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Abstract: Orphan genes (OGs) may evolve from noncoding sequences or be derived from older
coding material. Some shares of OGs are present in all sequenced genomes, participating in the
biochemical and physiological pathways of many species, while many of them may be associated with
the response to environmental stresses and species-specific traits or regulatory patterns. However,
identifying OGs is a laborious and time-consuming task. This paper presents an automated predictor,
XGBoost-A2OGs (identification of OGs for angiosperm based on XGBoost), used to identify OGs
for seven angiosperm species based on hybrid features and XGBoost. The precision and accuracy
of the proposed model based on fivefold cross-validation and independent testing reached 0.90
and 0.91, respectively, outperforming other classifiers in cross-species validation via other models,
namely, Random Forest, AdaBoost, GBDT, and SVM. Furthermore, by analyzing and subdividing the
hybrid features into five sets, it was proven that different hybrid feature sets influenced the prediction
performance of OGs involving eudicot and monocot groups. Finally, testing of small-scale empirical
datasets of each species separately based on optimal hybrid features revealed that the proposed
model performed better for eudicot groups than for monocot groups.

Keywords: orphan genes (OGs); hybrid features; machine learning; angiosperm

1. Introduction

Monocotyledonous and eudicotyledonous plants (monocots and eudicots) have mor-
phological differences in the number and arrangement of their embryonic leaves. These
are typically parallel in monocots and reticulate in eudicots; besides, monocots have a
sheathing leaf base encircling the stem. Monocots diverged from their eudicot relatives
in angiosperm evolution derived from the whole genome duplication (WGD), which con-
tributed to increased diversification, environmental adaptation, and genomic novelty [1].
In the evolutionary process, orphan genes (OGs) can arise in a lineage and are preva-
lently expressed in many organisms [2]. In particular, taxonomically restricted OGs are
widely distributed in angiosperm species, including eudicot and monocot groups, such
as Arabidopsis thaliana, Populus trichocarpa, Citrus sinensis, Triticum aestivum, Oryza sativa,
cowpea, Camellia sinensis, and Saccharum spontaneum [3–10]. Numerous studies of OGs have
identified general trends in the sequence features of OGs across different species, including
gene length, GC content, and introns, which are also vital for environmental adaptation,
including biotic and abiotic stress [11–13]. Specifically, the OG Qua-Quine Starch (QQS)
in Arabidopsis thaliana is known to regulate the ratio of protein and starch carbon. Being
transferred and expressed in other species, QQS has been reported to change the metabolic
process by regulating the allocation of carbon and nitrogen in proteins and carbohydrates
and affecting the compounds in seeds and leaves, consequently improving crop yields [14].
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Previous studies also revealed that OGs play a vital role in response to drought stress in
cowpea and Fusarium resistance in Triticum aestivum [6,7].

OGs have usually been applied through BLAST (Basic Local Alignment Search Tool)
sequence alignment, involving genome and transcriptome sequences for all analysis pro-
cesses, including BLASTP, BLASTN, TBLASTX, and so on [15]. However, this method is
time-consuming and requires considerable server-driven resources to identify OGs. Alter-
natively, OGs can be distinguished from nonorphan genes (NOGs), e.g., protein-coding
genes, by more significant differences in gene length, exon number, GC content, and ex-
pression level [11]. Their analysis and further classification can be facilitated via machine
learning-based methods, which have already been successfully applied to classifying bio-
logical datasets and solving various discrimination problems. Thus, such ensemble learning
methods as Gradient Boosting Decision Tree (GBDT), Random Forest, and Adaboost have
been used for biological prediction based on genome datasets. In particular, Zhu et al. used
GBDT to classify tissue and cell types in cancer samples using a gene expression dataset,
which performed similarly to other machine learning methods [16]. In contrast, the Extreme
Gradient Boost (XGBoost) method adopted by Chen and Guestrin [17] outperformed nu-
merous machine learning methods and found wide applications in data mining, regression,
and classification domains. In addition, Gao et al. have used an effective model named
SMOTE-ENN-XGBoost to predict the OGs of A. thaliana [18]. However, to the best of the
authors’ knowledge, it has yet to be carried out in the bioinformatic field of predicting OGs
of different types of plant species.

In this study, OGs were measured by taking into account sequence features, which
share some characteristics of other angiosperm species (shorter sequence length, fewer
exon numbers, and lower GC content), while having fewer transcript support and lower
expression than NOGs [12]. Then, these protein features were extracted, and the XGBoost-
A2OG model was constructed and applied to the prediction of OGs in angiosperm species.

2. Related Works

Recently, machine learning methods have received considerable interest in the identifi-
cation of OGs fields, which are an important source of genetics and contribute to evolu-
tionary innovations. These methods include the Decision tree (DT) [19], Neural network
(NN) [19], Convolutional Neural Network (CNN) with transformer [20], and ensemble
learning method [20]. Besides, many researchers have been conducted to compare dif-
ferent machine learning algorithms or combined with other methods to accelerate the
performance of identification of OGs.

Gao et al. proposed a novel ensemble method to predict the OGs of A. thaliana
in bioinformatics studies. Then another deep learning method, CNN with transformer
technique was successfully applied to identifying OGs in moso bamboo which used a
convolutional neural network in combination with a transform neural network in protein
sequences [19]. Their proposed approach provides better performance in a specific species.

In addition, decision trees and neural networks were employed to improve the accurate
discovery of OGs by Casola et al. relying on basic sequence features obtained from DNA
and protein sequences in three angiosperm families. The experimental results showed that
both DT and NN classifiers achieve high levels of accuracy and recall in identifying OGs.

Recently, many studies have confirmed that OGs generated de novo in a species
may be more prevalent than gene duplication and be one of the main ways of orphan
generation [21–25]. Some researchers have found that in the newly evolved OGs in Ara-
bidopsis, protein length is usually shorter, mainly due to the evolution of the orphan gene
having fewer exons in the process, while in some species, the exon length is significantly
shorter [26,27].

However, these researchers haven’t focused on different families of angiosperm plants.
To find a general method to identify a large number of plants of OGs based on a rapid
accumulation of genomic data, we have analyzed some features regarding the genome and
protein sequences that may affect the results in the classification process.
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3. Materials and Methods
3.1. The Framework of the XGBoost-A2OG Model

The workflow used in this study and depicted in Figure 1 comprised the following
five parts: data selection, data pre-processing, data modelling, model development, and
model interpretation.
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Figure 1. Workflow of the model framework.

3.2. Data Collection

This study collected protein sequences and gene annotation datasets for 136 plant
species from Phytozome [28]. Non-redundant protein sequences (NR) were obtained from
the NCBI database [29] and Ensemble Plants [30]. Next, BLASTp was used to identify
OG based on a previous study [28] to search for homologs of all 401,834 gene annotations
in seven plants (Arabidopsis thaliana, Populus trichocarpa, Citrus sinensis, Camellia sinensis
Sorghum bicolour, Oryza sativa, Zea mays) (Figure 2) of the other 94 species released in
Phytozome V12.1 with an E-value cutoff of 1 × 10−3. Noteworthy is that the E-value or
expectation value is a more inclusive value than probability, defining the number of times
the query sequence is expected to match with the database sequences by random chance.
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Figure 2. The phylogenetic tree of Monocotyledonous and eudicotyledonous plants.

The obtained 9022 OGs and 392,812 NOGs were identified with label 1 and label 0,
respectively, to thoroughly train the ensemble learning model. All of them were combined
to form the five plant species’ OG datasets. Then, we extracted the characteristics of gene
structure, cDNA sequence, and protein-coding genes of all five species from Phytozome
and Ensemble plants, forming databases containing high annotation of plant genomes.

3.3. Ensemble Algorithm

XGBoost (Extreme Gradient Boost) is an ensemble learning technique for regression
and classification problems based on the boosting algorithm [17]. The motivation is to
classify data using the best hyperplane representing the most extensive separation between
two classes. Unlike the traditional integrated decision tree algorithm, XGBoost adds a
regular term to the loss function, which can control the complexity of the model and
prevent the model from overfitting. The objective function is given to be optimized by the
following formula:

(1) Taylor’s formula to approximate the original goal.

obj(θ) = ∑n
i=1 l(yi,yi,) (1)

(2) Taylor expansion:

obj(t) =
n

∑
i=1

l(yi, ŷi

t−1

) + gi ft(xi) +
1
2

hi f 2
t (xi)] + Ω( ft) + constant · · · (2)

(3) Among them, gi, hi are expressed as:{
gi = ∂

ŷ
(t−1) l(yi, ŷ(t−1)),

hi = ∂2
ŷ
(t−1) l(yi, ŷ(t−1)).

}
(3)
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(4) The formula of decision tree complexity calculation:

Ω( f ) = γT +
1
2

λ
T

∑
j=1

w2
j (4)

(5) T is the number of leaf nodes, and w is the leaf node score. Substituting (2)–(4) into
(1) the objective function:

obj(t) =
T

∑
j=1

[Gjwj +
1
2
(Hj + λ)w2

j ] + γT (5)

(6) Among, Iij = {i|q(xi = j}, which represents the sample set belonging to the j-th
leaf node.

Gj = ∑i∈Ij
gi, Hj = ∑i∈Ij

hi (6)

(7) To minimize the objective function, set the derivative being 0 and find the optimal
prediction score of each leaf node:

w∗j = −
Gj

Hj + λ
(7)

(8) Substitute the objective function again to get its minimum value:

obj∗ = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT (8)

(9) Use obj* to find the tree with the best structure and add it to the model and apply
the greedy algorithm to find the optimal tree structure. Each time when trying to add a
split to an existing leaf, the Gain is calculated as follows:

Gain(Φ) =
1
2
[

( ∑
i⊆IL

gi)
2

∑
i⊆IL

hi + λ
+

( ∑
i⊆IR

gi)
2

∑
i⊆IR

hi + λ
−

( ∑
i⊆I

gi)
2

∑
i⊆I

hi + λ
]− γ (9)

When the XGBoost model was used in the experiment, the following parameters
were adjusted to make the model perform its best performance. For example, one of the
most critical parameters in this and other tree-based ensemble algorithms, such as GBDT,
Random Forest (RF), and AdaBoost, is “learning_rate”, which dramatically affects the
model performance. Another parameter is “n_estimators”, which is the number of iterations
in training: too small or too large parameters will lead to underfitting or overfitting,
respectively. The third critical parameter is “max_depth”, which is the maximum depth of
the tree. Its higher values make the tree model more complex and improve its fitting ability,
but at the same time, it increases the risk of overfitting.

In contrast to XGBoost, the GBDT is a radial basis function kernel that adopts an
automatic gamma value (which is the inner product coefficient in the polynomial) and soft
margin parameter C = 1, which controls the trade-off between the slack variable penalty
and the margin size. Random Forest (RF) is based on trees and is characterized by the
square root of the number of features. In AdaBoost, the most critical parameters are
“base_estimator”, “n_estimators”, and “learning_rate”.

3.4. Data Preparation and Feature Selection Settings

Data pre-processing is the base step before mining data, including cleanup, integration,
and transformation, as well as data discretization, missing value, and outlier processing.
The first pre-processing stage focuses on detecting incomplete, accurate, consistent, and
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corrupt data and then modifying or deleting these false data with some techniques. Differ-
ent datasets have various characteristics in actual research, so there are different ways to
predict the data.

In this paper, we divide into two parts feature selection, one is the filter-based feature
selection. This algorithm adopts some principles involving information, consistency, de-
pendency, and distance for measuring the feature characteristics, which are generalized
for various classifiers based on the independent features of the machine learning algo-
rithm [31]. For example, a variation filter is to remove the features with small difference
value and retain the features with large variance value, because the variance of each feature
determines the different degree of the feature in a sample. When a feature in the data
set is exposed to Bernoulli distribution (binary classification), it can be used the formula
as follow:

σ = p(1 − p) (10)

The classic Chi-square(Chi2) filter method is a statistical test for computing the cor-
relation from two types of categorical data. Considering the inconsistency between the
observed value and the expected value of the sampling frequency, such as the independent
variable equal to i and the dependent variable equal to j, the statistic is constructed, Chi2
tests use the following formula to calculate the test statistic:

κ2 =
(A− E)2

E
(11)

The other part is manual feature selection. In this section, we set three main experi-
ments to evaluate the classifiers to validate the performance of classifying the OGs from
various feature datasets with the proposed model.

Firstly, two sets of experiments were organized based on nine gene pair feature datasets
involving GC, GC%, protein length, molecular weight (Mw(Da)), isoelectric point value
(pI), exon number, average exon length, intron number, average intron length, gene length,
and the output value as an assessment criterion, namely, AGI, for detecting the conditional
relatedness between a pair of genes. For model training, the datasets were divided into
two sections containing training and testing parts, and the target labels of AGI values were
marked as 1 s and 0 s for the two types of gene pairs. The total datasets were divided
into training, validating and testing processes using 5-fold cross-validation. The training
dataset was used to develop the aforementioned statistical criteria for selected models. The
testing dataset was applied to assess the performance of these models with the default
parameters without tuning.

Secondly, to explore the importance of genomic and cDNA sequence features after
selecting the optimal models, we used a feature selection method by removing one feature
from “set_all” of features each time with no redundancy, such as set1 of feature data with
no protein length, set2 with no protein of Mw(Da), set3 with no protein of pI, set4 with no
exon number, and set5 with no GC%.

Finally, to validate this model for predicting the OGs of each plant species with specific
feature sets, we selected seven testing datasets matched with seven plants (Arabidopsis
thaliana, Populus trichocarpa, Sorghum bicolour, Oryza sativa, Zea mays, Citrus sinensis, and
Camellia sinensis).

3.5. Validation Strategies and Evaluation Metrics

The confusion matrix is a matrix table (shown in Table 1) that is used to judge the
validation of classification. The results of the prediction model are analyzed using four
basic indicators: true positive (TP), true negative (TN), false positive (FP), and false
negative (FN).
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Table 1. Binary confusion matrix.

Real Positive Real Negative

Predict positive TP FP
Predict negative FN TN

We performed an initial statistical analysis to evaluate the prediction performance for
binary classes and grasp the critical features. As the performance measures, stratified five-
fold cross-validation was used for obtaining classification accuracy; however, accuracy was
found to be an inappropriate evaluation metric for class-imbalanced datasets. Alternatively,
precision, recall, F1-Score, and AUC (area under the ROC curve) parameters were used
to evaluate the proposed method’s feasibility, as in [32]. The AUC is the value of the area
under the ROC curve (receiver operating characteristic) that reflects the probability of
identifying correct and wrong results according to different thresholds, which is generally
between 0.5–1. The quantized index value can better compare the performance of the
classifiers: a high-performance classifier AUC value is close to 1properly reflected the
test performance.

(i) Accuracy rate (accuracy rate of positive samples):

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

(ii) Recall rate (accuracy rate of positive samples):

Recall =
TP

TP + FN
(13)

(iii) Precision (precision rate of positive samples):

Precision =
TP

TP + FP
(14)

(iv) F1-score value:

F1 =
2PR

P + R
(15)

4. Results and Discussion
4.1. The Compared Features between OGs and NOGs in Different Species

After the above seven species of gene datasets were introduced, the next step was
to arrange their variable features for constructing a prediction model. The annotations of
all protein sequences, CD sequences, and gene characteristics included GC, GC%, gene
length, Mw (Da), pI, average exon length, average intron length, and so on. Seven species
were compared in regard to OGs and NOGs. As seen in Figure 3b–d, OGs had lower
values of gene length, Mw (Da), and GC% than NOGs, with the opposite result on pI values
(Figure 3a).

Another critical step was data selection. This paper selected nine features: (1) GC,
(2) GC%, (3) protein length, (4) molecular weight (Mw (Da)), (5) isoelectric point value (pI),
(6) exon number, (7) average exon length, (8) intron number, and (9) average intron length,
which were denoted as 1 to 9, respectively, and recorded as V1–V9. The classes of orphan
genes and nonorphan genes were recorded as 1 and 0, respectively. Since the datasets
contained various types of features, and attribute units were inconsistent in dimensions, it
was necessary to use the pre-processing method to standardize the data.
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4.2. Comparison with Other Methods for Predicting Cross-Species OGs

This study constructed a novel hybrid classification XGBoost-A2OG model for classify-
ing the angiosperm species of OG distributions. We tested the dataset of Arabidopsis thaliana,
Populus trichocarpa, Sorghum bicolour, Oryza sativa, Zea mays, Citrus sinensis, and Camellia
sinensis, obtaining 6322 OGs from the public release of these species’ protein sequences
through the BLAST sequence alignment. To predict the OGs, XGBoost-A2OGs were trained
using the following parameters: 200 estimators and a learning rate of 0.02 with a maximum
depth of six. To optimize the parameters, the optimized XGBoost-A2OG models were
trained by 5-fold nested cross-validation. In addition, we compared XGBoost-A2OGs with
SVM and tree-based ensemble algorithms (GBDT, RF, and AdaBoost).

The results on the accuracy, precision, recall, and F1-score of the five models are listed
in Table 2. Compared to the above four reference methods, the proposed XGBoost-A2OG
model achieved competitive performance in recall and F1-score, outperforming them in
precision. Thus, it more precisely distinguished normal OGs from NOGs, exhibiting the
best classification effect on the AG datasets.

Table 2. Performance measure indices of the five models based on the same parameters of the training
and test datasets.

Index SVM RF GBDT AdaBoost XGBoost

Accuracy 0.88 0.85 0.88 0.88 0.91
Precision 0.86 0.79 0.87 0.87 0.90

Recall 0.91 0.97 0.89 0.88 0.91
F1-Score 0.88 0.87 0.88 0.88 0.91
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Moreover, according to the area under the curve (AUC) value shown in Figure 4,
the ROC and precision-recall (P-R) curves of the XGBoost model completely wrapped
those of the other four methods (AdaBoost, GBDT, RF, and SVM), outperforming them by
classification efficiency.
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4.3. Predicting OGs with Different Feature Sets in Eudicot and Monocot Species via
XGBoost-A2OGs

Some features might become noise, deteriorating the robustness and stability of the
constructed model. Moreover, contribution rates of various features differ, the highest
ones being the most lucrative for OGs’ prediction. Therefore, this work presents two
filter-based selection methods to remove irrelevant and redundant features in terms of
both training processes. In particular, we selected two types of delegated species from the
eudicot subclass (P. trichocarpa and Camellia sinensis) and monocot subclass (O. sativa and
S. bicolour) applied with filter-based selection methods. Then the filtered feature are the
same containing the GC, protein length, Mw (Da), and pI. Thus, the classification results on
these selection methods with four species separately by variation and Chi2 method based
on the XGBoost-A2OGs model are listed in Table 3.
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Table 3. Performance measure indices of eudicot and monocot species for the training and testing
datasets by filter method based on the same parameters.

Type Species Filter Method Precision Accuracy AUC

Eudicots P. trichocarpa variation 0.92 0.93 0.94
Eudicots P. trichocarpa Chi2 0.9 0.92 0.94
Eudicots Camellia sinensis variation 0.82 0.69 0.85
Eudicots Camellia sinensis Chi2 0.82 0.69 0.85

Monocots O. sativa variation 0.78 0.83 0.9
Monocots O. sativa Chi2 0.78 0.83 0.9
Monocots S. bicolor variation 0.81 0.87 0.94
Monocots S. bicolor Chi2 0.81 0.87 0.94

Filter algorithms can scale for multiple dimensional datasets. However, the features
selected by the filter method ignore the interaction among features, and individual scores
in a filter-based method are assigned to each feature without considering its significance
in combination with other shared features. Therefore, we further proposed an artificial
group for feature selection to explore the contribution of each feature for different types
of angiosperm. First of all, we also selected a eudicot subclass (P. trichocarpa and Camellia
sinensis) and applied to them five sets of feature selection methods to identify the one with
the optimal performance. The classification results on five sets of feature selection methods
with two species separately based on XGBoost-A2OGs are listed in Table 4, where the Set3
of Camellia sinensis featured the lowest precision, accuracy, and AUC values (0.80, 0.69,
and 0.85). Meanwhile, the Set5 of P. trichocarpa combined the highest respective values
(precision of 0.9, accuracy of 0.92, and AUC = 0.94).

Table 4. Performance measure indices of eudicot species for the training and testing datasets by
feature sets based on the same parameters.

Type Species Feature Precision Accuracy AUC

Eudicots P. trichocarpa Set_all 0.9 0.9 0.92
Eudicots P. trichocarpa Set1 0.89 0.87 0.89
Eudicots P. trichocarpa Set2 0.9 0.9 0.91
Eudicots P. trichocarpa Set3 0.88 0.9 0.92
Eudicots P. trichocarpa Set4 0.9 0.9 0.94
Eudicots P. trichocarpa Set5 0.9 0.92 0.94
Eudicots Camellia sinensis Set_all 0.89 0.74 0.85
Eudicots Camellia sinensis Set1 0.83 0.68 0.84
Eudicots Camellia sinensis Set2 0.83 0.69 0.82
Eudicots Camellia sinensis Set3 0.80 0.69 0.85
Eudicots Camellia sinensis Set4 0.94 0.76 0.87
Eudicots Camellia sinensis Set5 0.89 0.74 0.88

As it was mentioned earlier, monocots have branched off from eudicots via whole
genome duplication (WGD) [33]. Systematic identification of orphan genes in eudicots
revealed that the optimal precision of P. trichocarpa and Camellia sinensis orphan genes were
nearly 0.9 shown in Table 4. Five sets of feature selection methods were also applied to
reveal the optimal feature selection performance with XGBoost-A2Ogs for the monocot
group containing O. sativa and S. bicolour. The results are listed in Table 5, indicating that
the Set5 feature selection in the monocot group yielded higher precision, accuracy, and
AUC values than those obtained via the Set_all feature selection. The respective values
of S. bicolour in Set5 (0.82, 0.87, and 0.94) exceeded those in Set_all (0.65, 0.73, and 0.6) by
about 26, 19, and 57%, respectively.
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Table 5. Performance measure indices of monocot species for the training and testing datasets by
feature sets based on the same parameters.

Type Species Feature Precision Accuracy AUC

Monocots O. sativa Set_all 0.78 0.83 0.9
Monocots O. sativa Set1 0.76 0.81 0.9
Monocots O. sativa Set2 0.76 0.81 0.88
Monocots O. sativa Set3 0.76 0.81 0.93
Monocots O. sativa Set4 0.76 0.81 0.9
Monocots O. sativa Set5 0.79 0.83 0.9
Monocots S. bicolor Set_all 0.65 0.73 0.6
Monocots S. bicolor Set1 0.65 0.73 0.6
Monocots S. bicolor Set2 0.65 0.73 0.62
Monocots S. bicolor Set3 0.65 0.73 0.62
Monocots S. bicolor Set4 0.65 0.73 0.6
Monocots S. bicolor Set5 0.82 0.87 0.94

Additionally, we further explored and compared these combined feature sets of four
selected plant species, containing the eudicot and monocot species of evolutionary lineages.
The results, plotted in Figure 5, strongly indicate that the featured protein of pI, which
plays a vital role in determining molecular biochemical function, is essential for predicting
OGs in eudicot genomes and further clarifying their biochemical function in eudicots via
proteomic studies.
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angiosperm specie.

We also observed that GC content was more likely to impact prediction performance,
as real OGs in monocot groups evolved from eudicots, such as O. sativa and S. bicolour.
However, GC content is one of the critical compositional features of the genome and varies
significantly among different genomes and regions within a genome [34,35].

Finally, to further validate the performance of the XGBoost-A2OG model for eudicot
and monocot groups, we tested the model on the dataset of Arabidopsis thaliana, Populus
trichocarpa, Sorghum bicolour, Oryza sativa, Zea mays, Citrus sinensis, and Camellia sinensis
with feature set5 separately. The results are shown in Figure 6.
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The precision of predicting OGs for different angiosperm species was not the same,
indicating a higher reliability of XGBoost-A2OGs in identifying OGs of eudicot species
(P. trichocarpa, Camellia sinensis, Citrus sinensis, and A. thaliana) than that of monocot species
(O. sativa, S. bicolour, and Z. mays).

With a range of evolutionary processes, OGs can be derived in a lineage and provide
lineage-specific adaptations. As mentioned above, there is some evidence that the sequence
characteristics of orphan genes are common in two groups of angiosperm: eudicot and
monocot species. However, some of them play different roles in identifying OGs based on
the XGBoost-A2OG model due to differences in their evolution and origins. However, there
is a lack of evidence on the mechanism of origin for the divergence of essential features of
OGs between monocots and eudicots due to the rapid evolution of orphan genes.

5. Conclusions

Based on the background of enlarged genome sequences in angiosperm plants, this
study proposed an XGBoost-A2OGs model to identify orphan genes (OGs) via the ensemble
learning approach applied to several genome and cDNA features in angiosperm species,
some of which have a consistent distribution. Cross-species models were trained on
datasets of seven angiosperm species, performing better than SVM and other ensemble
models (Adaboost, GBDT, and Random Forest). The proposed XGBoost-A2OGs method
adopted makes multiple feature sets that have been proven helpful in OG identification
and used feature selection to select the optimal feature subset. Thus, plant OGs exhibited
discrepant results on combined features in eudicots (P. trichocarpa and Camellia sinensis) and
monocots (O. sativa and S. bicolour) but still shared some features. Finally, the proposed
method further established species-specific models with the optimal features on seven
plants’ datasets, which performed better on eudicot groups than on monocot ones.

In summary, XGBoost-A2OGs is a helpful method for identifying OGs from genome
features. The feature importance of monocot and eudicot orphans was analyzed, providing
a theoretical basis for the inheritance and variation of orphan genes in the process of
evolution. In future work, with the rapid development of next-generation sequencing
technologies, an ensemble learning approach with comparative genomics can be imported
to obtain information on different types of angiosperm plants. Alternative deep learning
algorithms, such as Transformer and LSTM, can also be applied to improve the potential
performance. The follow-up study envisages incorporating some other essential features,
such as gene expression, into the proposed model, which may significantly improve the
efficiency of predicting OGs in angiosperm plants.
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