen(argv[1],"wt" );
for (isw = 0; isw < (1<<20); isw++) {

//Define the layers
t_data l0[8],l1[8],l2[8],l3[8], l4[8], l5[8];
//Initialize l0
for(int i=0; i<8; i++) l0[i]=i;
//1st layer of switches
swap(&l0[0],&l0[1],&l1[0],&l1[4],isw & (1<<0));
swap(&l0[2],&l0[3],&l1[1],&l1[5],isw & (1<<1));

swap(&l0[4],&l0[5],&l1[2],&l1[6],isw & (1<<2));
swap(&l0[6],&l0[7],&l1[3],&l1[7],isw & (1<<3));
//2nd layer of switches
swap(&l1[0],&l1[1],&l2[0],&l2[2],isw & (1<<4));
swap(&l1[2],&l1[3],&l2[1],&l2[3],isw & (1<<5));
swap(&l1[4],&l1[5],&l2[4],&l2[6],isw & (1<<6));
swap(&l1[6],&l1[7],&l2[5],&l2[7],isw & (1<<7));
//3rd layer of switches
swap(&l2[0],&l2[1],&l3[0],&l3[2],isw & (1<<8));
swap(&l2[2],&l2[3],&l3[1],&l3[3],isw & (1<<9));
swap(&l2[4],&l2[5],&l3[4],&l3[6],isw & (1<<10));
swap(&l2[6],&l2[7],&l3[5],&l3[7],isw & (1<<11));
//4th layer of switches
swap(&l3[0],&l3[1],&l4[0],&l4[2],isw & (1<<12));
swap(&l3[2],&l3[3],&l4[4],&l4[6],isw & (1<<13));
swap(&l3[4],&l3[5],&l4[1],&l4[3],isw & (1<<14));
swap(&l3[6],&l3[7],&l4[5],&l4[7],isw & (1<<15));
//5th layer of switches
swap(&l4[0],&l4[1],&l5[0],&l5[1],isw & (1<<16));
swap(&l4[2],&l4[3],&l5[2],&l5[3],isw & (1<<17));
swap(&l4[4],&l4[5],&l5[4],&l5[5],isw & (1<<18));
swap(&l4[6],&l4[7],&l5[6],&l5[7],isw & (1<<19));
fprintf(fout,"%8.8x:%d%d%d%d%d%d%d%d \n " ,isw,

(int)l5[0],(int)l5[1],(int)l5[2],(int)l5[3],
(int)l5[4],(int)l5[5],(int)l5[6],(int)l5[7]);

}
fclose(fout);
return 0;

}

0,0

(0)

0,1

(1)


0,2

(2)

1,0

(4)

1,1

(5)

1,2

(6)

1,3

(7)

2,0

(8)

2,1

(9)

2,2

(10)

2,3

(11)

8-
w

or
d 

au
xi

lia
ry

 re
co

rd

Concentrator
controller

8 write
strobes

Output strobe

8 
In

pu
ts

8-
w

or
d 

ou
tp

ut
 re

co
rd

8 assembly
strobes

0,3

(3)


Valid

flags


O
ut

pu
t F

IF
O

Figure 8. Data concentrator based on a reduced 8 × 8 Beneš network. Not all data permutations
are needed to solve the concentration problem. Only three layers appeared to be sufficient for
that purpose.

Removing the last three layers changed data routing from layer 2 to the output.
Therefore, a new, reduced version of the C utility (see Listing 2) was necessary to find the
correct value of the configuration word for each possible combination of input “valid” flags
and output word occupancy.



Electronics 2023, 12, 1437 9 of 17

Listing 2. C model of the reduced 8 × 8 Beneš network.

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

typedef uint8_t t_data;

inline void swap(t_data * i1, t_data * i2,
t_data * o1, t_data * o2, uint32_t sw)

{
if(sw) {

*o1 = *i2;
*o2 = *i1;

} else {
*o1 = *i1;
*o2 = *i2;

}
}

int main(int argc, char * argv[]) {
uint32_t isw = 0;
FILE * fout=fopen(argv[1],"wt" );
for (isw = 0; isw < (1<<12); isw++) {

//Define the layers
t_data l0[8],l1[8],l2[8],l3[8], l4[8], l5[8];
//Initialize them to "unknown" value: 9
for(int i=0; i<8; i++)

l0[8]=l1[i]=l2[i]=l3[i]=l4[i]=l5[i]=9;
for(int i=0; i<8; i++) l0[i]=i;
//1st layer of switches
swap(&l0[0],&l0[1],&l1[0],&l1[4],isw & (1<<0));
swap(&l0[2],&l0[3],&l1[1],&l1[5],isw & (1<<1));
swap(&l0[4],&l0[5],&l1[2],&l1[6],isw & (1<<2));
swap(&l0[6],&l0[7],&l1[3],&l1[7],isw & (1<<3));
//2nd layer of switches
swap(&l1[0],&l1[1],&l2[0],&l2[2],isw & (1<<4));
swap(&l1[2],&l1[3],&l2[1],&l2[3],isw & (1<<5));
swap(&l1[4],&l1[5],&l2[4],&l2[6],isw & (1<<6));
swap(&l1[6],&l1[7],&l2[5],&l2[7],isw & (1<<7));
//3rd layer of switches
swap(&l2[0],&l2[1],&l3[0],&l3[4],isw & (1<<8));
swap(&l2[2],&l2[3],&l3[2],&l3[6],isw & (1<<9));
swap(&l2[4],&l2[5],&l3[1],&l3[5],isw & (1<<10));
swap(&l2[6],&l2[7],&l3[3],&l3[7],isw & (1<<11));

fprintf(fout,"%8.8x:%d%d%d%d%d%d%d%d \n " ,isw,
(int)l3[0],(int)l3[1],(int)l3[2],(int)l3[3],
(int)l3[4],(int)l3[5],(int)l3[6],(int)l3[7]);

}
fclose(fout);
return 0;

}

3.2. Calculation of the Future Occupancy

The concentrator controller is also responsible for the calculation of the future occu-
pancy of the output record. That value is needed in the next clock period. Therefore, its
calculation is separated from finding the switch configuration. The switch configuration
values may be stored in a BRAM-based look-up table. Adding pipeline registers before
the Beneš network may compensate for the resulting delay. This is not possible in case of
future occupancy. This must be calculated in combinational logic. The implementation
used in the project is shown in Listing 3.

Listing 3. VHDL implementation of the combinational function calculating the future output record
occupancy from the current one and the vector of valid input flags.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;

entity calculate_occupancy is
generic (

NOF_IN_WORDS : integer range 1 to 8 := 6);
port (

cur_occupancy : in integer range 0 to 7;
valid : in std_logic_vector

(NOF_IN_WORDS-1 downto 0);
next_occupancy : out integer range 0 to 7
);

end entity calculate_occupancy;

architecture rtl of calculate_occupancy is
begin -- architecture rtl

calc : process (cur_occupancy, valid) is
variable tmp : integer;

begin -- process calc
tmp := 0;
for i in 0 to NOF_IN_WORDS-1 loop

if valid(i) = ’1’ then
tmp := tmp+1;

end if;
end loop; -- i
tmp := tmp + cur_occupancy;
if tmp > 7 then

tmp := tmp - 8;
end if;
next_occupancy <= tmp;

end process calc;
end architecture rtl;



Electronics 2023, 12, 1437 10 of 17

4. Practical Implementations of the Concentrator

A Beneš-network-based concentrator appeared to be useful in different data acquisition
systems currently developed. The design may be adjusted to particular needs, as shown in
this section.

The solution based on 8 × 8 Beneš networks is needed for the GERI board [12] based
on the Trenz TEC0330 PCIe card [13]. This board, when supplemented with an FMC card
with 8 SFP+ cages (e.g., [14]), enables the concentration of data from 8 GBT Links to the
DMA system [15] connected to the 8xGen 3 PCIe bus. The DMA system uses 256-bit data,
which may be treated as a record containing eight 32-bit words. Thence, the solution
described in the previous section may be directly applied.

If the GERI board is connected to the TFC system [16], one SFP+ cage is used for the
TFC communication. In that case, a smaller 7 × 8 Beneš network is needed. It may be
obtained from an 8 × 8 network. The 7th input should be connected to both inputs in the
last switch in layer 0. This eliminates the need to control that switch. Its control input may
be connected to a constant value. As a result, the number of switches to be controlled is
reduced from 12 to 11. That configuration is shown in Figure 9.

0,0

(0)

0,1

(1)


0,2

(2)

1,0

(3)

1,1

(4)

1,2

(5)

1,3

(6)

2,0

(7)

2,1

(8)

2,2

(9)

2,3

(10)

8-
w

or
d 

au
xi

lia
ry

 re
co

rd

Concentrator
controller

8 write
strobes

Output strobe

7 
In

pu
ts

8-
w

or
d 

ou
tp

ut
 re

co
rd

8 assembly
strobes

0,3

X


Valid

flags


O
ut

pu
t F

IF
O

Figure 9. Data concentrator for seven inputs based on a Beneš network reduced to 7 × 8 size.

Special solutions are needed when it is necessary to concentrate data from more than
eight inputs. Such a situation occurred in designing the firmware for the new CRI2 [17]
readout board for the CBM [18] experiment. Currently planned hardware solutions [19]
need to concentrate data either from 9 or 12 GBT Links delivering data at 160 MHz to a
256-bit wide word at a frequency up to 250 MHz. Of course, using the Beneš network with
a size limited to 8 × 8 requires time multiplexing the input data. However, it does not
require as high a frequency as the high-speed polling method described in Section 2.1. For
these designs, a dedicated data converter has been developed, which receives two input
data sets at frequency f IN , combines them, and then outputs them as three smaller sets
at the frequency fOUT = 3

2 f IN . In the described system, the Beneš network works at a
frequency of 240 MHz, which is below 250 MHz.

In the case of 12 input links, this converter works with an 8 × 8 Beneš network, as
shown in Figure 10.

In the case of nine input links, the converted data consist of three 6-word sets. They
are delivered to the simplified 6 × 8 Beneš network, as shown in Figure 11.



Electronics 2023, 12, 1437 11 of 17

12
-w

or
d 

se
t

8-
w

or
d


se
t

12
-w

or
d 

se
t

0,0

0,1

0,2

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

8-
w

or
d


se
t

8-
w

or
d


se
t

8x
32

-b
it 

au
xi

lia
ry

 re
co

rd

Concentrator
controller

8 write
strobes

Output strobe

H
it 

da
ta

 fr
om

12
 G

BT
 L

in
ks

8x
32

-b
it 

ou
tp

ut
 re

co
rd

8 assembly
strobes

0,2

valid

flags

Figure 10. Data concentrator for 12 inputs. The data width converter receives input sets containing
12 words at 160 MHz, concatenates two such sets, and outputs them as three 8-word sets at 240 MHz.
Further concentration is performed as in Figure 8.

9-
w

or
d 

se
t

6-
w

or
d


se
t

9-
w

or
d 

se
t

0,0

0,1

0,2

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

6-
w

or
d


se
t

6-
w

or
d


se
t

8x
32

-b
it 

au
xi

lia
ry

 re
co

rd

Concentrator
controller

8 write
strobes

Output strobe

H
it 

da
ta

 fr
om

 9
 G

BT
Li

nk
s

8x
32

-b
it 

ou
tp

ut
 re

co
rd

8 assembly
strobesvalid


flags

Figure 11. Data concentrator for nine inputs. The data width converter receives input sets containing
nine words at 160 MHz, concatenates two such sets, and outputs them as three 6-word sets at 240 MHz.
Further concentration is conducted via a Beneš network reduced to 6 × 8 size. The last two inputs
and the fourth switch in layer 0 are removed. Only 11 switches are controlled, like in the case of a
7 × 8 network.

5. Implementation of the Concentrator in FPGA

The VHDL sources of the described concentrator are available in the repository [20].
This article describes the version tagged as “v1.0”.

The type of concentrated data are defined in the concentrator_pkg_p package. It is
set originally to a 32-bit standard logic vector but may be redefined by the user.

The concentrator controller block uses the table with precomputed configuration
words for the Beneš network. It is provided by the concentrator_lut_pkg package gener-
ated automatically by utilities and scripts located in the tools subdirectory.

The top entity is benes_concentrator declared as shown in Listing 4.
The additional data-width adapter needed when the number of inputs must be in-

creased to 9 or 12 is available as entity converter_2to3 declared as shown in Listing 5.
Implementing the concentrator in pure VHDL facilitates its porting to FPGA chips of

different vendors.



Electronics 2023, 12, 1437 12 of 17

Listing 4. Declaration of the top entity of the Beneš network based data concentrator. The
NOF_IN_WORDS parameter defines the number of inputs in the network (6, 7 or 8).

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;
use work.concentrator_pkg_p.all;
use work.concentrator_lut_pkg.all;

entity benes_concentrator is
generic (

NOF_IN_WORDS : integer := 6);
port (

clk_i : in std_logic;
rst_i : in std_logic;

dav_i : in std_logic_vector(NOF_IN_WORDS-1 downto 0);
data_i : in t_conc_data_arr(NOF_IN_WORDS-1 downto 0);

dav_o : out std_logic;
data_o : out t_conc_data_arr(8-1 downto 0)
);

end benes_concentrator;

Listing 5. Declaration of the data width converter needed to concentrate 9 or 12 inputs. The
INSETSIZE parameter defines the number of concentrated inputs. It must be 3/2 times bigger than
the number of inputs of the connected Beneš network.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;
use work.concentrator_pkg_p.all;

entity converter_2to3 is

generic (
INSETSIZE : integer := 9);

port (
set_i : in t_conc_data_arr(INSETSIZE-1 downto 0);
dav_i : in std_logic_vector(INSETSIZE-1 downto 0);
in_clk_i : in std_logic;
set_o : out t_conc_data_arr((INSETSIZE*2/3)-1 downto 0) := (others => (others => ’0’ ));
dav_o : out std_logic_vector((INSETSIZE*2/3)-1 downto 0) := (others => ’0’ );
out_clk_i : in std_logic;
rst_p : in std_logic
);

end entity converter_2to3;

6. Tests and Results

All five concentrator variants (with 6 to 9 or 12 inputs) have been tested in simulations.
The input data were generated as 32-bit words containing consecutive numbers starting
from 0 × 100. The user could set the probability that the data word is delivered to the
individual input. The tests were performed for various values of probability: very low
(0.01), low (0.1), medium (0.5), high (0.9), and very high (1.0). For all tested values of the
probability, all five configurations of the concentrator worked correctly. All data delivered
to the inputs were transmitted exactly once, and no invalid data were inserted into the



Electronics 2023, 12, 1437 13 of 17

output records. The waveforms from a simulation of a 7-input concentrator at probability
0.5 is shown in Figure 12.

The most complex configuration with 12 inputs has also been verified in hardware.
The implementation was performed in two boards:

• KCU105 [21] AMD/Xilinx board, equipped with Kintex Ultrascale XCKU040-
2FFVA1156E FPGA;

• TEC0330 [13] board from Trenz Electronic equipped with Xilinx Virtex-7 XC7VX330T-
2FFG1157C FPGA.

For testing in hardware, a special testbench has been prepared with the structure
shown in Figure 13. The input data for the concentrator are written via PCIe to the FIFO
with asymmetric port width (For 12 32-bit wide inputs, the necessary width of FIFO is
384 bits for data and 12 for valid flags, resulting in 396 bits. The Xilinx FIFO generator does
not support that width. Therefore, a FIFO with 512-bit wide output was used. However,
the minimal input width for such a FIFO is 64 bits. Therefore, the input value for that FIFO
is concatenated from two PCIe-accessible registers. Writing one of them activates the FIFO
write strobe.) Similarly, the output from the concentrator is written to the second FIFO with
256-bit wide input and 32-bit wide output connected to another PCIe-accessible register.
Additional control and status registers support resetting the FIFOs and the concentrator,
starting the data transfer, and reading the status of both FIFOs.

The design was successfully compiled for both selected platforms. Timing closure was
obtained for 160 MHz and 240 MHz frequencies. The resulting resource consumption is
shown in Table 2.

The FPGA configured with the testbench FIFO is controlled with the uio_pci_generic
driver and a simple Python script. The script resets the FIFOs and the concentrator. Then, it
prepares the input data sets and writes them to the first FIFO. Afterward, it starts the data
transfer. Finally, it reads the concentrated data from the second FIFO. For automated tests,
the input data sets are prepared similarly to the simulations. The data words containing
consecutive values were written to the consecutive inputs. With the probability defined by
the user, each input could be skipped.

The tests were repeated multiple times with different probabilities of skipping the
input and a different number of input data sets (of course, always smaller than the capacity
of the input FIFO). In all tests, the concentrated data were correctly delivered to the output
FIFO without losses or duplications.

Table 2. Resource consumption of the 12-input data concentrator together with the testbench for
chosen hardware platforms. Absolute and percentage (in parenthesis) consumption is given. The
design was synthesized in the version where no BRAM was used for the controller. Separate values
for the testbench, data width converter, and concentrator itself are given. That version uses the
biggest concentrator based on the 8 × 8 Beneš network. For all other described configurations, the
resource utilization will be lower.

KCU105 TEC0330

LUTs Flip Flops Block RAMs LUTs Flip Flops Block RAMs

Available 242,400 484,800 600 204,000 408,000 750
Whole testbench 7685 (3.17%) 10,641 (2.19%) 36 (6.00%) 10,406 (5.1%) 12,339 (3.02%) 36 (4.80%)

Data width converter 745 (0.31%) 1459 (0.30%) 0 (0.0%) 742 (0.36%) 1459 (0.36%) 0 (0.0%)
Data concentrator 1038 (0.43%) 1566 (0.32%) 0 (0.0%) 1032 (0.51%) 1566 (0.38%) 0 (0.0%)



Electronics 2023, 12, 1437 14 of 17

Figure 12. Results of simulation of the concentrator with seven inputs and probability of data
presence set to 0.5.



Electronics 2023, 12, 1437 15 of 17

Host

PCIe
AXI-PCIe

Bridge

AXI slave

registers

Input FIFO

64-bit input


512-bit output

Beneš network

concentrator

Output FIFO

256-bit input

32-bit output

256-bit
data

AXI-Lite

Data source

Control

[...]

12 channels

(32-bit data,

1-bit valid

flag)

Writing the
test data

Reading the
concentrated data

Figure 13. Testbench for testing the concentrator in the hardware.

7. Discussion

The proposed concentration method eliminates the disadvantages of the previously
used solutions:

• The high-frequency polling (HFP) method described in Section 2.1 for M inputs
requires a local clock with frequency M times bigger than the input clock.
The proposed method for M ≤ 8 does not require using a higher-speed local clock.
For a higher number of inputs, a certain increase of local clock frequency is needed
(see the 9 and 12 input versions described in Section 4). However, the multiplication
factor is much lower than in the HFP-based solution.

• The method based on width conversion in the input channels (WCI) described in
Section 2.2 for M inputs requires M width converting (asymmetric) FIFOs. It also
needs a complex multiplexer that automatically finds the next valid data according to
a round-robin policy. Additionally, this method may significantly delay the data from
low-traffic inputs versus the data from high-traffic inputs, which may impair further
data analysis.
The proposed method does not use width-converting FIFOs. It also warrants that the
data delivered in each input channel are written to the output or auxiliary record in the
next clock cycle. In both methods, the prolonged lack of input data before the whole
output record is filled may delay sending the concentrated data. A timeout mechanism
is needed to prevent this. However, in the WCI method, incomplete records may be
sent from all input channels, while in the proposed method, only one incomplete
record will be generated;

• The method based on the direct routing of data via multiplexers (DRMX) described
at the beginning of Section 3 is functionally equivalent to the proposed one. The
differences are related to the implementation in the FPGA. For M inputs, the DRMX
method requires M independent multiplexers. Even though modern FPGAs are
equipped with dedicated multiplexer blocks, connecting all input channels to all
multiplexers uses many routing resources. This may result in suboptimal routing and
an increase in critical path latency.
In the proposed method, each input channel is connected to the single input of one
Beneš network switch. (For 9 or 12 inputs, this applies to each output from the width
converter.) These switches are very simple (see Figure 5) and may include pipeline
registers. Thence, routing these data in the FPGA may use few resources, and the
latency of related critical paths is low.

The base of the proposed method is a well-known Beneš network technology [10].
However, it is used in a new application and optimized for its specific needs. The observa-



Electronics 2023, 12, 1437 16 of 17

tion that the problem being solved requires only a subset of possible permutations enabled
optimization of the network structure. The precalculation of the switch settings needed
for each combination of “valid” flags and output record occupancy resulted in an efficient
implementation of the concentrator controller.

8. Conclusions

This paper presented a new approach for high-speed concentrating of low-width data
received from detectors’ front-end electronics to high-width records transmitted via the
PCIe interface to the DAQ computer. In comparison to the previously used concentration
methods, the presented method gives the following benefits:

• It does not require a high-speed clock to scan the data to be concentrated;
• It uses low-complexity routing of data inside FPGA;
• Pipeline registers may be added after selected (or even all) routing stages;
• The concentrated data are delivered to the output in the original order (ordering the

data in each concentrated stream is preserved, and multiplexing of streams is based
on a round-robin approach);

• Even the data from low-traffic inputs are quickly delivered to the output record.

A significant benefit of the proposed solution is its open-source character. It is available
in a public repository [20] under a permissive dual GPL/BSD license.

Future work may be focused on investigating possibilities of efficient concentration of
data to the output record with a capacity of 16 words. Such a solution may be needed for
new PCIe versions requiring a 512-bit-wide data bus in FPGA.

Author Contributions: Conceptualization, W.M.Z. and B.M.Z.; software, W.M.Z. and M.G.; valida-
tion M.G.; investigation, M.K.; writing—original draft preparation, W.M.Z.; writing—review and edit-
ing, all authors; supervision, W.M.Z.; specific technical contribution of the authors: general concept of
the solution and software simulations, W.M.Z.; Concept of using the Beneš network for data routing in
the concentrator, B.M.Z.; Implementation in HDL, simulations, and testing in hardware, M.G.; review
of previous art, M.K.; the percentage contribution of the authors is: M.G.—40%, W.M.Z.—35%,
M.K.—10% and B.M.Z.—15%. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially supported by the statutory funds of the Institute of Electronic
Systems. This project has also received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant No. 871072.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Colombo, T.; Amihalachioaei, A.; Arnaud, K.; Alessio, F.; Brarda, L.; Cachemiche, J.P.; Cámpora, D.; Cap, S.; Cardoso, L.;

Cindolo, F.; et al. The LHCb Online system in 2020: Trigger-free read-out with (almost exclusively) off-the-shelf hardware. J.
Phys. Conf. Ser. 2018, 1085, 032041. [CrossRef]

2. Cuveland, J.d.; Lindenstruth, V.; the CBM Collaboration. A First-level Event Selector for the CBM Experiment at FAIR. J. Phys.
Conf. Ser. 2011, 331, 022006. [CrossRef]

3. Marin, M.B.; Baron, S.; Feger, S.; Leitao, P.; Lupu, E.; Soos, C.; Vichoudis, P.; Wyllie, K. The GBT-FPGA core: Features and
challenges. J. Instrum. 2015, 10, C03021. [CrossRef]

4. Kasinski, K.; Szczygiel, R.; Zabolotny, W.; Lehnert, J.; Schmidt, C.; Müller, W. A protocol for hit and control synchronous transfer
for the front-end electronics at the CBM experiment. Nucl. Instru. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc.
Equip. 2016, 835, 66–73. [CrossRef]

5. Lehnert, J.; Byszuk, A.; Emschermann, D.; Kasinski, K.; Müller, W.; Schmidt, C.; Szczygiel, R.; Zabolotny, W. GBT based readout
in the CBM experiment. J. Instrum. 2017, 12, C02061. [CrossRef]

6. Bourrion, O.; Bouvier, J.; Costa, F.; Dávid, E.; Imrek, J.; Nguyen, T.; Mukherjee, S. Versatile firmware for the Common Readout
Unit (CRU) of the ALICE experiment at the LHC. J. Instrum. 2021, 16, P05019. [CrossRef]

7. Wu, W. FELIX: The New Detector Interface for the ATLAS Experiment. IEEE Trans. Nucl. Sci. 2019, 66, 986–992. [CrossRef]
8. FELIX Firmware Sources—CRToHostdm Module. Available online: https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/

phase2/master/sources/CRToHost/CRToHostdm.vhd (accessed on 25 January 2023).

http://doi.org/10.1088/1742-6596/1085/3/032041
http://dx.doi.org/10.1088/1742-6596/331/2/022006
http://dx.doi.org/10.1088/1748-0221/10/03/C03021
http://dx.doi.org/10.1016/j.nima.2016.08.005
http://dx.doi.org/10.1088/1748-0221/12/02/C02061
http://dx.doi.org/10.1088/1748-0221/16/05/P05019
http://dx.doi.org/10.1109/TNS.2019.2913617
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRToHost/CRToHostdm.vhd
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRToHost/CRToHostdm.vhd
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRToHost/CRToHostdm.vhd
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRToHost/CRToHostdm.vhd


Electronics 2023, 12, 1437 17 of 17

9. FELIX Firmware Sources—CRToHost Module. Available online: https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/
phase2/master/sources/CRToHost/CRToHost.vhd (accessed on 25 January 2023).

10. Mathematical Theory of Connecting Networks and Telephone Traffic (Mathematics in Science and Engineering; v. 17); Academic Press:
New York, NY, USA; London, UK, 1965.

11. Nikolaidis, D.; Groumas, P.; Kouloumentas, C.; Avramopoulos, H. Novel Benes Network Routing Algorithm and Hardware
Implementation. Technologies 2022, 10, 16. [CrossRef]

12. Dementev, D.; Guminski, M.; Kovalev, I.; Kruszewski, M.; Kudryashov, I.; Kurganov, A.; Miedzik, P.; Murin, Y.; Pozniak, K.;
Schmidt, C.J.; et al. Fast Data-Driven Readout System for the Wide Aperture Silicon Tracking System of the BM@N Experiment.
Phys. Part. Nucl. 2021, 52, 830–834. [CrossRef]

13. TEC0330—PCIe FMC Carrier with Xilinx Virtex-7 FPGA. Available online: https://shop.trenz-electronic.de/en/Products/Trenz-
Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/ (accessed on 6 January 2023).

14. FMC—Octal SFP/SFP+. Available online: https://www.fastertechnology.com/store/fmc-modules/fm-s18.html (accessed on
6 January 2023).

15. Zabołotny, W.M. Versatile DMA Engine for High-Energy Physics Data Acquisition Implemented with High-Level Synthesis.
Electronics 2023, 12, 883. [CrossRef]

16. Sidorenko, V.; Fröhlich, I.; Müller, W.; Emschermann, D.; Bähr, S.; Sturm, C.; Becker, J. Prototype design of a timing and fast
control system in the CBM experiment. J. Instrum. 2022, 17, C05008. [CrossRef]

17. The Readout System of the CBM Experiment. Available online: https://indico.phy.ornl.gov/event/112/contributions/566/
attachments/492/1342/20211208_169_sro9_cbm_daq_v02.pdf (accessed on 25 January 2023).

18. Compressed Baryonic Matter Experiment at FAIR. Available online: https://www.cbm.gsi.de/ (accessed on 31 January 2023).
19. Zabolotny, W.; Guminski, M.; Kruszewski, M.; Miedzik, P.; Pozniak, K.; Romaniuk, R. FPGA-related development for CBM DAQ.

In CBM Progress Report 2022; Senger, P., Friese, V., Eds.; GSI Helmholtzzentrum fuer Schwerionenforschung: Darmstadt, Germany,
2022; p. 144. [CrossRef]

20. Beneš-Network-Based Concentrator for Triggerless DAQ Systems—Git Repository. Available online: https://gitlab.com/
WZabISE/concentrator (accessed on 31 January 2023).

21. Xilinx Kintex UltraScale FPGA KCU105 Evaluation Kit. Available online: https://www.xilinx.com/products/boards-and-kits/
kcu105.html (accessed on 6 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRToHost/CRToHost.vhd
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRToHost/CRToHost.vhd
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRToHost/CRToHost.vhd
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRToHost/CRToHost.vhd
http://dx.doi.org/10.3390/technologies10010016
http://dx.doi.org/10.1134/S1063779621040213
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/
https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/
https://www.fastertechnology.com/store/fmc-modules/fm-s18.html
https://www.fastertechnology.com/store/fmc-modules/fm-s18.html
http://dx.doi.org/10.3390/electronics12040883
http://dx.doi.org/10.1088/1748-0221/17/05/C05008
https://indico.phy.ornl.gov/event/112/contributions/566/attachments/492/1342/20211208_169_sro9_cbm_daq_v02.pdf
https://indico.phy.ornl.gov/event/112/contributions/566/attachments/492/1342/20211208_169_sro9_cbm_daq_v02.pdf
https://indico.phy.ornl.gov/event/112/contributions/566/attachments/492/1342/20211208_169_sro9_cbm_daq_v02.pdf
https://indico.phy.ornl.gov/event/112/contributions/566/attachments/492/1342/20211208_169_sro9_cbm_daq_v02.pdf
https://www.cbm.gsi.de/
https://www.cbm.gsi.de/
http://dx.doi.org//10.15120/GSI-2023-00384
https://gitlab.com/WZabISE/concentrator
https://gitlab.com/WZabISE/concentrator
https://gitlab.com/WZabISE/concentrator
https://gitlab.com/WZabISE/concentrator
https://www.xilinx.com/products/boards-and-kits/kcu105.html
https://www.xilinx.com/products/boards-and-kits/kcu105.html
https://www.xilinx.com/products/boards-and-kits/kcu105.html
https://www.xilinx.com/products/boards-and-kits/kcu105.html

	Introduction
	Formulation of the Problem

	Existing Solutions for Concentrators
	High Speed Polling
	Width Conversion in Input Channels
	Need for Another Concentration Method

	Proposed Solution—Concentration with the Direct Routing of Data
	Concentrator Based on Beneš Network
	Calculation of the Future Occupancy

	Practical Implementations of the Concentrator
	Implementation of the Concentrator in FPGA
	Tests and Results
	Discussion
	Conclusions
	References

