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Abstract: Sentiment analysis on social media platforms (i.e., Twitter or Facebook) has become an
important tool to learn about users’ opinions and preferences. However, the accuracy of sentiment
analysis is disrupted by the challenges of natural language processing (NLP). Recently, deep learning
models have proved superior performance over statistical- and lexical-based approaches in NLP-
related tasks. Word embedding is an important layer of deep learning models to generate input
features. Many word embedding models have been presented for text representation of both classic
and context-based word embeddings. In this paper, we present a comparative analysis to evaluate
both classic and contextualized word embeddings for sentiment analysis. The four most frequently
used word embedding techniques were used in their trained and pre-trained versions. The selected
embedding represents classical and contextualized techniques. Classical word embedding includes
algorithms such as GloVe, Word2vec, and FastText. By contrast, ARBERT is used as a contextualized
embedding model. Since word embedding is more typically employed as the input layer in deep
networks, we used deep learning architectures BiLSTM and CNN for sentiment classification. To
achieve these goals, the experiments were applied to a series of benchmark datasets: HARD, Khooli,
AJGT, ArSAS, and ASTD. Finally, a comparative analysis was conducted on the results obtained
for the experimented models. Our outcomes indicate that, generally, generated embedding by one
technique achieves higher performance than its pretrained version for the same technique by around
0.28 to 1.8% accuracy, 0.33 to 2.17% precision, and 0.44 to 2% recall. Moreover, the contextualized
transformer-based embedding model BERT achieved the highest performance in its pretrained and
trained versions. Additionally, the results indicate that BiLSTM outperforms CNN by approximately
2% in 3 datasets, HARD, Khooli, and ArSAS, while CNN achieved around 2% higher performance in
the smaller datasets, AJGT and ASTD.

Keywords: Arabic sentiment analysis; deep learning; BiLSTM; CNN word embedding

1. Introduction

Word embedding is a prominent text-processing technique that has thrived in recent
years. The technique is defined as models of words that provide a meaningful portrayal
of words in a specific framework [1]. It refers to the procedure of representing words as
vectors in a predefined vector space. Each word is classified by a vector value, in which all
values develop and establish a neural network. The key to any word embedding method is
the concept of using a dense, distributed representation for each word [1]. Several distinct
studies were performed to evolve and optimize the word embedding techniques and their
applications in assorted contexts. It has been extensively applied to addressing natural
language processing (NLP) difficulties [1,2]. There are two primary strategies utilized
for word embedding, specifically context-independent (classic) and context-dependent
(contextualized) [3].

In classic embeddings, the word representation is characterized by being unique for
each term and without considering the context within which it appears. This results in
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words being identified without contemplation of the context, which results in reduced
accuracy: it is based on a language model and related general text corpora [3]. Examples of
classic embedding models include Word2vec [4], GloVe [5], and FastText [6].

Word2vec uses two-layer neural network training to predict and construct semantic
contexts of words [4]. It applies either continuous bag-of-words (CBOW), which tutors a
model to predict a word given its context, while Skip-Gram (SG) predicts the context when
provided with the word.

GloVe (global vectors for word representation) [5] is solely based on matrix factoriza-
tion techniques on the “word-context matrix” [5]. Typically, the corpus can be scanned in
the following manner: for every term, identify context terms within the area defined by a
window size before the term and a window size after the term, resulting in less importance
being assigned to words further away from the initial term. This feature is advantageous
for identifying language features globally, by analyzing word frequency across corpora.

FastText: This model resembles the Skip-Gram version of Word2vec; however, each
word is processed as being comprised of n-grams instead of the whole word [6]. It is
very similar to word n-grams, in that the window size is at the character level. In other
words, FastText operates at a character level but Word2vec operates at a word level. This
model not only recognizes and learns the entire n-character sequence of the word but
also models the sub-words of the word. It uses the sub-word information explicitly for
embedding, ensuring that rarely used vocabulary can still be accurately estimated. This
creates an enhanced morphological understanding of the language, combined with better
representations based on word tense, enabling the algorithm to handle unfamiliar words.
FastText is one of the methods developed to remedy the issue of embedding rarely used
words that can sometimes be poorly estimated [7].

The alternative strategy is identified as context dependent (contextualized) which
learns embeddings for the word within its context. Each word is assigned a representation
based on its context, for example, the word ‘right’ has alternate meanings if it is used in a
directional context or a legal one. This feature has attracted the interest of contemporary
research which has evolved into two categories: a language model-based recurrent neural
network (RNN) and a transformer-based model i.e., BERT [7] and its variation ALBERT [8],
which proved to produce efficient word embedding representations [3].

Contextualized embeddings are well known for detecting words’ semantics in context,
which contrasts with classic embedding models. BERT (bidirectional encoder representa-
tions from transformer) is a transformer-based text representation archetype that employs a
masked language model to predict randomly hidden words in a sequence. This is followed
by a next-sentence-prediction task for learning the associations between sentences. It em-
ploys masked language modeling to conceal some of the words and use their positional
information to infer them. The transformer-based model has the advantage of achieving
more effective modeling of long-term dependencies among tokens in a temporal sequence
and increasingly efficient training of the model by eliminating the sequential dependency
on previous tokens [7]. Contextualized embedding can be employed for downstream tasks
in two ways: firstly, as a fixed feature extractor which indicates that it is not trainable
with downstream parameters, resulting in a static, pre-trained input sequence feature
and, afterwards, fine tuning in which pre-trained embeddings are adapted using a partic-
ular dataset to provide input features. Studies have indicated that, when operating the
fine-tuning process, the transformer-based model, used to represent a sequence, attained
improved performance for the various NLP tasks [7–9]. The fixed feature extractor offers
an advantage over the downstream task as it conserves time and memory because it does
not necessitate parameter training [3].

Generally, word embeddings can be obtained either via custom-trained embeddings
or via pretrained embeddings. In custom-trained embeddings, vectors are generated using
the training dataset so that the training corpus’ semantics can be better represented. On
the other hand, pretrained word embeddings generate the representation vectors as they
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are trained on large datasets, saved, and then used for solving other tasks. This is why
pretrained word embeddings are a form of transfer learning [1–3].

Our work was motivated by the fact that there was no unified study to report the
most suitable embedding technique for Arabic sentiment classification. The bulk of the
works either focused only on Twitter; data which usually contain short reviews; targeted a
certain domain; or concentrated on one format of the Arabic language. Thus, there is a need
to benchmark and evaluate different embeddings for Arabic sentiment analysis without
language format, length, or domain dependency. To address the described problems, we
can summarize our contribution as follows:

• Present a comprehensive evaluation of the most widely used embedding (classical
and contextualized) models for the Arabic language.

• Assess their performances among different benchmark datasets that represent different
review lengths, Arabic language formats, and different domains. This incorporation
of datasets from diverse domains can surmount the challenge of a potential lack of
diversity in the obtainable datasets.

• The study concentrates on deep learning models, as they were adjudged to be of
increased effectiveness and surpassed other machine learning models across a range
of tasks [10–13].

The current literature offers limited comparative studies regarding Arabic language
word embedding, and this paper endeavors to be one of the first to bridge this knowledge
gap. Our main objective is not to try to outperform the complex state-of-the-art models
or compete with sophisticated techniques. Instead, we try to empirically survey word
embeddings and deep learning network-based sentiment analysis. We try to provide insight
into various word embedding models for Arabic sentiment classification using CNN or
BiLSTM. This can help researchers to select suitable models for sentiment classification
tasks. Moreover, our experiment can be applied to other deep neural network architectures
and language tasks.

This paper is organized as follows: firstly, a background of the assessed word em-
bedding models is presented in Section 2, followed by an overview of the related work
in Section 3. Section 4 details the methodology of this study, followed by the experiment
setup in Section 5 with a description of the used datasets, models architectures, parameters,
and evaluation metrics. Finally, the results and discussion are presented and the paper is
concluded in Section 6.

2. Related Work

As mentioned previously, advancing the aptitudes of word embedding models has
drawn the attention of researchers in various NLP applications since it acknowledges
both the syntax and semantics of each word. Therefore, the semantic resemblance be-
tween words, phrases, and sentences can be determined to perfect the performance of
the applications.

According to a study conducted by the Central Intelligence Agency (CIA), the Arabic
language was ranked the fourth most spoken first language after Chinese, Spanish, and
English. Arabic native speakers constitute almost 5% of the worlds’ population. The Arabic
language is the standard across the Middle East, North and the Horn of Africa, and is
one of the six official languages of the United Nations (https://www.cia.gov/the-world-
factbook/countries/world/#people-and-society (accessed on 1 February 2023)).

Due to the significant use of the Arabic language in social media networks, the demand
for Arabic sentiment analysis has increased rapidly. Sentiment analysis in Arabic can be
beneficial for both businesses and governments in the Arab world. One of the challenges
that face Arabic sentiment analysis is to understand the varieties of different languages.
The Arabic language has various formats; the formal Arabic language used in literature,
prints, mass media, or formal education is called Modern Standard Arabic (MSA). The
spoken Arabic language includes the varieties or dialects of Arabic. The dialects vary
considerably from region to region. According to the Library of Congress (https://iso639

https://www.cia.gov/the-world-factbook/countries/world/#people-and-society
https://www.cia.gov/the-world-factbook/countries/world/#people-and-society
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-3.sil.org/code/ara (accessed on 13 February 2023)), there are approximately 30 different
dialects of Arabic. This is why sentiment analysis for the Arabic language has drawn the
attention of researchers and has resulted in many studies designed to provide automated
sentiment analysis for online Arabic content.

Word embedding permits the automatic extraction of language features from Arabic
tweets, product reviews, service reviews, and news articles. Automatic feature extraction is
fundamental since the process of manual feature extraction, specifically from Arabic texts,
is prolonged and arduous due to its complicated construction and grammar. Embedding
procedures were explored for sentiment analysis to scrutinize and label reviews, opinions,
and attitudes to enhance decision making in different domains [14]. Sentiment analysis tries
to ascertain the text’s polarity and categorize it as positive, neutral, negative, or mixed [14].
Various studies of Arabic sentiment classification using conventional machine-learning
models have been performed [15,16].

The effect of word embedding was studied for Arabic sentiment analysis in different
inquiries and contexts, such as [17,18], which studied the use of Doc2vec document em-
bedding to construct paragraph vectors within machine learning classifiers. Their results
reported that Doc2vec resulted in highly effective results with classifiers. Additionally, the
work in [19] constructed Word2vec embeddings from an Arabic corpus obtained from ten
newspapers, from different Arabic countries, applied different machine learning algorithms
and convolutional neural networks, and reported an increased accuracy of sentiment classi-
fication. In [20], word vectors were generated from a large Arabic corpus. The generated
vectors are used to train classifiers to detect sentiment/subjectivity in both standard Arabic
(SA) and dialectal Arabic (DA). Their results indicated that the use of word embedding
resulted in enhanced levels of accuracy.

The works in [21,22] explored the utilization of contextualized word embedding for
sentiment analysis of cross-domain and cross-dialect data. Their results reveal that this
method enhances the performance of BERT [7].

Deep learning models have recently been used for NLP tasks due to their proven
efficiency and high levels of performance [23]. The works in [19,24] used a convolutional
neural network (CNN). Other studies, presented in [25,26], proposed archetypes and ar-
chitectures that attained reasonable scores for accuracy. Furthermore, the work presented
in [27] proposed a method that combines CNN and bidirectional long short-term mem-
ory (BiLSTM) to enhance sentiment classification and better signify text features. The
study achieved a satisfyingly accurate result by using different, contemporary models.
In addition, a hybrid CNN and long short-term memory (LSTM) model was proposed
for Arabic sentiment analysis [28]. Another study conducted a comparison concerning
the performances of the recurrent neural networks (RNN) and support vector machine
(SVM) models in the sentiment analysis of hotel reviews in Arabic [29]. SVM demonstrated
improved levels of accuracy, while the RNN demonstrated an improved processing time.
A summary of all the related work is provided in Table 1.

Table 1. Summarization of related work.

Study Experimental Model Shortcomings Main Findings

[17]

• Doc2Vec
• Logistic regression, decision

tree, support vector machine,
and naive Bayes.

• Only traditional machine
learning technique.

• Only one embedding
technique was evaluated.

• Only one dataset was used.

• Doc2Vec achieves high
effectiveness with both large
dimension and negative
samples.

• Small context windows are
better to attain high efficiency.

[18] • CBOW, SKIP-G, and GloVe
• Only Glove vectors were

generated using skip-grams
and continuous bag of words.

Achieved human-like translation
results with a correlation between
0.75 and 0.79.

https://iso639-3.sil.org/code/ara
https://iso639-3.sil.org/code/ara
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Table 1. Cont.

Study Experimental Model Shortcomings Main Findings

[20] • AraBERT

• Only contextualized
embedings were used; no
other evaluation of other
embedding models.

AraBERT achieved state-of-the-art
performance on most tested Arabic
NLP tasks.

[21] Domain adversarial neural
network (DANN)

• Only contextualized
embedings were evaluated.

Success of the proposed domain
adaptation method.

[22]
Compared various classifiers in
addition to deep learning models
(LSTM and BiLSTM)

• Only AraBERT is used with
classical machine learning and
LSTM and BiSTM.

The model outperforms the baseline
on both large and small datasets.

[24] CNN
• One dataset used CNN with

pretrained word embedding
for the classification.

The proposed scheme outperforms
the existing methods on four out of
five balanced and unbalanced
datasets.

[25]
Bag-of-word, deep belief
networks, deep auto encoders,
and recursive auto encoder

• Only used BOW model.
High improvement with the
recursive auto encoder.

[26] AraNet based on BERT

• Arabic-based version of
contextualized embedding; no
evaluation of other
embedding models.

High performance in detecting
dialect, gender, emotion, irony, and
sentiment from social media posts.

[27] CNN + BiLSTM

• Investigated the impact of
combining CNN + BiLSTM
with no evaluation of word
embedding.

Demonstrated advanced results by
combining CNN and BiLSTM to
prepare Arabic text and better
represent associated text features.

[28] CNN + LSTM
• Evaluated only CNN + LSTM

combined with no evaluation
of word embedding.

Promising results have been
attained when combining LSTMs
when compared with other models.

[29]

• Recurrent neural network
(RNN)

• Support vector machine
(SVM)

• Explored the impact of SVM
and RNN in aspect-based
sentiment analysis with no
evaluation of word
embedding.

Results showed that the SVM
approach outperforms the RNN
approach in the
research-investigated tasks,
whereas the RNN execution time is
swifter.

In this study, various models (classic and contextualized) are assessed using five
cross-domain datasets. Details about the adopted methodology and the experiment setup
are provided in the following sections.

3. Methodology

To systematically study word embedding for the sentiment classification problem, the
methodology includes that first the textual reviews are separated by the tokenizer, and
then the vector space representation of every word is generated and used to construct an
embedding layer as an input for the deep neural networks. For the experiments conducted
by this study, several advanced, pre-trained word embeddings were used, as well as
generated representations produced by training the embedding algorithms on the used
datasets. To investigate the impact of word embedding techniques on discrete datasets,
datasets with different lengths and characteristics were selected. The length of the reviews
varied between short sentences and long paragraphs. Additionally, the textual reviews
target different domains including hotel reviews, sports, politics, and the arts, which
enabled this study to analyze the effect that word embedding has on different domains. The
selected word embedding belongs to both classic (context-independent) and contextualized
text representation algorithms. Each one was operated in the pre-trained and trained
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versions of the model. The selected context-independent models include Word2vec, GloVe,
and FastText. ARABERT was used as an example of contextualized word embedding.

For the sake of this experiment, ARBERT was utilized as a large-scale pre-trained
masked language model focused on Modern Standard Arabic (MSA). ARBERT is trained
using the BERT-base architecture with twelve attention layers, each of which has twelve
attention heads and 768 hidden dimensions, a vocabulary of one hundred thousand Word
Pieces, resulting in approximately 163 million parameters. Additionally, BERT-based
training was performed on the dataset, based on the implementation found in [30].

The embedding layer employs a word embedding algorithm to generate word rep-
resentations for the encoder. These representation vectors are generated using the pre-
trained word embedding, or by training the models on the dataset. This experiment
used BiLSTM and CNN to represent the embedded vectors into a summary of single
sequence representation.

4. Experimental Setup

This stage details the selection of the datasets, the configuration of deep learning classi-
fiers, and choosing of the pre-trained embeddings. Experimental details are presented below.

4.1. Datasets

This study chose five popular benchmarking sentiment classification datasets. These
datasets vary in size, the number of classes, types (single label or multilabel), domains
(hotels, politics, etc.), and they represent different dialects of Arabic.

1. HARD [31]: The Hotel Arabic-Reviews Dataset (HARD) contains nearly 106,000 hotel
reviews, written in Arabic, collected from the Booking.com website during June
and July of 2016. The reviews are expressed in Modern Standard Arabic as well as
dialectal Arabic.

2. Khooli 3 (https://www.kaggle.com/abedkhooli/ar-reviews-100k/data (accessed
on 11 March 2022)): The Arabic 100K Reviews dataset is a collection of reviews,
collected from different services, concerning hotels, movies, books, and products. It is
a three-class balanced set.

3. AJGT (Arabic Jordanian General Tweets) [32]: Created by Alomari in 2017, the
Arabic Jordanian General Tweets dataset consists of 1800 tweets categorized as positive
and negative.

4. ArSAS [33]: The Arabic Speech-Act and Sentiment Corpus of Tweets dataset is
a sizable set of nearly 20,000 Arabic tweets, concerning multiple topics, collected,
prepared, and annotated with four classes of sentiment. ArSAS tweets, belonging
to one of twenty topics, consist of three main archetypes: long standing (topics
about articles that are commonly discussed over a long period), entity (topics about
celebrities or organizations), and event (topics about an important incident).

5. ASTD (Arabic Sentiment Tweets Dataset) [34]: The Arabic Sentiment Tweets Dataset
is a set of Arabic tweets containing around 10,000 entries. They can be identified as
objective, subjective negative, subjective positive, and subjective mixed. These tweets
were labelled as 6691 objective, 1684 subjective negative, 832 subjective mixed, and
799 subjective positives. For the sake of this study, only positive, negative, and mixed
reviews were used. Table 2 shows a summary of all used datasets.

https://www.kaggle.com/abedkhooli/ar-reviews-100k/data
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Table 2. Summarization of datasets.

Dataset Count Class Labels Vocab Size AVG Token
Length

Max Text
Length Text Type

HARD ~106K reviews
Positive: 52,849

Negative:
52,849

130,654 200 507
MSA

Egyptian and gulf
dialects

Khooli ~67K reviews
Negative:33,333
Positive: 33,333
Mixed: 33,333

238,801 150 1445 MSA and Egyptian
dialects

AJGT 1800 reviews Negative 900
Positive 900 6806 40 129

Modern Standard
Arabic (MSA) or
Jordanian dialect

ArSAS ~20K reviews

Negative 7384
Neutral 6894
Positive 4400
Mixed 1219

62,861 50 288 MSA, Egyptian and
Gulf dialects

ASTD 3315 reviews
NEG: 1684
Mixed: 832
POS: 799

19,235 15 28 Egyptian dialects

4.2. Model Building and Training

Based on an investigation of the literature [22,24,27,35–40], Bi-LSTM and CNN have been
the most frequently employed deep learning models for text classification tasks, particularly in
sentiment analysis. These models were described as achieving preeminent performances.

Before building the selected models, hyperparameters must be selected and tuned.
The most important parameters to configure when building models are:

1. Batch size represents the number of instances to be considered before the model’s
parameters are updated.

2. The number of epochs is the number of times the algorithm will work for the
training dataset.

3. Optimizer is used to bridge the gap between updating model parameters and the
loss function.

4. Dropout enhances the model’s ability to generalize and reduces the probability
of overfitting.

5. Classifier is the final layer that projects all the input into predicted classes. Thus, choosing
this layer greatly impacts the overall performance. Sigmoid and Softmax are the options that
are considered to be the most suitable when labels are independently distributed.

To determine the hyperparameters, a grid search was used to evaluate the models
using the ASTD dataset. Different options were applied and those that demonstrated the
optimal performances were selected (as shown in Table 3).

Table 3. The used hyperparameters.

Batch Size Optimizer Epochs Dropout Classifier

128 Adam 50 0.2 Softmax

1. Batches of size 32, 64, and 128 were tested, with 128 achieving the highest level
of performance.

2. Adam and Nadam optimizers were assessed, resulting in Adam attaining the best
performance with a learning rate of 0.001.

3. An evaluation of 25, 40, and 50 training epochs was conducted, and the performances
were optimum at 50 epochs.
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4. Dropout values of 0.1, 0.2, and 0.5 were used and a dropout rate of 0.2 was used to
constrain the weights of the layers.

5. The output logits across all labels were generated, and the probability of a specific
sample belonging to one label was optimal when estimated by the Softmax function.

Experiments were performed on the Google Co-LAB platform with GPU 1x Tesla K80,
12 Gigabyte of RAM, and 2496 CUDA cores. The models were developed using the Python
Torch library. The architectures of each model are given below.

BiLSTM (Bidirectional LSTM) is a sequence processing model that consists of two
layers that work, in parallel, to propagate data in both forward and backward directions.
BiLSTM considers past and future context information to learn long-term dependencies and
capture the contextual features of the text; thus, it demonstrates excellent performance when
used for text classification, owing to its capability to comprehend the context-dependent se-
quences [16]. In this research, the simple bidirectional LSTM (BiLSTM) with an embedding
layer was used as an input, and a dropout of 0.2 was applied to avoid overfitting.

In this study, an adapted, uncomplicated version of the CNN model was employed as
the encoder. The architecture employed during our experiments included an embedding
layer as an input layer using window sizes (1,2,3,5) with the number of filters equal to
10. The model applies conventional and max-pool layers for each window size. For each
window size, the model keeps only the highest value of each feature vector (detected
features for that window size) and then combines all these matrices to form a final matrix,
of all detected features, to form the final feature matrix. Finally, a flattening layer is added
to flatten the feature matrix into a vector.

The dataset was split into eighty percent for training, ten percent for validation, and
ten percent for testing.

4.3. Word Embedding

Word embedding techniques generate text representation, which is used to produce
the embedding layer as the first layer of the deep neural model. Text pre-processing
techniques, including the removal of stop words, and non-Unicode and non-Arabic text,
are utilized to reduce the vocabulary size and consequently reduce the embedding layer
size. The used word embedding includes:

Baseline: For the baseline, the study defined an initialized embedding layer with
a dimension of three hundred to encode word inputs. The baseline is learned while
training the network from an outset of zero, not pretrained. The embedding layer stores
a lookup table to map the words represented by numeric indexes to their dense vector
representations. Hence, its impact on performance should be considered.

• Word2vec: This research employed the AraVec [4], a pre-trained embedding on a
Twitter dataset using CBOW and three hundred embedding dimensions.

• GloVe: Currently there is only one, pre-trained GloVe embedding available online for
use in the Arabic language (https://archive.org/details/arabic_corpus (accessed on
16 February 2022)). The available pre-trained GloVe vectors consist of 256 dimensions.
Pretrained GloVe embedding is generated based on Wikipedia.

• FastText: Pretrained versions of FastText are available for different languages (https://
fasttext.cc/docs/en/crawl-vectors.html (accessed on 25 February 2022)). The exper-
imental datasets exist only in Arabic; therefore, the experiment used the available
300-dimension Arabic pre-trained vectors of FastText.

• AraBERT: These experiments employed a pre-trained model called AraBERT as re-
ported in [20]. AraBERT is BERT-based [7] and trained on a 3B words corpus of Arabic
text. AraBERT includes 12 attention heads, 12 hidden layers with 768 hidden sizes,
and a vocabulary size of 64,000.

• Custom word embedding: While using the pre-trained word embedding, it may be
the case that some words in the training dataset may not be available in the pre-trained
vectors. Those missing vocabularies are replaced with a zero vector, which means that
they will not be used. These vocabularies are vital for accurate classification. To solve

https://archive.org/details/arabic_corpus
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
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this issue, custom word embedding was employed, using the training data, so that the
semantic relationship of the used training corpus can be better represented. Hence, for
the sake of this study’s experiments, custom embeddings are considered to study their
impact on performance.

4.4. Performance Evaluation Metrics

The use of an evaluation classification model is important to measure to which degree
predictions can be considered as ‘good’. All performance evaluation metrics can be defined
by using some, or all, of the parameters in Table 4:

Table 4. Performance evaluation parameters.

Predicted Class

A
ct

ua
l

C
la

ss

Class = yes Class = no

Class = yes TP (true positive) FN (false negative)

Class = No FP (false positive) TN (true negative)

• Accuracy measures the ratio of correctly predicted observations to the total number of
observations calculated by the (1).

Accuracy = (TP + TN)/(TP + FP + FN + TN) (1)

• Precision/PPV (Positive predictive value) represents the ratio of correctly predicted,
positive observations to the total predicted positive observations. High precision
means a low, false positive rate and can be calculated as in (2).

Precision = TP/(TP + FP) (2)

• Recall (Sensitivity) is the ratio of correctly predicted positive observations compared
with all the actual positive observations. The recall answer question is: of all the actual
positive observations how many were accurately predicted? Recall is calculated by (3).

Recall = TP/TP + FN (3)

• F1 score is the weighted average of precision and recall as in (4). It takes both false
positives and false negatives into account. F1 is more indicative than accuracy in the
case of uneven class distribution.

F1 Score = 2 “×” (Recall “×” Precision)/(Recall + Precision) (4)

5. Results and Discussion

Three distinct experiments were performed on five different datasets. The first exper-
iment utilized pre-trained word embedding for the classification task, using both CNN
and BiLSTM. The second experiment involved trained, custom word embedding for each
of the five datasets for sentiment classification by CNN and BiLSTM. Finally, baseline
embeddings were also applied for evaluating their impact on the classification. Based
on the experimental steps described, combined with the assessment results, a number of
important findings are summarized as follows:

5.1. Pretrained Embeddings

The first experiment was to evaluate the performance of pre-trained embeddings using
both CNN and BiLSTM for all five datasets. The results show that AraBERT achieved the
highest performance for all the datasets, followed by pre-trained FastText, with a differential
of one percent. GloVe comes next with higher attainment than AraVec, which may be
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attributed to the training corpus used to generate the pre-trained vectors. Figure 1 shows
the accuracy of the pretrained word embeddings and Table 5 show accuracy, precision,
recall, and F1-measure.
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Table 5. Pretrained embeddings Performance.

Accuracy

HARD Khooli ArSAS ASTD AJGT

BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

FasText 92.33% 91.65% 83.64% 81.96% 63.14% 66.65% 41.41% 45.94% 73.44% 74.38%

AraVec 91.68% 90.83% 81.56% 78.29% 63.65% 65.16% 39.84% 40.20% 71.66% 74.16%

GLoVE 91.73% 91.07% 82.27% 81.04% 62.76% 65.94% 41.02% 44.33% 73.88% 71.38%

AraBERT 93.97% 92.54% 84.15% 82.95% 72.63% 70.53% 42.78% 45.68% 75.14% 76.35%

Precision

HARD Khooli ArSAS ASTD AJGT

BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN

Precision Precision Precision Precision Precision Precision Precision Precision Precision Precision

FasText 93.67% 92.06% 83.00% 81.26% 69.59% 66.05% 42.72% 45.71% 74.07% 75.92%

AraVec 91.14% 90.45% 80.23% 79.21% 64.07% 64.19% 40.41% 41.22% 71.03% 73.11%

GLoVE 92.00% 91.42% 81.90% 80.72% 66.82% 65.43% 41.95% 43.17% 73.77% 75.08%

AraBERT 93.85% 93.12% 83.99% 82.32% 72.42% 69.00% 43.71% 46.20% 75.11% 76.00%

Recall

HARD Khooli ArSAS ASTD AJGT

BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN

Recall Recall Recall Recall Recall Recall Recall Recall Recall Recall

FasText 93.44% 92.20% 82.56% 80.12% 68.13% 66.81% 42.13% 46.69% 74.73% 75.31%

AraVec 91.04% 90.31% 80.72% 78.74% 64.25% 63.71% 40.09% 41.84% 73.48% 72.51%

GLoVE 92.31% 91.54% 82.31% 81.52% 66.44% 65.18% 41.97% 42.69% 73.22% 74.47%

AraBERT 93.58% 91.72% 83.42% 82.78% 71.51% 69.00% 43.39% 46.84% 74.32% 76.00%

F1-Measure

HARD Khooli ArSAS ASTD AJGT

BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN

Fmeasure Fmeasure Fmeasure Fmeasure Fmeasure Fmeasure Fmeasure Fmeasure Fmeasure Fmeasure

FasText 93.55% 92.13% 81.96% 81.44% 68.85% 65.28% 41.58% 46.19% 73.90% 74.76%

AraVec 91.69% 91.38% 82.28% 80.97% 64.31% 65.95% 40.25% 41.03% 72.25% 75.31%

GLoVE 90.89% 90.48% 81.47% 78.13% 66.12% 64.30% 41.66% 46.19% 73.14% 74.22%

AraBERT 93.61% 92.41% 83.70% 82.55% 71.96% 69.00% 43.55% 43.35% 74.71% 76.00%
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5.2. Custom Embeddings

The trained embedding models try to learn word representation from the current
dataset using either baseline or custom embeddings. These experiments used baseline em-
beddings and generated custom embeddings using FastText, Word2vec, GloVe, and BERT.

When examining the performance among all the datasets using BiLSTM and CNN,
BERT-based custom embedding is the best performing, followed by FastText-based custom
embeddings as the second-best model for all the datasets. Word2Vec outperforms GloVe
for HARD, KOOLI, and ArSAS datasets, whereas GloVe achieves higher performance
over Word2vec in the AJGT and ASTD datasets. Baseline embedding achieves the same
performance, with few differences, as GloVe when using the datasets shown in Table 6.

Table 6. Training embeddings Performance.

HARD Khooli ArSAS ASTD AJGT

BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

Baseline 92.82% 91.29% 83.78% 84.29% 71.59% 69.71% 50.78% 51.95% 75.34% 77.78%

FasText 93.21% 90.14% 85.07% 82.36% 71.97% 69.13% 46.75% 46.75% 76.92% 78.12%

Word2vec 93.47% 92.40% 82.11% 81.81% 69.72% 68.39% 43.08% 44.92% 72.66% 73.44%

GLoVE 92.91% 91.14% 81.48% 79.40% 68.08% 67.72% 45.13% 46.77% 73.88% 77.97%

BERT 94.25% 92.75% 84.97% 83.54% 73.35% 72.07% 47.91% 49.00% 78.76% 80.76%

Precision

HARD Khooli ArSAS ASTD AJGT

BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN

Precision Precision Precision Precision Precision Precision Precision Precision Precision Precision

Baseline 91.12% 91.55% 83.20% 82.96% 70.65% 69.11% 49.30% 50.07% 74.44% 75.28%

FasText 94.00% 93.00% 83.81% 82.00% 70.00% 69.00% 46.00% 48.00% 77.87% 78.00%

word2vec 93.51% 92.00% 82.33% 81.03% 71.00% 69.00% 43.00% 46.00% 72.53% 74.00%

GLoVE 92.17% 91.00% 81.00% 79.78% 68.00% 64.00% 45.34% 46.02% 74.15% 76.00%

BERT 95.00% 93.00% 85.23% 84.00% 72.00% 70.00% 46.00% 48.00% 77.90% 79.00%

Recall

HARD Khooli ArSAS ASTD AJGT

BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN

Recall Recall Recall Recall Recall Recall Recall Recall Recall Recall

Baseline 93.13% 92.91% 86.40% 83.45% 71.00% 69.32% 56.78% 53.00% 80.00% 80.00%

FasText 93.00% 90.00% 82.97% 82.00% 70.00% 67.00% 46.00% 47.00% 78.00% 78.00%

Word2vec 93.00% 92.00% 80.00% 78.00% 70.00% 68.00% 44.71% 45.63% 73.28% 73.00%

GLoVE 93.88% 91.00% 82.56% 82.00% 68.00% 64.00% 44.00% 45.19% 78.00% 77.80%

BERT 94.00% 92.00% 85.11% 83.00% 71.00% 69.00% 45.00% 47.41% 73.28% 79.00%

F1-Measure

HARD Khooli ArSAS ASTD AJGT

BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN

Fmeasure Fmeasure Fmeasure Fmeasure Fmeasure Fmeasure Fmeasure Fmeasure Fmeasure Fmeasure

Baseline 92.12% 90.22% 80.74% 80.42% 69.03% 67.21% 44.74% 46.09% 76.12% 77.17%

FasText 93.50% 92.00% 83.97% 83.06% 71.80% 69.99% 46.30% 47.49% 77.93% 78.00%

Word2vec 93.00% 91.50% 82.70% 82.03% 70.50% 68.50% 43.84% 45.81% 72.90% 73.50%

GLoVE 92.52% 90.52% 81.56% 80.51% 68.78% 66.80% 44.62% 45.60% 75.03% 76.89%

BERT 94.50% 92.50% 85.11% 83.00% 72.50% 69.50% 47.49% 48.70% 75.52% 79.00%
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5.3. Trained vs. Pretrained Embeddings

Table 7 illustrates that, for all the tested text representation models, generating embed-
ding by one technique achieves higher performance than the pre-trained version of the same
technique. BERT-based custom embeddings achieved the highest average performance
among all datasets, followed by its pre-trained version, AraBERT. Embedding generated
by the FastText model has the third-best performance among all the datasets followed by
the FastText pre-trained version. The same applies to both Word2vec embedding, AraVec,
pre-trained GloVe vectors, and custom GloVe embeddings.

Table 7. Pretrained embeddings F1-measures.

HARD Khooli ArSAS ASTD AJGT

BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

BERT 94.25% 92.75% 84.97% 83.54% 73.35% 72.07% 47.91% 49.00% 78.76% 80.76%

AraBERT 93.97% 92.54% 84.15% 82.95% 72.63% 70.53% 42.78% 45.68% 75.14% 76.35%

Train_FasText 93.21% 90.14% 85.07% 82.36% 71.97% 69.13% 46.75% 46.75% 76.92% 78.12%

FasText 92.33% 91.65% 83.64% 81.96% 63.14% 66.65% 41.41% 45.94% 73.44% 74.38%

Word2vec 93.47% 92.40% 82.11% 81.81% 69.72% 68.39% 43.08% 44.92% 72.66% 73.44%

AraVec 91.68% 90.83% 81.56% 78.29% 63.65% 65.16% 39.84% 40.20% 71.66% 74.16%

Train_GLoVE 92.91% 91.14% 81.48% 79.40% 68.08% 67.72% 45.13% 46.77% 73.88% 77.97%

GLoVE 91.73% 91.07% 82.27% 81.04% 62.76% 65.94% 41.02% 44.33% 73.88% 71.38%

5.4. Classic Embeddings

FastText, Word2vec, and GloVe are word embedding models that belong to the classic
embedding paradigms. These experiments used pre-trained embedding vectors as well
as generated custom embedding for each of the datasets. The results show that for the
pre-trained vectors, FastText achieved the highest accuracy across all the datasets. GloVe
outperformed the pre-trained Word2Vec model (AraVec). The accuracy difference observed
between pre-trained GloVe and AraVec ranged from approximately 0.07% to 3.5%. Addi-
tionally, AraVec achieved slightly higher performance over pre-trained GloVe, when using
CNN with the AJGT dataset and using BiLSTM with the ArSAS dataset. Pretrained GloVe
and AraVec achieved almost the same performance using BiLSTM with HARD.

In the second experiment, classical models were used to generate custom embeddings
and these results determine that training FastText outperforms other custom embeddings in
performance across all applicable datasets. Word2Vec-generated embeddings were highly
accurate when applied to the Hard, Khooli, and ArSAS datasets. The generated custom
embeddings by GloVe achieved higher accuracy for ASTD and AJGT, as illustrated by
Table 8 and Figure 2.

Table 8. Accuracy of trained embeddings models.

HARD Khooli ArSAS ASTD AJGT

BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN BiLSTM CNN

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

FasText 92.33% 91.65% 83.64% 81.96% 63.14% 66.65% 41.41% 45.94% 73.44% 74.38%

AraVec 91.68% 90.83% 81.56% 78.29% 63.65% 65.16% 39.84% 40.20% 71.66% 74.16%

GLoVE 91.73% 91.07% 82.27% 81.04% 62.76% 65.94% 41.02% 44.33% 73.88% 71.38%

Train_FasText 93.21% 90.14% 85.07% 82.36% 71.97% 69.13% 46.75% 46.75% 76.92% 78.12%

Word2vec 93.47% 92.40% 82.11% 81.81% 69.72% 68.39% 43.08% 44.92% 72.66% 73.44%

Train_GLoVE 92.91% 91.14% 81.48% 79.40% 68.08% 67.72% 45.13% 46.77% 73.88% 77.97%
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Figure 2. The accuracy of trained embeddings models.

5.5. Contextualized vs. Classic Embeddings

Throughout this study, BERT was implemented as a contextualized transformer-based
embedding model. A more intensive analysis of the results reveals that, when compared
with classic word embedding models, BERT has an advantage and achieves higher levels
of performance in its pre-trained and trained models.

5.6. Impact of the Deep Learning Model

The results show that BiLSTM outperforms CNN among three datasets, HARD, Khooli,
and ArSAS, in accuracy, precision, recall, and F1-measure, while CNN achieved higher
performance in the AJGT and ASTD datasets. This can be attributed to the unique charac-
teristics of each dataset including sample size or the diversity and size of the vocabulary.

5.7. Contextualized vs. Classic Embeddings

Throughout this study, BERT was implemented as a contextualized transformer-based
embedding model. A more intensive analysis of the results reveals that, when compared
with classic word embedding models, BERT has an advantage and achieves higher levels
of performance in its pre-trained and trained models.

5.8. Impact of the Deep Learning Model

The results show that BiLSTM outperforms CNN among three datasets, HARD, Khooli,
and ArSAS, in accuracy, precision, recall, and F1-measure, while CNN achieved higher
performance in the AJGT and ASTD datasets. This can be attributed to the unique charac-
teristics of each dataset including sample size or the diversity and size of the vocabulary as
shown in Figure 3.
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6. Conclusions and Future Directions

This work conducted a comparison between contemporary, established word embed-
ding techniques to address the Arabic sentiment classification problem. Both classical
(GloVe, Word2Vec, and FastText) and transformer-based, contextualized (BERT) word
embedding techniques were used. Additionally, both the pre-trained vectors and the gener-
ated vectors were utilized as a layer for the deep learning model. BiLSTM and CNN were
employed for the text classifications task. The experiments included five different bench-
mark datasets from different domains and with different data sizes. The outcomes indicate
that training the embedding model using the corpora achieved superior accuracy when
compared with the pre-trained versions of the same models. Contextualized embeddings
achieved enhanced performance over the classical models. Moreover, BiLSTM achieved
higher levels of accuracy than CNN.

Future research should include an exploration of the comparison between deep learn-
ing models and traditional machine learning models. Additionally, investigating the vary-
ing levels of performance between the techniques when dealing with modern, standard
Arabic and dialectal Arabic should be considered an objective. Finally, future experiments
should investigate the comparison between the impact of word embedding and that of the
document and paragraph embedding on the performance of the classifiers.
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