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Abstract: Video splicing forgery is a common object-based intra-frame forgery operation. It refers to
copying some regions, usually moving foreground objects, from one video to another. The splicing
video usually contains two different modes of camera sensor pattern noise (SPN). Therefore, the
SPN, which is called a camera fingerprint, can be used to detect video splicing operations. The
paper proposes a video splicing detection and localization scheme based on SPN, which consists
of detecting moving objects, estimating reference SPN, and calculating signed peak-to-correlation
energy (SPCE). Firstly, foreground objects of the frame are extracted, and then, reference SPN are
trained using frames without foreground objects. Finally, the SPCE is calculated at the block level to
distinguish forged objects from normal objects. Experimental results demonstrate that the method
can accurately locate the tampered area and has higher detection accuracy. In terms of accuracy and
F1-score, our method achieves 0.914 and 0.912, respectively.

Keywords: digital video forensics; video splicing; object-based forgery; video forgery detection; SPN

1. Introduction

Video is generally considered to provide stronger forensic evidence than images.
Therefore, digital video is usually regarded as important evidence in case investigations.
However, the content of the digital video can be easily changed with multimedia editing
tools, resulting in seeing being no longer believing. To verify the credibility of digital video
and ensure the authenticity of video content, video forensics technology has received much
attention from researchers.

The forgery operations for digital video can be divided into two groups: inter-frame
forgery [1,2] and intra-frame forgery [3]. Intra-frame forgery detection is the main research
content of this paper. The intra-frame modification of moving objects is usually the most
concerning malicious tampering and forgery operation. In particular, the change of seman-
tic video objects directly affects people’s understanding and cognition of video content,
such as the deletion or splicing of moving objects. A description of different types of
object-based intra-frame forgery operations is summarized in Figure 1.

Video splicing refers to copying some regions of one video, especially foreground
objects, into another video, which is one of the most common object-based intra-frame
tampering operations in digital video. This operation completely changes the semantic
information of the original video content, destroying the authenticity of the video. In this
paper, we mainly focus on the detection of video splicing.

According to the characteristics of a video splicing operation, the synthesized video is
spliced using two different videos, and the forged video contains equipment information
from two different cameras. Therefore, features that can identify device information are
often used to detect forgery, such as sensor pattern noise (SPN). Because of the non-ideality
of the imaging sensor, each digital camera outputs a relatively stable residual noise, which
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is called camera sensor pattern noise [4]. SPN mainly refers to the photo-response non-
uniform (PRNU), which is mainly produced by the pixel inhomogeneity of the sensor,
that is, the main component is the pixel non-uniform. SPN not only varies from camera
to camera but also follows a consistent pattern for every image or video frame recorded
by a particular camera. Therefore, it can be regarded as a camera fingerprint. This noise
information is added to the image data of each frame of the video and can be used to track
the source camera as well as detect content forgery.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 14 
 

 

 
Figure 1. Description of different types of intra-frame tamper operations. 

Video splicing refers to copying some regions of one video, especially foreground 
objects, into another video, which is one of the most common object-based intra-frame 
tampering operations in digital video. This operation completely changes the semantic 
information of the original video content, destroying the authenticity of the video. In this 
paper, we mainly focus on the detection of video splicing. 

According to the characteristics of a video splicing operation, the synthesized video 
is spliced using two different videos, and the forged video contains equipment infor-
mation from two different cameras. Therefore, features that can identify device infor-
mation are often used to detect forgery, such as sensor pattern noise (SPN). Because of the 
non-ideality of the imaging sensor, each digital camera outputs a relatively stable residual 
noise, which is called camera sensor pattern noise [4]. SPN mainly refers to the photo-
response non-uniform (PRNU), which is mainly produced by the pixel inhomogeneity of 
the sensor, that is, the main component is the pixel non-uniform. SPN not only varies from 
camera to camera but also follows a consistent pattern for every image or video frame 
recorded by a particular camera. Therefore, it can be regarded as a camera fingerprint. 
This noise information is added to the image data of each frame of the video and can be 
used to track the source camera as well as detect content forgery. 

The use of SPN in video forensics is mainly focused on source camera identification 
[5,6] and video recapture [7,8]. Some scholars have also tried to detect video content for-
gery based on pattern noise, such as object deletion, copy-paste, video splicing, and so on. 
For video object deletion forgery, Hsu et al. [9] detected the consistency of noise residual 
correlation to determine whether the video motion object was deleted. Hyun et al. [10] use 
SPN to detect tampering operations such as video clipping or object deletion for surveil-
lance video. Sun et al. [11] illustrated a scheme to recognize video object deletion forgery 
based on pattern noise consistency. The scheme in Ref. [12] combines SPN and noise re-
sidual inconsistency to detect and locate the object deletion region. For video copy-paste 
forgery, Liu et al. [13] proposed a method based on a noise correlation matrix to realize 
the detection of video copy-paste forgery. Raahat et al. [14] pointed out that SPN was 
much more robust and efficacious than noise residue and proposed a copy-paste tamper 
detection method based on SPN. The Hausdorff distance-based clustering scheme is used 
to detect and locate the copy-paste region. For video splicing forgery, Kobayashi et al. [15] 
were dedicated to detecting synthesized videos based on inconsistency in NLF (noise level 
function). Assuming that the NLF generated by the camera’s response function is linear, 
the noise characteristic at each pixel can be obtained. However, this method is not suitable 
for nonlinear NLF. A detection algorithm for blue screen matting and synthetic tampering 
is proposed in Ref. [16]. A reference pattern of noise for a digital camera is extracted by 
averaging the residual noise from each video frame. The forgery can be exposed in the 
Fourier transform domain via the difference between the noise pattern of the original 
video and that of the forged video. However, the algorithm assumes that the matting fore-
ground image comes from a high-resolution camera. When the assumption condition is 
not satisfied, the detection accuracy decreases. Huang et al. [17] proposed a forgery 

Figure 1. Description of different types of intra-frame tamper operations.

The use of SPN in video forensics is mainly focused on source camera identification [5,6]
and video recapture [7,8]. Some scholars have also tried to detect video content forgery
based on pattern noise, such as object deletion, copy-paste, video splicing, and so on.
For video object deletion forgery, Hsu et al. [9] detected the consistency of noise residual
correlation to determine whether the video motion object was deleted. Hyun et al. [10]
use SPN to detect tampering operations such as video clipping or object deletion for
surveillance video. Sun et al. [11] illustrated a scheme to recognize video object deletion
forgery based on pattern noise consistency. The scheme in Ref. [12] combines SPN and noise
residual inconsistency to detect and locate the object deletion region. For video copy-paste
forgery, Liu et al. [13] proposed a method based on a noise correlation matrix to realize
the detection of video copy-paste forgery. Raahat et al. [14] pointed out that SPN was
much more robust and efficacious than noise residue and proposed a copy-paste tamper
detection method based on SPN. The Hausdorff distance-based clustering scheme is used
to detect and locate the copy-paste region. For video splicing forgery, Kobayashi et al. [15]
were dedicated to detecting synthesized videos based on inconsistency in NLF (noise
level function). Assuming that the NLF generated by the camera’s response function is
linear, the noise characteristic at each pixel can be obtained. However, this method is not
suitable for nonlinear NLF. A detection algorithm for blue screen matting and synthetic
tampering is proposed in Ref. [16]. A reference pattern of noise for a digital camera is
extracted by averaging the residual noise from each video frame. The forgery can be
exposed in the Fourier transform domain via the difference between the noise pattern of
the original video and that of the forged video. However, the algorithm assumes that the
matting foreground image comes from a high-resolution camera. When the assumption
condition is not satisfied, the detection accuracy decreases. Huang et al. [17] proposed
a forgery detection method based on pattern noise clustering analysis. The objects in
low-density regions are obtained via a density-based clustering algorithm, which considers
tampered areas.

In recent years, video splicing detection has been paid more attention by researchers.
Su et al. [18] extracted quantized DCT coefficients of the foreground and background
respectively according to different quantization scale factors. The difference between the
two distribution coefficients was analyzed to determine whether the video was composed
of blue screen images. Chen et al. [19] utilized the statistical characteristics of video
objects, such as the moment features of wavelet coefficients and the average gradient
of each color channel, to determine the classification of natural objects and those that
have been spliced. Yuan et al. [20] detected the edge of the video frame using the Sobel
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operator and computed the deviation of four directions to judge a suspicious object edge.
Liu et al. [21] proposed a foreground detection and tracking scheme to identify blue screen
compositing. Local features like luminance and contrast are fused to find the tampered
foreground block, and the forged block is tracked in subsequent frames. Jin et al. [22]
adopted discontinuous noise distribution and video object segmentation contours as traces
to detect the splicing operation.

With the development of deep learning technology, deep learning-based forgery oper-
ations are becoming more and more mature; a quintessential application is deepfake. At the
same time, deep learning technology has also been applied to forgery detection methods,
such as camera model identification [23], image recapture forensics [24], video inter-frame
forgery detection [25], and video intra-frame forgery detection [26]. Yao et al. [27] employed
CNN (convolutional neural network) to automatically extract high-dimension features
to detect object-based forgery. Cozzolino et al. [28] used the Siamese network to extract
camera model fingerprints for the detection and localization of image forgery. Based on this
work, they applied the technique to video splicing forensics [29]. A Siamese network that
enhances the model-related traces hidden in a video is trained, and the pixel-correlation
inspection with noise inconsistency is selected. The method is also suitable for deepfake
forgery detection, similar to face swapping. Jung et al. [30] utilized DeepVision to analyze
significant changes in the eye blinking pattern to detect deepfakes generated by GAN
(generative adversarial network). The measurements are compared with DeepVision’s
natural motion database to distinguish deepfakes from a normal video. Wang et al. [31]
picked out AI-synthesized fake faces using FakeSpotter. The capabilities of neurons to
monitor layer-by-layer behaviors can capture more subtle differences to classify real or
fake faces.

According to the analysis of the above references, the SPN-based method can effec-
tively detect video tampering operations, but these algorithms still have some drawbacks.
Firstly, the camera reference sensor pattern noise (RSPN) is usually estimated by averaging
the noise of all frames in the video. However, the splicing forgery will change the unifor-
mity of the pattern noise. On the other hand, when locating the forged area, the entire
video frame is usually calculated, without considering the semantic content of the video
frame, which not only consumes time but also affects the positioning accuracy. Therefore,
how to improve the quality of the estimated camera RSPN and the accuracy of locating is
very important. In this paper, we present an effective video splicing detection algorithm
based on SPN. By analyzing the correlation of the SPN, we can identify whether the video
has been tampered with and locate the forged region. The experimental results show that
the detection accuracy is improved by enhancing the quality of the extracted RSPN. The
main contributions of our work are summarized as follows.

(1) Focus on the region of interest in the video is achieved. As the embodiment of the
semantic content of the video, the foreground object is usually spliced into other
videos. The contours of foreground objects are used to guide the precise recognition
of object-based splicing forgery, and the detection results are not affected even if the
video contains multiple foreground objects.

(2) Combining the video noise fingerprint with the video region of interest, only the
background frames of the video are used to estimate the camera RSPN. The noise
interference caused by spliced foreground objects is eliminated, and the quality of the
estimated camera RSPN is improved.

The rest of the paper is organized as follows. The proposed algorithm is presented in
Section 2. Section 3 introduces the database and evaluation metrics. Then, Section 4 gives
our experimental results and discussion. Finally, conclusions are drawn in Section 5.

2. Materials and Methods

In the previous algorithms, the RSPN is usually extracted by averaging the noise of
all frames in the video. But due to the splicing video being a composite of two different
videos, if all frames of the splicing video are used to establish the RSPN, the different
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SPN in the video will reduce the consistency of the noise model and affect the detection
accuracy. Assuming that video Q is the original background video and video R is the
original foreground video containing moving objects, video C is obtained by compositing
video Q and video R. To improve the quality of the RSPN of the video, it is necessary to
distinguish the SPN of video Q and video R. Since the original videos cannot be obtained
in practical application, it is necessary to preprocess the test video, video C, to achieve an
approximate effect. The extraction steps of RSPN for test video C are as follows.

Step 1: Detect the moving objects in the test video and record the frames which contain
the moving objects into the set M, M = {Fm1, Fm2, Fm3, · · · , Fmn}; n is the number of video
frames containing moving objects.

Step 2: Record the other frames which do not contain moving objects into set S,
S =

{
Fs1, Fs2, Fs3, · · · , Fsj

}
; j is the number of video frames without moving objects.

Step 3: The RSPN of the test video is obtained using the frames in set S.
The RSPN estimated by set S can eliminate the interference of the spliced foreground

objects. The correlation with the original object is enhanced, and the correlation with
the forged object is reduced, thus effectively distinguishing the forged object from the
original object.

The flowchart of the algorithm is shown in Figure 2.
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2.1. Motion Objects Detection

Background subtraction is a common method in the segmentation of moving objects.
It detects moving regions by calculating the difference between the current image and
the background image. The algorithm needs to get the background model of the scene
first and then use foreground detection to obtain the foreground. Since the accuracy of
the background model directly affects the detection results of moving targets, researchers
have proposed a variety of models. The most widely used is the Gaussian mixture model
(GMM) [32,33], which is used to extract the foreground objects of the video frame. This
model solves two problems: one is the change in the background, which refers to the
change brought by adding or removing the objects to the background, the change of color
and shadow caused by light, etc. The GMM can be used to inform the background of the
change in real-time by updating each frame, to avoid the error of target detection. Another
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problem is the movement in the background, such as the fluttering of leaves and flags.
By using the GMM, we can judge that these movements belong to the background rather
than the foreground. The following is a brief introduction to the moving objects detection
method used in this paper.

GMM uses K Gaussian models (usually 3–5) to characterize the features of each pixel
in the image and updates the Gaussian mixture model after the new frame is obtained.
Based on the mean and variance of each Gaussian function in the mixture model, it is
possible to determine which model corresponds to the background. Those pixels that do
not conform to the background model are considered foreground points.

For RGB images, assume that the pixels in R, G, and B channels are independent of
each other and have the same covariance matrix. At any time t, the probability density
function of the mixture Gaussian distribution of the single sampling point Xt can be given
using (1).

P(Xt) = ∑K
i=1 wi,k·η(Xt, µi,t, τi,t) (1)

where K is the number of Gaussian functions of a pixel, and wi,k is the weight of the ith
Gaussian function in the mixture at the time t. η(·) represents the Gaussian function with
mean µ and variance σ. τ is the covariance matrix, τ = σ2·I, and I is the unit matrix. The
expression of the Gaussian function is as follows:

η(Xt, µ, τ) =
1

(2π)n/2|τ|1/2 e−
1
2 (Xt−µ)T ·τ−1·(Xt−µ) (2)

where n is the dimension of Xt; the value of n is 1 for the gray image and 3 for the
color image.

The value of each pixel Xt is matched with the existing K Gaussian distributions
according to Equation (3) until a distribution model matching the new pixel is found, that
is, it is within 2.5 times the standard deviation from the mean.

|Xt − µi,t−1|≤ 2.5·σi,t−1 (3)

If none of the Gaussian distributions match the current pixel value, the distribution
with the lowest priority (rank = w/σ) is removed and a new distribution is introduced,
the mean of which is Xt , with low weight and high variance. All Gaussian models are
arranged in descending order of priority. The first B models are usually used to represent
the background.

B = argminb(∑
b
k=1 wk > θ) (4)

where θ is the threshold to measure which models should be classified as background,
0 ≤ θ ≤ 1.

The pixel belongs to the background if the matched model meets the background re-
quirements, otherwise, it belongs to the foreground. The morphological operation function
is used to post-process the detected foreground, which removes the isolated small points in
the image and fills in the small holes, but the position and shape are unchanged. A sample
of the moving object detection result is shown in Figure 3, and the white area represents the
foreground. The frame number which contains moving objects is recorded into set M, and
the coordinates and the size of the moving objects are recorded. The sequence numbers of
other frames without moving objects are recorded into set S.



Electronics 2023, 12, 1362 6 of 13

Electronics 2023, 12, x FOR PEER REVIEW 6 of 14 
 

 

function is used to post-process the detected foreground, which removes the isolated 
small points in the image and fills in the small holes, but the position and shape are un-
changed. A sample of the moving object detection result is shown in Figure 3, and the 
white area represents the foreground. The frame number which contains moving objects 
is recorded into set M, and the coordinates and the size of the moving objects are recorded. 
The sequence numbers of other frames without moving objects are recorded into set S. 

 
(a) (b) 

Figure 3. The result of moving object detection. (a) Original image; (b) foreground image.  

2.2. Reference Sensor Pattern Noise Extraction 
To obtain the RSPN of the video, the noise residuals of a single frame should be ex-

tracted first. We extracted the noise residuals from the three color channels of RGB images. 
Li et al. [34] pointed out that the noise residuals extracted from three color channels sep-
arately can eliminate the effect of CFA interpolation. Image I is de-noised to obtain the 
denoising image F(I), and F is the denoising filter. A noise residual W of an image can be 
obtained as follows. 

푊 = 퐼 − 퐹(퐼) = 퐼퐾 + 훩 (5)

where K represents the real SPN of the camera, namely, the camera fingerprint, whose 
main component is PNU (IK). Θ is the synthesis of other noise in the image, which is in-
dependent of IK, including dark noise, readout noise, quantization noise, and so on. Using 
the noise residuals of multiple images will suppress the random noise and enhance the 
PNU. The RSPN of the video can be obtained by using the maximum likelihood estimation 
method. 

퐾 = ∑ ( )  ( )

∑ (  ( ))
  (6)

where N is the number of frames, and the frames are from set S.  
To improve the quality of RSPN, further post-processing operations are performed. 

Zero-mean (ZM) and wiener filtering (WF) are used to eliminate the interference of ran-
dom noise such as CFA interpolation noise and block effect brought by compression for 
each color channel. Then, notch filtering is used in the Fourier domain to eliminate the 
influence of periodic signals. 

To verify the quality of the extracted RSPN, the method was tested on forged videos. 
The RSPN of the test video was extracted using Ref. [16] and the method in this paper 
respectively. The RSPN in Ref. [16], named RSPN_all, is estimated using all frames of the 
video, and the RSPN in this paper, named RSPN_bg, is estimated using the video frames 
without moving objects. To guarantee fairness, the same post-processing operations were 
used in both methods. 

A total of 40 frames of the test video were randomly selected to calculate the correla-
tion between the current frame and the RSPN, of which 20 frames were from set M and 20 

Figure 3. The result of moving object detection. (a) Original image; (b) foreground image.

2.2. Reference Sensor Pattern Noise Extraction

To obtain the RSPN of the video, the noise residuals of a single frame should be
extracted first. We extracted the noise residuals from the three color channels of RGB
images. Li et al. [34] pointed out that the noise residuals extracted from three color channels
separately can eliminate the effect of CFA interpolation. Image I is de-noised to obtain the
denoising image F(I), and F is the denoising filter. A noise residual W of an image can be
obtained as follows.

W = I − F(I) = IK + Θ (5)

where K represents the real SPN of the camera, namely, the camera fingerprint, whose main
component is PNU (IK). Θ is the synthesis of other noise in the image, which is independent
of IK, including dark noise, readout noise, quantization noise, and so on. Using the noise
residuals of multiple images will suppress the random noise and enhance the PNU. The
RSPN of the video can be obtained by using the maximum likelihood estimation method.

K̂ =
∑N

i=1 W(i) I (i)

∑N
i=1 (I (i))

2 (6)

where N is the number of frames, and the frames are from set S.
To improve the quality of RSPN, further post-processing operations are performed.

Zero-mean (ZM) and wiener filtering (WF) are used to eliminate the interference of random
noise such as CFA interpolation noise and block effect brought by compression for each
color channel. Then, notch filtering is used in the Fourier domain to eliminate the influence
of periodic signals.

To verify the quality of the extracted RSPN, the method was tested on forged videos.
The RSPN of the test video was extracted using Ref. [16] and the method in this paper
respectively. The RSPN in Ref. [16], named RSPN_all, is estimated using all frames of the
video, and the RSPN in this paper, named RSPN_bg, is estimated using the video frames
without moving objects. To guarantee fairness, the same post-processing operations were
used in both methods.

A total of 40 frames of the test video were randomly selected to calculate the correlation
between the current frame and the RSPN, of which 20 frames were from set M and 20 frames
were from set S. A signed peak-to-correlation energy (SPCE) method [35] is proposed to
measure the correlation of two images.

SPCE(W, R) =
sign(Pmax)P2

max
1

mn−N2 ∑s,s/∈N P(s)2 (7)

where P is the correlation function of W and R (m × n), and its dimension is the same as W
and R. Pmax is the peak of P. sign (Pmax) is the signed peak. The denominator is the mean
of the sum of squares of points outside the N × N region centered on Pmax.
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The correlation between the frames of the test video and RSPN_all and RSPN_bg was
calculated respectively and recorded as SPCE1 and SPCE2. For normal areas, the higher
the SPCE value, the better the quality of the RSPN. However, in the tampered area, the
lower the value of the SPCE, the better the quality of the RSPN. Figure 4 shows the values
of SPCE between the normal video frames and the RSPN. It can be seen that the values of
SPCE2 are generally larger than SPCE1.
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Figure 4. The values of SPCE between normal video frames and RSPN.

To accurately describe the correlation between the tampered area and the RSPN,
we calculated the SPCE on the block level, which only calculates the SPCE value of the
synthesized moving objects area. Figure 5 shows the SPCE values between the forged area
and the counterpart block of RSPN; the values of SPCE2 are generally less than SPCE1.
From Figures 4 and 5, we can see that the proposed scheme can obtain high-quality RSPN.
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Figure 5. The values of SPCE between the forged area and RSPN.

2.3. Forgery Detection

This algorithm focuses on detecting whether there are synthesized moving objects
in the test video, so the moving objects are the region of interest of the algorithm. The
correlation between the SPN of test frames and the RSPN of the test video can be calculated
at the block level to determine whether the moving objects are true or not. A flowchart is
shown in Figure 6, and the steps are as follows.

Step 1: Record the coordinates and the size of each moving object of each video frame
in set M.

In the process of detecting moving objects in Section 2.1, the pixels in the foreground
have been marked. Thus, there is no extra computation involved in this step.

Step 2: The SPCE between the SPN in the pixel area of the moving objects and the
RSPN in the corresponding pixel of the test video is calculated.

For example, in Figure 7, the test video “SAM_3.mov” is a heterologous splicing video,
where the car is the original moving object and the cat is the splicing object. A total of
20 frames containing moving objects are tested. The regions of the moving objects are
divided into non-overlapped blocks of size 32 × 32 and calculate the SPCE between each
block and the corresponding RSPN. The results are shown in Figure 8; the tampered object
can be distinguished via the distribution trend of the SPCE values.
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Figure 8. Distribution of SPCE values in moving objects. The circular symbols represent the SPCE
values of the area where the car is located, and the diamond symbols indicate the SPCE values of the
area where the cat is located. The horizontal axis represents the frame of the video, while the vertical
axis represents the value of SPCE. A total of 20 frames of video were analyzed, in which cars were
divided into ten zones represented by circular symbols of different colors, and cats were divided into
four zones represented by diamond symbols of different colors.
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Step 3: Record the areas where the SPCE value is lower than the threshold and locate
forged objects.

Figure 8 shows that most of the SPCE values of the non-tampered areas are above 100,
while most of the SPCE values of the tampered areas are concentrated around 0. By setting
a reasonable threshold, we can distinguish whether the detection object is forged.

3. Results

To verify the effectiveness of the algorithm, the algorithm was tested on the Matlab
R2018b platform. The computer configurations are as follows:

CPU: Intel Core i7-6500U CPU @ 2.50 GHz 2.50 GHz;
RAM: 8.00 GB;
OS: Windows 10 Professional 64-bit.

3.1. Video Database

In our experiments, videos of different sources and resolutions were selected, and the
information from the video database is shown in Table 1. GRIP [36] and HTVD [37] are
publicly available datasets, which consist of 10 splicing videos, respectively. Camera videos
are taken from six digital cameras with a resolution of 640 × 480; the frame rate is 29 fps.
Guo et al. [38] verified that the value of SPCE increases with the increase of image texture
complexity. Therefore, the video content captured in this article contains different texture
complexities and different numbers of foreground objects.

Table 1. The information of the video database.

Source Frame Rate Resolution Number of
Original Videos

Number of
Forged Videos

Camera 29 fps 640 × 480 90 90
GRIP 30 fps 720 × 1280 10 10

HTVD 30 fps 1980 × 1080 10 10

(1) Original video samples. Six cameras capture 90 original videos containing moving
objects and each video is 30 s.

(2) Foreground object samples. Three cameras are used to capture 6 video clips containing
foreground objects, and each video is 10 s.

(3) Forged video samples. Another three cameras are used to take background videos
and each video is 30 s. Combining foreground moving objects and background videos
from different cameras, 90 forged videos are obtained.

3.2. Experimental Steps

Step 1. Moving object detection was performed on the test video, and the sequence
number of the frame containing the moving object as well as the coordinate and size of each
moving object in each frame were recorded for the convenience of subsequent calculation.

Step 2. The frameset without moving objects was used to estimate the RSPN of the
video. Removing frames containing foreground objects can eliminate the interference of
foreground objects and improve the extraction quality of RSPN.

Step 3. The correlation SPCE between the region of the moving object in each frame
and the corresponding region of the RSPN was calculated at the block level. The calculation
region was divided into non-overlapped blocks of size 32 × 32. Block-level computation
can improve the robustness of the algorithm to adapt the size of the tampered area.

Step 4. The block with SPCE less than the threshold T was recorded as a tampered
block; otherwise, the block was recorded as the original block. Frames that contain tam-
pered blocks are considered tampered frames, and the videos that contain tampered frames
are considered tampered videos.
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In order to improve the accuracy of the algorithm, we did post-processing operations
on the detection results. A single exception block in a frame was ignored; an exception refers
to the detection results being different from other blocks in the frame. This is because the
edge blocks of moving objects are affected by the surrounding pixels, leading to deviation
of the detection result.

3.3. Evaluation Metrics

To effectively evaluate the performance of the algorithm, this paper introduces four
objective evaluation indexes, namely, Recall, Precision, F1-score, and Accuracy.

Recall refers to the percentage of true positive samples out of all positive samples;
Precision represents the proportion of true positive samples among all samples that are
classified as positive; F1-score is the weighted average of Recall and Precision; Accuracy
indicates the average detection accuracy.

Recall =
TP

TP + FN
(8)

Precision =
TP

TP + FP
(9)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(10)

Accuracy =
TP + TN

TP + FP + TN + FN
(11)

where TP (true positive) is the correct number of positive samples, that is, tampered video
is detected as tampered video; TN (true negative) is the correct number of negative samples,
that is, the normal video is detected as normal video; FP (false positive) is the wrong
number of positive samples; FN (false negative) is the wrong number of negative samples;
(TP + FN) is the total number of tampered videos; (TP + FP) is the total number of videos
classified as forged; (TP + FP + TN + FN) is the total number of the dataset.

4. Experimental Results and Discussion

We tested the proposed algorithm on the database mentioned in Section 3.1 and com-
pared our results with those reported in [21,22,29]. To guarantee fairness, we trialed these
approaches on the same dataset and applied the parameters suggested by the algorithm.
The statistical data of the test results are given in Table 2.

Table 2. Test results of the database.

Method Recall Precision F1 Accuracy

proposed method 0.90 0.925 0.912 0.914
Reference [21] 0.882 0.898 0.890 0.891
Reference [22] 0.873 0.906 0.889 0.891
Reference [29] 0.864 0.88 0.872 0.873

It can be seen from Table 2 that our method has the highest F1 and accuracy among the
four algorithms. In order to verify that the detection results of the proposed method are not
affected by the foreground moving objects, the database we used contains different texture
complexities and different numbers of foreground objects. When there is no foreground
interference, the accuracy of the reference [21] method is good. However, the accuracy is
slightly reduced in the presence of foreground interference. In Reference [22], the movement
size of the method is related to the movement speed of the spliced object. The detection
accuracy is affected by the use of uniform movement size in the database. Reference [29]
trained the video noiseprint extractor primarily through I-frames and is appropriate for
H.264 compressed format only.
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In the experiment, we used threshold T = 80 in Section 3.2. T is an experience threshold
that distinguishes authentic foreground blocks from fake blocks. In this section, recall and
precision are used to select an appropriate threshold. The higher the recall rate, the lower
the omission coefficient of the algorithm. The higher the precision value, the lower the false
detection rate of the algorithm.

Figure 9 shows the test results under different threshold values T. The vertical axis
is the value of recall and precision, and the horizontal axis denotes the value of T. As can
be seen from Figure 9, when T decreases, recall decreases and precision increases, but it is
opposite when T increases. This is because the lower the threshold, the greater the risk that
the forgery will be identified as genuine; the higher the threshold, the greater the risk that
the real video will give the result of a forgery. We set T = 80 to achieve a balance between
recall and precision.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 14 
 

 

4. Experimental Results and Discussion 
We tested the proposed algorithm on the database mentioned in Section 3.1 and com-

pared our results with those reported in [21,22,29]. To guarantee fairness, we trialed these 
approaches on the same dataset and applied the parameters suggested by the algorithm. 
The statistical data of the test results are given in Table 2.  

Table 2. Test results of the database. 

Method Recall Precision F1 Accuracy 
proposed method 0.90 0.925 0.912 0.914 

Reference [21] 0.882 0.898 0.890 0.891 
Reference [22] 0.873 0.906 0.889 0.891 
Reference [29] 0.864 0.88 0.872 0.873 

It can be seen from Table 2 that our method has the highest F1 and accuracy among 
the four algorithms. In order to verify that the detection results of the proposed method 
are not affected by the foreground moving objects, the database we used contains different 
texture complexities and different numbers of foreground objects. When there is no fore-
ground interference, the accuracy of the reference [21] method is good. However, the ac-
curacy is slightly reduced in the presence of foreground interference. In Reference [22], 
the movement size of the method is related to the movement speed of the spliced object. 
The detection accuracy is affected by the use of uniform movement size in the database. 
Reference [29] trained the video noiseprint extractor primarily through I-frames and is 
appropriate for H.264 compressed format only. 

In the experiment, we used threshold T = 80 in Section 3.2. T is an experience thresh-
old that distinguishes authentic foreground blocks from fake blocks. In this section, recall 
and precision are used to select an appropriate threshold. The higher the recall rate, the 
lower the omission coefficient of the algorithm. The higher the precision value, the lower 
the false detection rate of the algorithm. 

Figure 9 shows the test results under different threshold values T. The vertical axis is 
the value of recall and precision, and the horizontal axis denotes the value of T. As can be 
seen from Figure 9, when T decreases, recall decreases and precision increases, but it is 
opposite when T increases. This is because the lower the threshold, the greater the risk 
that the forgery will be identified as genuine; the higher the threshold, the greater the risk 
that the real video will give the result of a forgery. We set T = 80 to achieve a balance 
between recall and precision. 

 
Figure 9. The test results of the threshold. 

  

0.6

0.7

0.8

0.9

1

1.1

65 70 75 80 85 90 95
T

Test results of threshold T

Recall
Precision

Figure 9. The test results of the threshold.

5. Conclusions

In this paper, we proposed a video splicing detection scheme based on SPN. The
method consists of detecting moving objects, estimating RSPN, and calculating SPCE. By
improving the extraction quality of RSPN, the algorithm achieves a good detection effect.

Firstly, the foreground objects of the frame are extracted using GMM, and the frame
number is recorded. Then, when training the RSPN of the video, we culled the frames
containing foreground objects, so the interference of foreground objects in the detection
results is eliminated and the robustness of the algorithm is improved. Finally, the SPCE is
calculated at the block level to measure the correlation between the SPN of the foreground
blocks and the RSPN of the corresponding region. By setting a reasonable threshold, we
can distinguish forged objects from normal objects, even if there are multiple forged objects.
The experimental results show that the method can accurately locate the forged region and
has higher recall and precision compared with other forensics algorithms.

There are still some limitations in this work, such as when locating forged objects, if
the tampered area is too small, it may also lead to missed detection, although block-level
computation was used to improve the robustness of the algorithm to adapt the size of the
tampered area. In addition, if all the video frames contain foreground objects, the detection
method is impossible. In future work, we will focus on finding other technologies to solve
these problems. For example, by combining deep learning techniques to learn the statistical
characteristics of the contours of foreground objects, it is possible to improve the accuracy
of identifying the tiny splicing regions.
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