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Abstract: The flash storage is a type of nonvolatile semiconductor device that is operated continuously
and has been substituting the hard disk or secondary memory in several storage markets, such as
PC/laptop computers, mobile devices, and is also used as an enterprise server. Moreover, it offers a
number of benefits, including compact size, low power consumption, quick access, easy mobility, heat
dissipation, shock tolerance, data preservation during a power outage, and random access. Different
embedded system products, including digital cameras, smartphones, personal digital assistants
(PDA), along with sensor devices, are currently integrating flash memory. However, as flash memory
requires unique capabilities such as “erase before write” as well as “wear-leveling”, a FTL (flash
translation layer) is added to the software layer. The FTL software module overcomes the problem of
performance that arises from the erase before write operation and wear-leveling, i.e., flash memory
does not allow for an in-place update, and therefore a block must be erased prior to overwriting
upon the present data. In the meantime, flash storage devices face challenges of failure and thus
they must be able to recover metadata (as well as address mapping information), including data
after a crash. The FTL layer is responsible for and intended for use in crash recovery. Although the
power-off recovery technique is essential for portable devices, most FTL algorithms do not take this
into account. In this paper, we review various schemes of crash recovery leveraging FTL for flash
storage devices. We illustrate the classification of the FTL algorithms. Moreover, we also discuss the
various metrics and parameters evaluated for comparison with other approaches by each scheme,
along with the flash type. In addition, we made an analysis of the FTL schemes. We also describe
meaningful considerations which play a critical role in the design development for power-off recovery
employing FTL.

Keywords: storage management; software defined module; power failure; NAND; FTL; flash mem-
ory; crash recovery

1. Introduction

Flash storage devices are electronic devices that use nonvolatile flash memory to
store data. They are often used as an alternative to traditional hard disk drives (HDDs)
because they are more durable, lighter, and faster. There are several types of flash storage
devices, including:

• USB flash drives: small, portable devices that can be plugged into a computer’s USB
port to transfer data.

• Solid-state drives (SSDs): larger storage devices which are used as an alternative to
traditional HDDs in computers and servers.

• Memory cards: small, portable devices that are used to store data in electronic devices
such as cameras, smartphones, and tablets.

• External hard drives: larger storage devices that can be connected to a computer via a
USB or other interface to store and transfer data.

Electronics 2023, 12, 1422. https://doi.org/10.3390/electronics12061422 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061422
https://doi.org/10.3390/electronics12061422
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5992-1136
https://doi.org/10.3390/electronics12061422
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061422?type=check_update&version=1


Electronics 2023, 12, 1422 2 of 21

Flash storage devices have several advantages over traditional HDDs. They are more
durable because they have no moving parts, which makes them resistant to physical shock
and vibration. They are also faster because data can be accessed directly from the memory,
rather than having to be retrieved from a spinning disk. In addition, flash storage devices
are generally smaller, as well as lighter than HDDs, which makes them more portable [1–4].

Solid-state drives (SSD) [5–7] and mobile phones frequently employ flash memory
because of its nonvolatility, low power usage, quick access speed, and shock resilience.
Solid-state drives, which utilize NAND flash memory, are now on the rise and are even
competing with hard drive sales [8]. Database servers can operate more quickly thanks
to flash-based storage devices, which are thought to be a novel storage method that can
replace disks [9]. The unit of operations in flash memory is different, hence the overwrite
operation cannot be carried out directly. At the block level, which consists of numerous
pages that can meet up to 1.5 ms, an erase operation is carried out. In contrast, a page is the
unit, where read and write operations are carried out, and it may match up to 80 µs and
200 µs incessantly, respectively [10]. However, NAND flash memory features a hardware
function known as the operation of erase before write (out of place update) that causes a
page to be wiped before being written in the same spot [11]. An intermediary software layer,
which is called the flash translation layer (FTL), was established, while the memory part for
erasing differs in size from the section for reading or writing [12]. Figure 1 [13] reveals how
demand for flash is powered mainly by various major markets—mobile phones, solid-state
drives, flash memory cards, MP3/PMP players, and flash drives.
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Numerous FTLs have been proposed as the FTL has a significant impact on the perfor-
mance features of flash memory devices [14–21]. The effectiveness of FTLs is particularly
significant when considering the ever-increasing capability of flash memory-related devices.
According to an address mapping approach, the present FTLs may be broadly divided
into page, block, and hybrid mapping [12]. The FTL is primarily accountable for address
mapping, wear-leveling, and trash collection.

The majority of FTL research to date has, however, mostly concentrated on perfor-
mance and wear-leveling difficulties. The recovery regarding a power-off failure in the
field of FTLs, however, has not received much attention despite its practical relevance. In
particular, there are not many books that thoroughly discuss crash recovery in FTLs. In
addition, a lot of flash-based solid-state drive (SSD) suppliers add their particular crash
recovery schemes and algorithms; however, none of them have been issued and published
because the vendors are hesitant to share their solutions. The tightly connected crash
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recovery algorithm in conjunction with FTL, in our opinion, has a lot of space for growth
and shows promise for meeting both the needs of efficient crash recovery and low overhead
throughout normal execution times. Hence, in this paper, we review several crash recovery
approaches. The main contributions of our paper are as follows:

1. First, we explain the preliminary knowledge of flash storage devices considering the
crash recovery process.

2. Then, we provide a taxonomy of the FTL algorithms as the crash recovery in the paper
leverages the FTL.

3. We comprehensively illustrate the schemes that address crash recovery leveraging the
FTL.

4. The comparative overview for the mapping methodology is demonstrated in Table 1.
5. We also review the recovery process in state of the art machine learning-based

schemes for various flash devices; the flash types with parameters are described
in Tables 2 and 3.

6. Moreover, we discuss the various approaches, and the classification regarding their
mapping methodology are shown in Table 4.

7. Finally, we present significant considerations that are critical in the design process for
power-off recovery, utilizing FTL.

Table 1. The comparative overview of mapping in the FTL algorithms.

Scheme Cost of Reading Computational
Overhead

Size of the Mapping
Table

Sector mapping Small No Greater

Block mapping Small Yes Smaller, as compared
with sector mapping

Hybrid mapping Large Yes Equal to block
mapping

The rest of the paper is arranged as follows: Section 2 discusses the background
knowledge for crash recovery using flash storage. In Section 3, we explain the taxonomy of
the FTL algorithms. In Section 4, we illustrate the motivation of using FTL. In Section 5, we
discuss various approaches for crash recovery, along with their parameters of comparison
and flash types. We analyze and compare different approaches using illustrations and
tables. The conclusion of the paper is given in Section 6.

2. Preliminaries

In this section, we discuss the preliminary topics of our review study to give an insight
to readers on the background knowledge of the FTL and flash memory types, such as
NAND, SSDs, flash drives, and HDD, along with flash memory features for operations.

2.1. NAND Flash Memory

The NAND flash is a category of nonvolatile memory technology that is commonly
used in electronic devices. It is named after the NAND gate, which is a type of electronic
gate that performs a NOT–AND operation. The NAND flash stores data using an array
of floating-gate transistors. It has several advantages over traditional hard disk drives
(HDDs). It is more durable because it has no moving parts, which makes it resistant to
physical shock and vibration. It is also faster because data can be accessed directly from the
memory, rather than having to be retrieved from a spinning disk. In addition, it is generally
smaller and lighter than HDDs, which makes it more portable. Moreover, NAND is used in
a wide range of electronic devices, including USB flash drives, mobile phones, solid-state
drives (SSDs), and memory cards. It is also used in some external hard drives and in some
computer systems as a replacement for traditional HDDs.
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The NAND flash storage is comprised of planes, which are made of various dies. As
demonstrated in Figure 2 [13], every die comprises several blocks. Moreover, at this phase,
erase-related operations are accomplished. Surrounded by a block, there are various pages,
that are basically the coarseness at which operations such as read and write are fulfilled.
In addition, a page further is subdivided into a small spare area, and a data area (which
is typically around 1/32 of the size of data) known as out of band (OOB). Moreover, the
OOB for a page is generally utilized for storing the information of the page state, as well as
the logical page number (LPN) for a page. Moreover, an OOB also encompasses an error
correction code (ECC), which is used for checking the accuracy of the stored data on the
data of a page area, as indicated in Figure 2. Throughout a read process, the whole page is
to be read simultaneously, as well as the area of OOB, even though a write operation can be
performed selectively on both the data area or OBB.
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2.2. SSDs

The solid-state drive (SSD) is a kind of storage device which utilizes NAND-based
flash memory for the purpose of storing data. In contrast to a conventional hard disk drive
(HDD), which stores data on rapidly spinning disks, an SSD has no moving parts and relies
on electronic circuits to store and retrieve data. This makes SSDs faster, more reliable, and
more durable than HDDs. Further, SSDs are commonly used in laptops, desktop computers,
and servers, to store the operating system, applications, and data. They are also used in
some mobile devices, such as smartphones and tablets.

2.3. Flash Drive

A flash drive, also known as a USB drive or a thumb drive, is a portable storage device
that uses NAND-based flash memory in order to store data. It is small, lightweight, and
easy to use, making it a convenient way to transfer files between computers and other
devices. Flash drives are typically plugged into a computer’s USB port and can be used
to store and transfer a large variety of files, including documents, photos, videos, and
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music. They are also commonly used to store and transfer data between devices, such as
smartphones, tablets, and cameras. Flash drives are available in a range of capacities, with
some models offering up to 1 terabyte of storage.

2.4. HDD

The HDD is a form of storage that uses rapidly spinning disks for storing, as well
as retrieving, data. It is the common type of storage device found in computers, servers,
and other electronic devices. An HDD stores data magnetically on spinning disks called
platters. A read/write head mounted on an armature moves over the spinning disks to
access the data. Of note, HDDs are slower than SSDs, and they leverage NAND-based
flash memory to store data; however, they are generally less expensive and offer larger
storage capacities. Additionally, HDDs are commonly used to store the operating system,
applications, and data in computers and servers, as well as to store large volumes of data
in external storage devices.

Figure 3 demonstrates that the local file systems (native) are utilized directly upon
flash memory structures devoid of support for block-device simulation. Because this article
concentrates on FTL, the subsequent discussion presents FTL.
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2.5. Flash Translation Layer

A FTL is a software layer which is employed to oversee the storage and retrieval of
data in a flash storage device, such as an SSD or a flash-based USB drive. In a flash-based
device, data is stored on flash memory chips, which are nonvolatile, and can maintain
data even when the power for the corresponding device is off. However, flash memory
has some limitations, which make it more complex to manage compared to traditional
magnetic storage media, such as hard drives. As an example, cells of the flash memory
can only be written up to a controlled quantity of times before they wear out, and they can
become slower as they fill up with data.
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The FTL is responsible for managing these limitations and ensuring that the flash-
based storage device performs optimally. It performs tasks such as wear-leveling, which
spreads the writes evenly across the flash memory chips to extend their lifespan, and
garbage collection, which reclaims space that has been freed-up by deleting files. The FTL
also manages the mapping for logical block addresses (LBAs), used by the operating system
to the physical locations [22–24] on the memory chips of flash, where the data is stored.
The FTL is a valuable component of a flash-based storage device and plays a decisive role
in maintaining its performance and reliability. It is typically implemented in firmware and
is transparent to the operating system and the user. Figure 4 illustrates the application, FTL,
flash memory, and file system logical flow. The idea revolves around the FTL layer. Some
advantages of the FTL include:

1. Improved performance: the FTL can recover the performance for a SSD by managing
the physical position of data on the device and by optimizing the order in which data
is written to the device.

2. Wear-leveling: the FTL assists to broaden the life for a SSD by distributing writes
evenly across the entire device, a technique known as wear-leveling. This helps
to prevent any single location on the device from being worn out due to excessive
writing.

3. Bad block management: the FTL can also manage bad blocks on the device, mapping
them out and substituting good blocks in their place.

4. Compatibility: the FTL enables a SSD to be used as a drop-in replacement for a
traditional hard disk drive (HDD) by presenting itself to the host system as an HDD.
This allows a SSD to be used in systems that may not have been designed specifically
for solid-state storage.
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2.6. Flash Memory Operations Characteristics

The read/write actions in flash are asymmetric in terms of processing speed. Since
they are carried out at a coarser roughness for block, erase procedures are thought to be
significantly slower compared to read, as well as write functions [25]. The access period
for reads and writes is also asymmetrical. Additionally, the write delay that occurs during
erase is typically greater from read latency (via a 4–5 factor). The writing process takes
a longer time than reading as it takes longer to remove electrons from a flash cell, which
is the main rationale for this. In a flash memory, the out of place updates are considered
as the most economical; this is because the writes happen page by page, whereas erase
operations happen at the block granularity level. An inappropriate update renders the
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current edition of the page invalid when the host releases an upgrade. The mapping table
is then altered, and the amended new translation is written into a fresh flash file. Daily
updates are required for mapping tables. The FTL keeps track of these modifications. There
are a lot of faulty pages as a result of flash memory’s out of place upgrading capabilities.
Null pages are those that have outdated content that has to be removed. Garbage disposal
reclaims these empty pages by removing the blocks that contain them. All pages within the
block must have faulty data in order to remove a lock.

3. The Taxonomy of the FTL Algorithm

Herein, we describe the taxonomy for the FTL algorithm corresponding to charac-
teristics that encompass address mapping, and mapping information organization. The
authors in [26–29] provide ideas for the classification of FTL algorithms. However, herein,
we provide a detailed description of this classification in the FTL.

3.1. Sector Mapping Approach

Sector mapping refers to the process of mapping logical sectors (also known as logical
blocks) of the file system to physical sectors (also known as physical blocks) on the flash
memory. This mapping is maintained in a table, often referred to as the block map or
page map.

The purpose of sector mapping is to provide a level of abstraction between flash
memory and the file system, allowing the file structure to treat the flash storage as if
it were a conventional rotating disk. The FTL is responsible for managing the physical
characteristics of the flash memory, for example, wear-leveling, serious block management,
and garbage collection.

Sector mapping is performed dynamically by the FTL, and the mapping can change
as new data is recorded to the flash memory and old data deleted. The FTL must ensure
that the mapping is consistent, and that data are not missing in the event of a power failure.
This requires the use of write buffering, metadata management, and proper error handling
to prevent data corruption or loss.

Sector mapping can also be used to implement various performance optimization
techniques, such as wear-leveling, which spreads writes evenly across the flash memory
to ensure that all blocks have an equal number of writes, and garbage collection, which
reclaims blocks that are no longer in use and makes them available for new data.

In summary, sector mapping is an essential component of a FTL, allowing it to provide
reliable and efficient access to flash memory while hiding the physical attributes of the
flash from the file system.

3.2. Block Mapping Strategy

Block mapping in the FTL is the process of mapping logical blocks for a file system
to the physical blocks upon the flash. In addition, the mapping is stored in a table, often
referred to as the block map or page map, which is maintained by the FTL.

Block mapping’s goal is to provide an abstraction level in the middle of the file system
and the flash memory, so that the file system may treat the flash memory like a regular
spinning disk. The FTL is in charge of controlling the flash memory’s physical properties,
including wear-leveling, faulty block management, and trash collection.

The FTL dynamically performs block mapping, and when new data are written to
the flash memory and old data removed, the mapping may change. The mapping must
be constant, and the FTL must make sure that data does not get wasted in the case of a
power outage. To prevent data loss, this necessitates the use of write buffering, metadata
management, and appropriate error handling.

Block mapping can also be used to implement various performance optimization
techniques, such as wear-leveling, which spreads writes evenly across the flash memory
to ensure that all blocks have an equal number of writes, and garbage collection, which
reclaims blocks that are no longer in use and makes them available for new data.
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In summary, block mapping is an essential component of the FTL, allowing it to
provide reliable and efficient access to flash memory, while hiding the physical traits of the
flash-based memory from the file system.

The review of the sector, block, and hybrid mapping with respect to the cost of reading,
and the computational overhead of the size of the mapping table, with respect to each
mapping methodology, is given in Table 1.

3.3. Hybrid Mapping Methodology

Hybrid mapping in a FTL is a method of mapping logical blocks of the file system to
physical blocks on the flash memory, which combines elements of both page mapping and
block mapping.

In page mapping, every logical page can be mapped to a single physical page, while
in block mapping, every logical block is mapped in corresponding with a single physical
block. In hybrid mapping, a logical block is divided into multiple pages, and each page is
mapped to a physical page.

Hybrid mapping is used to provide a balance between the benefits of both page
mapping and block mapping. The small size of pages in page mapping allows for more
efficient wear-leveling and garbage collection, while the larger size of blocks in block
mapping provides better performance and reduces overhead.

With hybrid mapping, the FTL can maintain the benefits of both page mapping and
block mapping, while also allowing for more fine-grained control over the mapping process.
This can result in improved performance and reliability compared to using either page
mapping or block mapping alone.

In addition, hybrid mapping allows for the use of various flash management algo-
rithms, such as wear-leveling, bad block management, and garbage collection, to optimize
the performance and reliability of the flash memory.

In summary, hybrid mapping is a flexible and efficient method of mapping logical
blocks to physical blocks in a flash translation layer, providing the benefits of both page
mapping and block mapping.

3.4. Log Block Method

A log block within a FTL is a block of the flash memory that is used to store data
temporarily before being written to a final location on the flash memory. The log block is
used to improve the write performance of the flash memory by allowing data to be written
to the log block and then later transferred to their final location in a single operation.

The use of log blocks in a FTL is known as log-structured flash memory (LFSM) [26–29]
and is designed to prevail over the shortcomings of flash memory in terms of its write
performance and endurance. The log block acts as a buffer for incoming write requests,
allowing multiple write requests to be combined into a single, larger write operation. This
can result in improved write performance and reduced write amplification, which is a
measure of the amount of data written on the top of flash memory relative to the amount
of data requested to be written.

Moreover, log blocks can be used to implement various flash management algorithms,
such as wear-leveling and garbage collection, which can improve the performance and
reliability of the flash memory.

In short, log blocks are an important component of a flash translation layer and are
used to improve the write performance and reliability of flash memory. They provide a
flexible and efficient way to manage the write requests to the flash memory and ensure that
data are written quickly and reliably.

3.4.1. BAST

The block associative sector translation (BAST) is a method of flash translation in
which a group of logical sectors is mapped to a single physical block of the flash memory.
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In BAST, a block of flash memory is divided into a number of pages, and each page
is associated with a single logical sector. The mapping information is stored in a table
in RAM, which is used to translate the logical addresses to physical addresses. The
mapping information is updated dynamically as data are written to and deleted from the
flash memory.

The BAST is used to implement the FTL for flash memory-based storage devices. The
advantage of BAST is that it provides better performance compared to other methods of
flash translation, as each physical block can contain multiple logical sectors, reducing the
number of erase operations required to write data to the flash memory.

In comparison to other methods of flash translation, such as page mapping and fully
associative sector translation (FAST), the BAST provides a balance between the flexibility
of the mapping process and the performance corresponding to flash memory.

However, the BAST also has a higher overhead compared to page mapping, as the
mapping information must be stored in RAM, and the mapping table must be updated
dynamically as data are written to and deleted from the flash memory.

In summary, the BAST is a method of flash translation that provides a balance between
the flexibility of the mapping process and the performance of the flash memory. It is used
in flash translation layers to provide efficient and reliable access to flash memory-based
storage devices.

3.4.2. FAST

The fully associative sector translation (FAST) [26–29] is a method of flash translation
in which every logical sector of the file system can be mapped to any physical sector of the
flash memory. In addition, the FAST is associated as a part of the FTL covered in various
schemes and methodologies.

In FAST, the mapping information is stored in a table in RAM, which is used to
translate the logical addresses to physical addresses. It divides flash storage into two types
of areas, i.e., data and log. The mapping information is updated dynamically as data are
written to and deleted from the flash memory.

Moreover, the FAST is utilized to execute the FTL for storage devices leveraging flash
memory. The advantage of the FAST is that it provides more flexibility in the mapping
process, as every logical sector has the capability of mapping it to every physical sector,
allowing for efficient wear-leveling, as well as garbage collection algorithms.

In comparison to other methods of flash translation, such as block mapping and page
mapping, the FAST provides the greatest degree of freedom in mapping logical sectors
to physical sectors, which can result in the improved performance and reliability of the
flash memory.

However, the FAST also has a higher overhead compared to other methods of flash
translation, as the mapping information must be stored in RAM, and the mapping table
must be updated dynamically as data are written to and deleted from the flash memory.

In brief, the FAST is a method of flash translation that provides a high degree of
flexibility in the mapping process, but also has a higher overhead compared to other
methods of flash translation. It is used in flash translation layers to provide efficient and
reliable access to flash memory-based storage devices.

4. Motivation for Using FTL in Crash Recovery

In crash recovery scenarios, the FTL can play a crucial role in ensuring the integrity of
the stored data. When a system experiences a crash, it may result in incomplete or corrupted
data being written to the flash storage. In such cases, the FTL can help in recovering the
data by mapping the logical addresses to their corresponding physical addresses on the
flash storage. The FTL can also reduce the time required for crash recovery. Without the
FTL, the system would need to scan the entire flash storage to locate and recover the data.
This can be a time consuming process, especially when dealing with a large amount of
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data. With the FTL, the system can quickly locate and recover data by mapping the logical
addresses to their corresponding physical addresses.

In addition, the FTL can also help in reducing the frequency of crashes by using
techniques such as wear-leveling and garbage collection to ensure that the flash storage is
used efficiently and effectively. This can help to prevent the premature wear and failure of
the flash storage, which can lead to crashes. In summary, the motivation for using the FTL
in crash recovery is to ensure the integrity of the stored data, reduce the time required for
recovery, and prevent premature wear and failure of the flash storage.

Moreover, the FTL is responsible for translating logical block addresses to physical
block addresses on the underlying NAND flash memory. Besides its primary role in SSDs,
the FTL can also be leveraged to provide crash recovery mechanisms that can help prevent
data loss and corruption in the event of system crashes. Herein, we illustrate various
benefits of using the FTL for crash recovery. By using the FTL to manage the mapping of
logical to physical block addresses, the SSDs can implement crash recovery mechanisms
that help ensure data integrity and prevent data loss in the event of a system crash. This
can help improve the overall reliability of the storage system, which is especially important
in applications that require a high level of data availability. The FTL-based crash recovery
mechanisms can help reduce the recovery time in the event of a system crash, compared
to traditional storage systems. This is because the FTL can maintain a mapping of logical
to physical block addresses in nonvolatile memory, which allows it to quickly recover the
mapping and resume normal operation following a crash [12–14].

Similarly, the FTL-based crash recovery mechanisms can also help reduce maintenance
costs, as they can eliminate the need for data backup and other data recovery processes
that may be required in traditional storage systems. This can help simplify the storage
management process and reduce the overall cost of ownership for the storage system. The
FTL-based crash recovery mechanisms can also help improve overall system performance,
as they can eliminate the need for time consuming data recovery processes that may be
required in traditional storage systems. This can help improve application performance
and reduce system downtime, which can have significant benefits in applications where
high availability is critical.

Ultimately, the FTL-based crash recovery mechanisms can provide several advantages
over traditional storage systems, including improved reliability, faster recovery time, lower
maintenance costs, and improved performance. By leveraging the advanced features of
modern SSDs, such as the FTL, organizations can help ensure that their critical data remain
available and secure, even in the event of system crashes.

5. The FTL-Based Crash Recovery Schemes and Discussion

Due to the practical significance of crash recovery methods in a FTL, we herein discuss
various state of the art works that deal with the crash recovery problem in the FTL. First, we
explain the schemes that utilize machine learning with the FTL for crash recovery. Moreover,
in Tables 2 and 3 we provide a summary of the schemes, with respect to their flash-type
simulators and metrics of comparison for the NAND and SSD flash types. Further, Table 4
provides a summary of mapping strategies, i.e., sector, block, as well as hybrid.

5.1. Machine Learning-Based Methods for Crash Recovery

The authors proposed an approach based on machine learning for the error recovery
of low-delay NAND flash devices. In general, the maintenance time and activity variation
of a NAND flash controller are obscure. Hence, the selection of a suitable decoding mode is
challenging for a controller, causing an increase in the latency. To substitute the inaccessible
data, the authors employed the on-cell ratio as alternative data. The authors’ suggested
error recovery strategy selects an appropriate decoding mode that guarantees effective
error recovery along with a minimum latency for an average reading operation. Through
simulation, they demonstrated that their proposed approach predicts the best possible
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decoding mode together with high-level accuracy. Furthermore, the performance of average
latency for a read is substantially improved, as compared with other baselines [30,31].

The first finding of this study was that groups of shared pages should be studied
independently, since they have distinct raw bit error rate (RBER) values. Utilizing the char-
acterization data of a brand new, unused flash memory chip, we built a machine learning
model using this realization to forecast the blocks that would have reduced durability (s).
To do this, location-sensitive and value-sensitive features from the shared pages group were
extracted and engineered into more complex and comprehensible characteristics. We also
discussed how lifespan may be increased by combining our suggested prediction model
with the current FTL wear-leveling mechanism. The support vector machine (SVM) outper-
formed the other machine learning algorithms we assessed for the proposed prediction and
longevity enhancement method [32], achieving higher accuracy of up to 85% at a reduced
computational cost.

In this paper [33], the authors utilized a dynamic ERF leveraging machine learning
(ML), which predicts an ideal decoding mode, ensuring productive decoding and the least
latency of read operation and uses it directly for a reduction of the read latency. Owing to
process differences experienced in the memory manufacturing procedure, the characteristics
of memory are different via chips; therefore, it becomes difficult to utilize a trained model
of prediction on different chips. Moreover, the training of the customized model (of
prediction) at every chip of memory is infeasible since the computational overhead for
training is severe, and a huge amount of training data were used. Therefore, the authors
leverage ERF prediction considering reusable ML, which deals with changing input as
well as output relationships through chips, because of process variation. The ML strategy
reuses a pretrained model design, or knowledge acquired, as source tasks for adjusting the
model towards performing its task with no performance loss in various chips. The authors
adopt two reusable ML methods for the prediction of the ERF based upon metalearning
and transfer learning. The transfer learning strategy reuses the model, which is pretrained
via reducing domain change between the source and target chips, utilizing an algorithm for
domain adaptation. In contrast, the metalearning approach learns common features from
several source chips throughout the procedure of metatraining. Then, the trained model
(meta) reuses formerly learned knowledge towards quickly adapting, according to various
chips. The numerical results show the benefits of the proposed scheme through the high
accuracy of prediction in several chips. Moreover, the suggested ERF prediction, which is
based upon transfer learning and metalearning, results in a reduction of read latency in
comparison with conventional strategies.

5.2. Various Flash Types Leveraging FTL in Crash Recovery and Parameters of Evaluation

In study [34], the authors have proposed two crash recovery schemes that need fewer
write operations on flash memory. The suggested methods remove redundant flash writes
via storing metadata simultaneously, through employing a spare area linked with every
data page.

In flash memory, the volatile memory is utilized for the storage of frequently accessed
mapping tables. Nevertheless, the tables can be lost upon a sudden failure of power.
Hence, the authors introduce a recovery scheme with optimized metadata that retrieves
the tables more quickly than other state of the art methods. A compression methodology is
utilized, where several data along with their metadata are stored on a physical page through
utilizing a fast strategy for the incompressible and compressible data. In the strategy of
incompressible data, the storage of metadata are on the physical pages of compressible data.
In contrast to this, in the method for compressible data, to recover the data, the metadata for
the preceding pages are embedded in the data area for every physical page. This method
has lower area operating costs with higher performance, as compared with related works.
In addition, the results from the simulation reveal that the proposed approach with real
workloads surpasses other schemes through a significant decrease in the time of recovery
i.e., up to 92.42% [35].
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As a storage medium, the NAND flash memory has gained widespread acceptance.
Crash recovery turns out to be crucial in NAND flash memory storage procedures since
power outages can happen several times, and cause data loss. The flash translation layers
(FTLs) are needed to control flash memory; therefore, how to properly and consistently
recover the FTL metadata after a system crash is the crux of the crash recovery challenge
in the NAND flash. Moreover, the deterministic crash recovery (DCR), which uses a
deterministic technique for crash recovery in the NAND flash storage devices, is presented
by the authors in [36]. The core concept is to use crash recovery to take advantage of
the determinism of the FTLs and recreate the events that took place between the past
checkpoint and the current crash point. By merely examining a small number of blocks
dependent on deterministic FTL processes, the DCR can restore the system more effectively
than previous methods that require scanning the whole flash memory chip. We put the
DCR into practice in a FTL and contrasted it with typical version-based and power loss
recovery strategies based on embedded ARM systems. According to experimental findings,
the DCR can significantly shorten recovery times and ensure the consistency of the FTL
information following recovery.

A unique crash recovery plan is offered by the authors of [37] for FAST, a hybrid
address mapping FTL. It uses the FAST FTL property that log blocks in a log area and
are utilized in a round-robin fashion to write regularly freshly created address mapping
information in a log-structured manner, giving it two benefits over the current FTL recovery
systems: one is the low overhead involved in logging throughout regular FTL operations;
the other is the quick recuperation time.

Table 2. Various methods, flash types, and performance parameters for comparison of the NAND.

Schemes and Strategies Used in Literature Type of Flash Parameters Used for Evaluation and Comparison

Redundancy removing [34] NAND Reduce write operations upon the flash memory

DCR [36] NAND Reduction in recovery time

FAST FTL [37,38] NAND Recovery time evaluation

Fast Check [39] NAND Logging overhead, recovery time

PORCE [40] NAND Time of recovery

DSFTL [41] NAND Overhead associated with trash operations, erase operations
reduction, increase of switch merge operations

FTRM [42–45] NAND To check the reliability of the recovery scheme

Timing analysis [46] NAND Time of crash recovery

Logging method [47] NAND Power of recovery, metadata overhead

Legacy logging scheme [48] NAND Cost of recovery, page mapping reliability

Lazy FTL [49] NAND Scalability, response latency, and overhead for merging
operations

RSLSP [50–52] NAND Recovery latency, comparison of latency with recovery and
without recovery

Page mapping [53] NAND Recovery time and management costs for mapping
information

Flash memory has expanded in popularity in recent years as a result of its benefits,
including quick data access, low power consumption, and great mobility. However, there
are other issues with flash memory that need to be resolved, such block deletion restrictions
and erase before write issues. The FTL (flash translation layer) has been presented as a
solution to this problem, and includes helpful capabilities including wear-leveling, trash
collection, and address mapping. In the event that the storage systems lose power while
being used, data may be lost. The data might be vital in some systems. Data recovery
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is therefore crucial in the case of a system disaster or a sudden power interruption. Re-
searchers have been interested in this issue, and several studies have been conducted. In
this work, we examine early research on data recovery for flash memory, ranging from FTL
processing techniques to PLR (power loss recovery) explanations that have been suggested
by authors in conference proceedings, patents, or in scholarly magazines. This will include
an overview and a review of the solutions that have been suggested for data recovery in
flash memory [38].

Table 3. Various techniques, flash type, and performance metrics for comparison of the SSD.

Schemes and Strategies Used
in Literature

Flash Type Simulator for
Performance Analysis

Metric/Parameter for Performance Analysis
and Comparison

Optimized metadata [35] SSD Recovery time reduction

Wear level FTL [38] SSD Power loss recovery

ExTENDS [43] SSD Performance of throughput for SSD

HIL [44] SSD Reliability analysis of the proposed scheme

O1FTL [45] SSD Crash recovery time

LeaFTL [51] SSD Memory usage of the mapping table, and storage
performance

FTL leveraging address mapping [52] SSD Response time and analysis of wear balancing
percentage

ZoneLife [54] SSD SSD longevity, write speed.

The majority of flash storage systems have a FTL (flash translation layer), which is
necessary to protect updated metadata from an unexpected power outage. Making the
crash recovery scheme efficient is desired since it has a major impact on a flash storage
device’s writing performance during standard function, as well as its dependability and
recovery performance. Even though the rational use of a crash recovery method in a FTL
is needed, there are not many publications that address the crash recovery problem in
FTL in depth. The authors of [39] introduced a brand-new crash recovery method for a
hybrid mapping FTL known as FAST, termed Fast Check (FAST). Increasingly, Fast Check
utilizes the features of a FAST FTL, where the log blocks in a log area are employed in a
round-robin fashion, to effectively protect the freshly generated address mapping data
utilizing periodic checkpoints. As a result, it offers two key benefits over the remaining
FTL recovery structures: the first is having a small logging overhead throughout normal
FTL operations; and the second is having a quick recovery time in a situation where the log
provisioning rate is relatively high, for example, over 20%, and the flash memory capacity
is very large, for example, 32 GB or 64 GB.

The authors of [40] propose PORCE, an effective power-off recovery mechanism
for flash memory (i.e., a power-off recovery strategy for flash memory). The PORCE
minimizes performance deterioration during routine operations since it is closely tied
to FTL operations and stores recovery information as sparingly as is feasible. The wear-
leveling module is one of the cost-based reclamation methods offered by PORCE. Empirical
research demonstrates that PORCE is a successful recovery technique. The recommended
method called for distributing the table’s store mapping on a spare area of the page in order
to be ready for an unexpected loss of power. Instead of creating past PLR innovation, this
technique stores the FTL map in a table. Then, flash write codes are included. When there
has been a power outage, the same procedure is applied under unusual circumstances.
Planning storage solutions as soon as feasible is typically more profitable.

In this [41] FTL, we make extensive use of SW (sequence write) log blocks to improve
switch merge performance, while reducing partial merge performance. Additionally, DS-
FTL dynamically manages the data blocks and log blocks to lessen the expensive complete
merging and wipe operations. Further, in order to maximize the data block’s space availabil-
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ity, our technique forbids the merging of the data block with a large number of free pages.
Our comprehensive experimental findings demonstrate that our suggested strategy (DS-
FTL) decreases the number of erase operations while increasing switch merging operations.
The DSFTL lowers the overhead associated with trash collection as a consequence.

With its performance and compactness advantages, flash memory has become more
common. This makes it possible for it to be quickly adopted as a storage medium in a
variety of portable devices, including, but not limited to, smartwatches, smartphones,
drones, and in-car entertainment systems. Existing flash translation layers (FTLs) use a
cache mapping table (CMT), which only stores a tiny percentage of logical page number
to physical page number (LPN-PPN) mappings, to accommodate huge flash storage in
such portable devices. During system recovery, for robustness it is crucial to take the
CMT reconstruction processes into account. At this time, there is no way to avoid the
performance hit caused by unexpected power outages. This is because the delay brought
on by discrepancies between the mapping pages in flash storage and the cached RAM
page-mapping entries has been disregarded. The best pages to choose for recreating the
CMT after device reboots also need to be reviewed. For flash memory storage systems,
we address these issues in this work and provide a fault-tolerant power failure recovery
mechanism (FTRM). Our empirical investigation demonstrates that FTRM is a reliable
recovery technique [42].

To replace the sluggish conventional flash memory solid-state drives, nonvolatile
memory phase change memory (NVM-PCM) might be used to create a PCM-SSD (PSSD)
(FSSD). To manage PCM endurance limitations, the ability to do in-place updates, bit-
addressability, and the ability for it to appear to the host as a block device as its predecessors
(HDD and FSSD) do; however, careful design is required, especially for the controller.
In [43], the authors suggest implementing ExTENDS, a hardware assumption of NVM-PCM
as our future secondary/persistent memory in storage systems, rather than NVM-flash
memory. Additionally, the authors offer a PCM file translation layer (Phase FTL) that can
effectively handle address translations from a host file system to PCM, while concealing
PCM constraints and enabling the PCM blocks to degrade uniformly. Additionally, PCM’s
bit-addressability and in-place update functionality may be effectively modified by Phase
FTL. Our testing reveals that compared to conventional FSSDs, the suggested PCM-SSDs
(PSSD) can increase total SSD performance throughput by an average of 69%.

5.3. Mapping Mechanisims i.e., Sector, Block and Hybrid Mapping Schemes in FTL
Crash Recovery

Correspondingly, Choi [44] suggested a general FTL form with the hierarchically
interacting protocols crash recovery (HIL) module. The HIL framework’s primary objective
is to treat FTLs’ Achilles heel, which is their crash recovery (hence, its name). However,
because of its compositional structure, the framework is sufficiently generic to include
both block-mapped and page-mapped FTLs, as well as many of their variations, including
hybrid variations. Within the HIL paradigm, crash recovery is divided into two stages:
structural recovery and functional recovery. Shadow paging is used during structural
recovery to atomically remove any remaining effects from program processes running at
the time of the crash. Operations that would have been carried out if there had not been
a crash are repeated during the functional recovery in a redo-only manner. Due to the
idempotent operation of both phases, repeated crashes during recovery will not result
in any new issues. By developing a prototype, and demonstrating that its performance
during normal execution and also during crash recovery is at least as excellent as that of
cutting-edge SSDs, we prove the viability of the proposed HIL architecture.

Due to end-user demands, the capacity of flash-based storage, such as the SSD and
embedded multi media card (eMMC), is constantly growing. The flash translation layer
(FTL), on the other hand, is in charge of the crash recovery based on the full flash memory
if flash-based storage crashes during a power outage. As the capacity of the flash-based
storage rises, the recovery time lengthens. We suggest O1FTL, which has an independent
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O (1) crash recovery time from flash capacity. The working area approach recommended
for the flash file system is adopted by O1FTL, which then tests the design on actual
hardware. In terms of I/O performance, the findings demonstrate that O1FTL achieves a
crash recovery time that is independent of the capacity and the overhead, and achieves a
low P/E cycle [45].

In recent years, flash memory technology has expanded alongside the wave of end-
user electronics and fixed systems, with flash memory storage devices’ capacity growing
quickly. Vendors encounter significant difficulties in system design and analysis in order
to effectively control product cost and startup performance. As a result, a crucial area for
further research is the timing analysis of system loading, together with crash recovery for a
segment-based FTL. Besides, system initialization, crash recovery, and time analysis are
the main topics of the current study. The main memory’s size and the system startup time
are related to the timing study of system initialization. The worst-case recovery time is
explained by the temporal analysis of crash recovery. The tests in this work demonstrate
that the segment-dependent FTL [46] may be subjected to the timing analysis of system
setup and crash recovery.

The authors in [47] model fast metadata recovery and logging approach to support
the fast and efficient recovery of power loss. The planned recovery method is based on the
page-level mapping FTL. In the constructed FTL, all the metadata modifications are logged
into a distinct flash block, which reduces the occurrence of metadata updates. During the
recovery phase, only metadata blocks are recovered. The created FTL metadata logging
and recovery system support rapid power loss recovery, with a small number of metadata
overhead intended for logging.

A new technique that improves the reliability of a page mapping level FTL operating a
legacy logging strategy is illustrated in [48]. Moreover, the recovery rate of page mappings
also reduces. The novel procedure is to implement a virtually shrunk section and switch off
page mapping logs by means of building and storing the sections. This segment proposal
also offers embedded NAND flash-based storage to boost its response time. Moreover, the
results are also improved, and this innovative plan increases the page mapping reliability,
consequently improving the cost of recovery as compared with the conventional page
mapping FTL.

In [49], the authors suggest a brand-new FTL system called Lazy FTL, which has great
scalability, low response latency, and completely takes away the overhead of merging oper-
ations. According to experimental findings, Lazy FTL works better than other commonly
used FTL techniques and is extremely near to the theoretically ideal solution. Additionally,
we offer a fundamental architecture that helps Lazy FTL recover from system faults.

An efficient plan for the recovery of flash memory using the shadow paging idea
was offered in [50] for storage devices utilizing flash memory. The recommended RSLSP
solution stores and preserves the map block data as a combination of two tables, i.e., the
first block is the original block and the second block is a clone of the original, to battle the
problem of unexpected power-off. In comparison to the cutting-edge techniques mentioned
in the literature, the proposed strategy not only increases a flash memory device’s capacity
but also works with the currently used FTL-based methods.

The authors of [51] introduce the Lea FTL, a learning-based flash translation layer
(FTL), which uses run-time linear regression to train its address mapping to withstand
dynamic data access patterns. The address mapping table’s memory footprint is greatly
reduced by combining a large number of mapping entries into a learning segment, which
also helps SSD controllers’ data caching. The Lea FTL also uses a number of optimization
strategies, such as the dynamic compaction of learned index segments and out of band
metadata verification to accept inaccurate predictions. We put the Lea FTL into practice
using an SSD emulator and test it with different storage demands. In comparison to cutting-
edge FTL techniques, the Lea FTL reduces the memory usage of the mapping table by an
average of 2.9x and boosts storage performance by an average of 1.4x.



Electronics 2023, 12, 1422 16 of 21

In [52], the authors improve the conventional FTL technique and suggest a new FTL
approach that, given the upper layer is provided with the address mapping, ensures
real-time accomplishment in performance by reducing the worst time of response for
the request, regarded as a gauge of the promised flash storage quality of service (QoS).
The technique uses a concept i.e., space for time, and distributes the written replica of
flash to every write request in order to considerably lower the most unpleasant response
time for the request of a write function. The algorithm also takes into account balance
factors. Following experimental validation, the proposed approach outperforms active
FTL algorithms regarding real-time achievement in performance and improves both the
average time of reaction as well as wear balance through more than 11%. The wear-level
module is, incidentally, added to an algorithm. The algorithm has been improved, and the
worst response time has decreased by 47.6%.

Using the spare area in FTL separated into error code correction (ECC), map informa-
tion, and reserved, the authors offered a strategy based on page-leveling mapping in this
study [53]. The authors compare the recovery time and mapping information management
costs of the approach with those of earlier schemes auch as in-block backup and in-page
backup, in order to assess the performance of our technology.

In [54], the authors provide an innovative codesign termed Zone Life that exposes the
data lifespan semantics from apps to the SSD, in response to the affirmative. The SSD may
choose the best error correction code (ECC) from a variety of codes with varying strengths
thanks to Zone Life. As a result, the SSD requires a lot less power to store temporary data.
Zone Life uses a multigranularity flash translation layer to effectively convert the data
addresses of various lifetimes (FTL). Because Zone Life’s device firmware makes use of
the well-known Zone Namespace interface, and its host driver API generalizes Linux’s
write hint interface, existing systems may readily adopt it with localized tweaks. Multiple
sample databases and cloud workloads are used to test Zone Life, and the findings reveal
observable increases in SSD longevity and write speed. Table 4 provides an analysis of
various approaches that utilize FTL for crash recovery and leverage its usage. In addition,
it provides a taxonomy of these approaches regarding their mapping strategies.

Table 4. Classification of FTL schemes with respect to the mapping mechanism.

Classification Scheme FTL-Based Approach Analysis with Respect to Their Mapping Scheme

Hybrid mapping [44] This scheme enables the building of either block mapped as well as page mapped FTLs but also their different
hybrids. It manages only a small number of structure blocks.

Hybrid mapping [45] This scheme was designed based on hybrid mapping. Each chip manages the log area and data area. During
operation, both areas are used at the same time.

Block mapping [46] A crash recovery technique is suggested in this article to prevent incorrect system startup. After a crash, some
dirty page map tables might not be written to their appropriate segments, or may be lost altogether.

Hybrid mapping [47]

The FTL metadata consists of root block, which entails block numbers for block map block or metablocks,
MapLog block and PageMap block. The 0 and 1 blocks are utilized for root block. First, block 0 is allocated to a
root block. However, in the final updated page within the root block, the root information is stored along with

locations for metablock data.

Block mapping [48]

The virtually-shrunk sector allows the page level FTL to develop its page mapping organization. Gathering the
less significant different sectors can undermine the additional page mapping logs formerly written through the

page mapping log formation. Subsequently, the suggested strategy towards page level FTL enhances the cost for
page mapping recovery.

Hybrid [45]
Lazy FTL splits the total flash memory to four parts: a data block area (DBA); a cold block area (CBA); a mapping

block area (MBA); and an update block area (UBA). The whole parts, apart from the MBA, are employed for
storing the data.

Sector mapping [50] The fundamental concept is to leverage shadow technological benefits and explain them through FTL. The goals
are to incorporate shadow algorithms to the FTL algorithm for storage to recover mapping information.

Hybrid mapping [52]
The experimental validation demonstrates that the proposed approach outperforms previous FTL algorithms,

with respect to real-time performance, and improves on both wear balance and average response time by more
than 11%.
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5.4. Significant Considerations in the Design of Power-Off Recovery with FTL

Herein, we describe the important considerations to design the power-off recovery
leveraging FTL.

â Designing a power-off recovery system with a flash translation layer (FTL) involves
several important factors to ensure the system is reliable and resilient. Herein, we list
some key considerations:

â Data consistency: the FTL must ensure that the mapping between physical and logical
blocks is consistent, even in the event of a power failure. This requires the use of
write buffering, metadata management, and proper error handling to prevent data
corruption or loss.

â Write performance: the FTL must minimize the write amplification and ensure that
writes are efficient and fast, even in the presence of power failures. This may involve
using techniques like wear-leveling and garbage collection to manage flash blocks,
and to ensure that writes are consistently distributed throughout the flash memory.

â Error handling: the FTL must be able to handle errors that may occur during power-
off, such as bad blocks or block erasures. The FTL must also be able to recover from
these errors, for example, by remapping logical blocks to a different physical block.

â Power loss protection: the FTL must use power loss protection (PLP) mechanisms
such as supercapacitors or battery-backed SRAM to ensure that data in the write
buffer can be flushed to the flash memory, even in the event of a power failure.

â System compatibility: the FTL must be compatible with the inherent flash memory,
together with the file system and operating system being used. This may require imple-
menting standard flash translation layer interfaces, such as the NAND flash translation
layer (NFTL) or the small computer system interface (SCSI) block commands.

By considering these factors, it is possible to design a power-off recovery system with
a flash translation layer that is robust and reliable, and that provides fast and consistent
data access, even in the presence of power failures.

6. Conclusions

The flash memory is used in more and more aspects of daily life, and ways to increase
its capacity are extensively used in the devices that support it. In the event of an unexpected
power loss or power failure, it is crucial to restore data when something goes wrong with
flash storage; therefore, crash recovery is an extremely difficult task. It is a vibrant research
area that draws many researchers; hence, numerous technical solutions have been suggested
thus far. As the performance of flash memory devices is considerably affected by the FTL,
it is particularly important to take into consideration the increasing capacity for flash
memory devices, resulting in the effectiveness of FTL becoming even more vital. Hence,
in this paper, we discuss various optimization schemes for the traditional FTL algorithm,
with respect to their flash types and the parameters for measuring performance. These
parameters include: the recovery time for a crash; power loss recovery; computational cost;
accuracy; reliability evaluation; throughput analysis; the overhead of logging; a decrease of
the read latency; write speed; the reliability of page mapping; metadata overhead; the cost
of the management of mapping information; and response time. We presented background
knowledge related to flash storage types and a software recovery module i.e., the FTL.
In addition, we have created a taxonomy of FTL algorithms. Then, we analyzed various
recovery schemes and revealed the parameters of comparison for evaluation presented by
various schemes. Finally, we have enlisted some vital considerations and recommendations
to design an effective power-off recovery utilizing the FTL. Moreover, we provide all the
acronyms explanation in Table 5.
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Table 5. A list of acronyms and notations.

Acronym/Symbol Explanation

FTL Flash translation layer

HIL Hierarchically interacting protocols crash recovery

DCR Deterministic crash recovery

SSDs Solid-state drives

HDD Hard drive

FAST Fully associative sector translation

PDA Personal digital assistants

PORCE Power-off recovery mechanism

ML Machine learning

ERF Error recovery flow

RBER Raw bit error eate

SVM Support vector machine

DSFTL Dynamic setting for FTL

FTRM Fault tolerant recovery mechanism

ECC Error correction code

LEAFTL Learning-based flash translation layer

EMMC Embedded multi media card

QoS Quality of service

API Application programming interface

FSSD Flash memory solid-state drives

PCM Phase change memory

NVM Nonvolatile memory

PSSD PCM-SSD

OOB Out of band

LPN Logical page number

CBA Cold block area

MBA Mapping block area

DBA Data block area

UBA Update block area

P Program

E Erase

SW Sequential write

CMT Cache mapping table

DRAM Dynamic random-access memory

MEW Metadata embedded write
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