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Abstract: Task scheduling algorithms based on reinforce learning (RL) have been important methods
with which to improve the performance of cloud platforms; however, due to the dynamics and
complexity of the cloud environment, the action space has a very high dimension. This not only
makes agent training difficult but also affects scheduling performance. In order to guide an agent’s
behavior and reduce the number of episodes by using historical records, a task scheduling algorithm
based on adaptive priority experience replay (APER) is proposed. APER uses performance met-
rics as scheduling and sampling optimization objectives with which to improve network accuracy.
Combined with prioritized experience replay (PER), an agent can decide how to use experiences.
Moreover, this algorithm also considers whether a subtask is executed in a workflow to improve
scheduling efficiency. Experimental results on Tpc-h, Alibaba cluster data, and scientific workflows
show that a model with APER has significant benefits in terms of convergence and performance.

Keywords: reinforce learning; adaptive priority experience replay (APER); task scheduling; cloud
platform

1. Introduction

Cloud computing is one of the hot spots in the field of information and communication
technology. Its pay-as-you-go mode is favored by users. Task scheduling on cloud platforms
refers to allocating computing resources to corresponding tasks by using appropriate
scheduling rules. To improve service quality, the average response time of tasks should be
reduced; however, with the continuous development of cloud computing the number of
tasks is constantly changing and the dependence between tasks is increasingly complex, so
designing a reasonable scheduling scheme is a problem that deserves further research.

Task scheduling algorithms on cloud platforms include traditional algorithms, heuris-
tic algorithms, and reinforce learning (RL). Traditional algorithms [1,2] are easy to under-
stand and implement, but difficult to be tuned and improved. They do not consider the
dynamics and complexity of current cloud platform tasks, especially workflows, which are
a kind of task with dependency. Scheduling a cloud workflow is an NP-hard problem [2],
and a heuristic algorithm is the main method with which to solve it.

Heuristic algorithms can be divided into two categories according to their charac-
teristics: Static ones [3–6] are generally simple strategies and are suitable for tasks that
are known before scheduling. Dynamic algorithms [7–9] consider the dynamics of cloud
platforms, but there are some problems, such as a large number of iterations and long
computation times [9–11]. In addition, though static and dynamic algorithms can both deal
with tasks with dependency [5,6,8,12–14], dependency also brings task validity issues [15].

Compared with heuristics, scheduling based on RL can learn offline and infer online,
which overcome the shortcomings of heuristics. RL can directly learn scheduling policies
from historical experience without relying on human experience [16–20]; however, RL
for scheduling decisions usually uses all of the experiences in the buffer. These methods

Electronics 2023, 12, 1358. https://doi.org/10.3390/electronics12061358 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061358
https://doi.org/10.3390/electronics12061358
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12061358
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061358?type=check_update&version=1


Electronics 2023, 12, 1358 2 of 20

cannot distinguish the influence of different experiences on the overall model, such that
the learning efficiency is low.

To address the low learning efficiency, we propose a cloud platform task scheduling
algorithm based on the adaptive prioritized experience replay (APER) strategy. APER
can adaptively decide which experience to be used can update a model better and faster,
combining the dynamic adjustment strategy based on PER. In this paper, the performance
metric is used as the scheduling and sampling optimization objective with which to improve
the accuracy of a network. Moreover, a selection function is added to ensure that the action
space only contains executable tasks. After the above, the model is validated on task
scheduling datasets with different scenarios. Experiments show that the model with APER
converges faster and the task completion time is shorter. The main contributions of this
paper can be summarized as follows:

(1) We propose an adaptive priority experience replay (APER) strategy, which can dy-
namically adjust the sampling strategy. This improves convergence speed and perfor-
mance.

(2) We adopt new optimization objectives and selection functions. The scheduling objec-
tive is unified with the sampling optimization objective. Additionally, the selection
functions can avoid invalid scheduling actions.

(3) We test APER on workflow scheduling datasets in different scenarios. Our results
demonstrate that APER performs well on real-world datasets. The advantage becomes
more significant using datasets with more diversity.

The remainder of this paper is structured as follows: Section 2 presents the related
work. Section 3 introduces important components and the scheduling model. Section 4
presents the details of the proposed APER approach with implementation. Section 5 reports
the experimental results, and Section 6 concludes this paper.

2. Related Work
2.1. Reinforce Learning

RL [21,22] learns policies by interacting with the environment. The environment will
switch to a new state according to the agent’s action and return the reward of the action.
The agent then performs the next actions according to a strategy based on the new state. In
this process, an agent can directly learn which actions are performed in different states to
obtain the maximum cumulative reward.

According to the task type, task scheduling algorithms can be divided into indepen-
dent task scheduling and dependent task scheduling. There have been many RL algorithms
based on independent task scheduling, such as DSS (DRL&LSTM) [23], DQN [24–29],
AC [30], DeepJS [2], DeepRM [31], DRL&Transformer [32], PPO [33], A2C [34], double
DQN [35], hierarchical DRL [36], RL&Game-theory [37], and so on. These RL algorithms
achieve good results. Mitsis et al. [37] propose a task scheduling framework based on RL
and game theory, exploiting tasks’ and then end nodes’ characteristics in order to perform
task scheduling and execution while considering user risk-aware decision-making behavior
to maximize user satisfaction and the benefit of service providers. Cheng et al. [28] propose
a cost-aware and real-time cloud task scheduling model based on RL, showing a significant
reduction in the execution cost as well as the average response time. Considering QoS, Yan
et al. [29] propose a real-time task scheduling algorithm based on RL, which minimizes
energy costs.

However, most independent task scheduling algorithms only consider the fact that
tasks arrive immediately and order the tasks, without involving dependencies. With the
development of cloud platforms, task scheduling with dependencies has gradually become
a research hotspot, and these tasks are usually abstracted as DAGs. In recent years, there
have been many studies on DAG scheduling strategies using RL, and some results have
been achieved.

There have been many studies on static DAG scheduling. Souri et al. [38] considered
the types of nodes, the social relationships and trust between nodes, and proposed a trust-
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based friend selection strategy for cooperative processing tasks. Their method was also a
game between the best cooperative node and the shortest network distance, after which
the node execution order was planned.

Only a few studies use RL, and they usually involve learning a fixed strategy. Long
et al. [39] proposed an improved self-learning artificial bee colony (SLABC) algorithm based
on RL to solve the problems of a slow convergence speed and reaching a local optimum
in ABC. Paszke et al. [40] used RL to guide a genetic algorithm to optimize the execution
cost of neural network computation graphs. Gao et al. [41] modeled the node scheduling
process in DAG as a Markov decision process with PPO. In [42], DRL was employed to learn
local search heuristics for solving DAG problems. This algorithm does not extend to larger
or smaller DAGs. The scheduling strategy is static, and the environment is deterministic.
Both of them are important limitations to practical constraints in dynamic environments.

Compared with static algorithms, there are more studies on dynamic DAG scheduling
algorithms with RL. Bao et al. [43] proposed Harmony, a dynamic deep learning cluster
scheduler that considers the relationships between tasks, using job-aware action space
exploration with experience replay. Lee et al. [44] proposed a DAG scheduling algorithm
based on RL, which automatically identifies critical temporal and graph structural fea-
tures in order to assign each task in a single DAG. Hu et al. [45] proposed Spear, which
considers task dependencies, utilizing Monte Carlo tree search (MCTS) and DRL to guide
complex DAG scheduling. Some research [46,47] use RL network based on RNN to gener-
ate scheduling strategies which utilize the dependencies as the input information of this
network. Zhu et al. [48] propose a workflow scheduling algorithm in order to solve task
combination and resource selection, which allocates appropriate virtual machine resources
for each task in the workflow, scheduling workflow by a genetic algorithm, and learning
real-time scheduling policy by RL; however, it is difficult for these algorithms to utilize
DAG information flexibly and fully.

In order to extract more graph information, researchers add graph neural networks
(GNNs [49]) to deal DAGs, inspired by the powerful graph processing capabilities of
GNNs. Zhang et al. [50] proposed automatically learning a scheduling strategy via an
end-to-end DRL and GNN to embed the states encountered during solving, which does not
depend on the size of a DAG. Sun et al. [51] proposed DeepWeave, which employs GNNs
to process DAG information and RL to train, improving the scheduling ability in DAGs.
Grinsztajn et al. [52] combine GNNs with the A2C algorithm in order to build an adaptive
representation of the scheduling problem and learn scheduling strategies. Mao et al. [10]
use scalable GNNs to extract DAG features and design a dynamic DAG scheduler based
on RL by using batch training, which achieves remarkable results in single scene.

These algorithms optimize the task completion time of DAG scheduling, but some
of them pay insufficient attention to whether a node is executable. For the purpose of
a convenient description, this paper calls this “executability” [15]. This will affect task
completion times and training effects. Furthermore, these algorithms do not pay attention
to experience utilization efficiency. Some studies have shown that it is possible to improve
experience utilization and performance via prioritized experience replay (PER) [53].

2.2. Prioritized Experience Replay

Neuroscience has established that, in rodents, experience is learned repeatedly during
rest or sleep. Experience has found that reward-related experience sequences are used
more frequently [54]. Inspired by this, many prioritized sampling strategies on buffers
have emerged, which are beneficial to improving experience utilization efficiency and the
performance of agents. Schaul et al. [55] proposed PER which judges the importance of
experience through TD error. In training, agent prefers to use experience with high TD error.
Although this strategy improves model performance and experience utilization efficiency,
it loses the diversity of samples, which may lead to instability [56]. Wang et al. [53] believe
that the newly collected experience is more important. They proposed the emphasizing
recent experience (ERE) strategy, which is consistent with more accurate human recent
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memory and vaguer long-term memory. It achieves better results on MuJoCo. Kumar
et al. [56,57] estimated Q value more accurately and judged experience’s importance,
reducing the instability brought by a network itself. Kumar et al. [56] believe that an
algorithm’s performance will be affected when the optimization objective of a sampling
strategy is different from that of an agent. Liu et al. [57] verified this conclusion. To solve
this problem, they proposed two new algorithms that consider large TD error experience
based on maximizing the Q value. Additionally, they verified algorithms’ performance
with standard off-policy RL.

These strategies sample experience by calculating its importance; however, always
using part of experience leads to instability [58].

3. Method

For convenient description and experimentation, we make the following assumptions:
First, it is assumed that all of the hardware resources in cloud platforms are the same and
that the computing resources are only divided according to the number of CPUs, which
are called executors. Second, executors are restricted from being preempted and shared
until tasks on these executors are finished. Finally, this paper focuses on dynamic and
randomly arriving DAG task scheduling. An independent task will be regarded as a DAG
with only one node and without an edge. Table 1 shows the descriptions of symbols in
DAG scheduling problems.

Table 1. Descriptions of symbols in DAG scheduling problems.

Symbol Description Symbol Description

N All nodes in a DAG eGm
n The feature of a node

Nn n-th node in N, 1 ≤ n ≤ N eGm The feature of a DAG
E All edges in a DAG eG The feature of global

Eij Edge from Ni to Nj, Ni, Nj ∈ N rt tth step reward

A(G)
A n×

n adjacency matrix to represent the edge in N γ Discount factor

M The set of DAGs Rt The cumulative reward from the tth step
Gm m-th DAG, 1 ≤ m ≤ M p(e) The filter for executability

NGm
n n-th node in the m-th DAG sr The sample rate

AFT(·) The actual finish time (metric: ms) Advt The advantage of the tth action by Rt

AST(·) The actual start execution time
(metric: ms) f (·), g(·) Non-linear functions

AUT(·) The completion time (metric: ms) θ The model parameters
V The number of available executors πθ The policy with θ

cv
The state of executors; available is 1,

else 0 Entπθ (·) The policy entropy

Gcpu
m The current CPU number of Gm we The weight of the policy entropy

AvgJCT
The average JCT of all DAGs (metric:

ms) Lπθ (st, at) The loss function of (st, at)

3.1. Related Definitions

DAG. This paper abstracts interdependence tasks into DAGs [59]. The formal descrip-
tion is as follows:

G = (N, E) (1)

Equation (1) satisfies the following:

(1) The node set, N = {Nn|1 ≤ n ≤ N}, represents different types of tasks in a DAG.
(2) The edge set, E =

{
Eij =

(
Ni, Nj

)∣∣Ni, Nj ∈ N
}

, represents a directed edge from node
Ni to node Nj, reflecting the dependencies between tasks and using an adjacency

matrix, A(G) =
[(

Ni, Nj
)]

n∗n, representation,
(

Ni, Nj
)
=

{
1 i f

(
Ni, Nj

)
∈ E

0 i f
(

Ni, Nj
)

/∈ E
.
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(3) For any sequence,
{
(Nn1 , Nn2), (Nn2 , Nn3), (Nn3 , Nn4), . . . ,

(
Nnk−2 , Nnk−1

)
,
(

Nnk−1 , Nnk

)}
satisfies Nn1 6= Nnk .

Figure 1 shows a DAG example. Node 1 is the predecessor of 2, and 2 is the successor
of 1, so 1 is always executed before 2. Nodes 2 and 3 have no dependencies and can be
parallelized, so they belong to the same stage. Dividing stages is beneficial for assigning
multiple executors to a DAG in the same stage to improve the efficiency of DAG execution.
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In this paper, M = {Gm|1 ≤ m ≤ M} represents the set of randomly arriving DAGs.
Gm is the m-th DAG. Gcpu

m is the current CPU number of Gm. AFT(Gm) is the actual finish
time of Gm. AST(Gm) is the actual start execution time of Gm.

The completion time of Gm is as follows:

AUT(Gm) = AFT(Gm)− AST(Gm) (2)

The average job completion time (JCT) of all DAGs is defined as shown in Equation
(3). The objective of this paper is to minimize AvgJCT :

AvgJCT =
∑Gm∈M AUT(Gm)

M
(3)

For N =
{

NGm
n

∣∣∣1 ≤ n ≤ N
}

, calculating the completion time of each node is per-
formed as follows:

AUT
(

NGm
n

)
= AFT

(
NGm

n

)
− AST

(
NGm

n

)
(4)

AFT
(

NGm
n

)
is the actual finish time of Gm. AST

(
NGm

n

)
is the actual start execution

time of Gm. AUT(Gm) and AUT
(

NGm
n

)
include scheduling time and execution time. Node

NGm
n =

(
AUT

(
NGm

n

)
, task_numGm

n

)
, where task_numGm

n is the number of tasks on node
n. The actual completion time of a DAG is the maximum value of all of the nodes’ actual
completion times on a DAG:

AFT(Gm) = Max
(

AFT
(

NGm
n

))
, 1 ≤ n ≤ N (5)

Makespan = Max(AFT(Gm)) represents the total time spent on scheduling, m, using
a certain strategy. It is the maximum of all of the nodes’ actual completion times.

During the scheduling process, it is necessary to ensure that the sum number of
executors allocated to all DAGs does not exceed the maximum number of CPUs, V, in the
cluster, which satisfies the resource constraints of the cluster:

M

∑
m=1

Gcpu
m ≤ V (6)

3.2. Important Components

This paper uses RL to implement DAG task scheduling. Some important components
are described as follows:
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Agent. The main body that makes scheduling decisions, which outputs action by
observing the current cloud platform state. After an action is executed the environment
generates a reward for action and transfers to a new state.

State space. Observes environment information by an agent after executing action. The
state space size depends on the number of available executors and the number of nodes to be
scheduled. In this paper, whenever a scheduling event is triggered the environment updates
available executor information and the task information to be scheduled. The number of
available executors is represented by a vector, c = {cv|1 ≤ v ≤ V}. The task information to
be scheduled is represented as executable nodes in each DAG. These nodes use a vector,
[node_id, job_id, druation_time, task_num, stage_num], as the input state, where node_id and
job_id represent the node ID and DAG ID to which a node belongs, druation_time represents
the completion time of a node, AUT

(
NGm

n

)
, task_num is the task number for a node, n, in

Gm (task_numGm
n ), and stage_num is the node stage.

Action space. An agent selects an executable node in each scheduling process, while
also specifying the maximum number of executors for a DAG where the node is located.
They are defined as action vectors, [node, paral]. The action space size is limited by the
number of available executors and the number of nodes to be scheduled. If there are
fewer executors and more nodes, the agent will wait until the DAG execution ends and the
executors are released. If there are fewer nodes and more executors, the agent will allocate
more executors to the selected node to reduce the execution time.

Reward. RL uses a reward to gradually improve the scheduling policy. Every time an
action is performed, an agent receives a reward, r, generated by the environment. Since
agents cannot know the impact of current behavior on the future in a short period, there
may be a situation where the current behavior reward is low but the overall result is
better. Therefore, this work takes the cumulative reward, R, as the optimization objective.
Equation (7) shows how to obtain Rt by using the r of the t-th to (t + k)-th steps represented
by [rt, rt+1, . . . , rt+k], where γ is the discount factor denoting the impact of future actions
on the current action, and is set to 0.9 in this paper:

Rt = rt + γrt+1 + γ2rt+2 + . . . =
∞

∑
k=0

γkrt+k (7)

In the field of task scheduling the objective is JCT, and Equations (2)–(5) reflect the
impact of node scheduling time on JCT. This being the case, the node scheduling time is
used as r. Assuming that two adjacent scheduling actions are generated at tk and tk+1, the
rt is set to −(tk+1 − tk), which reflects JCT in the event-triggered scheduler. Combined
with Equation (7), define Rt as shown in Equation (8). An agent achieves the optimization
objective by maximizing Rt:

Rt = −∑k
k=0 (tk+1 − tk)γ

k (8)

An agent’s performance will be affected by the difference between the scheduling
optimization objective and the sampling optimization objective. This paper takes Rt as the
optimization objective of the sampling strategy to reduce the effect.

Buffer. Used to store experience from each scheduling, including state, action, reward,
etc. It helps to break down temporal correlations between experiences, reuse experiences,
and reduce learning costs [60].

3.3. Model Structure

Figure 2 shows the model’s structure. The cloud platform is regarded as the environ-
ment. The DAG and cluster resources are represented as the state. A GNN aggregates the
features from the state. A policy network selects the action via the features. After executing
a scheduling action, the environment updates the state and reward. The buffer stores the
state, action, and reward to train offline. This part is described in Section 4.1.
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When the buffer reaches the upper limit of capacity, or all DAGs are finished, the
model will be updated. Experiences are selected according to the sample rate using APER
after calculating the reward. These experiences are used to compute new scheduling actions
and sample rates. This model will then be updated by using policy gradient methods. This
part is described in Section 4.2.

4. Implementation
4.1. Task Scheduling

The state space will be updated when a scheduling event is triggered. Since the
sequence and processing time of each task are unknown, it is impossible to update the state
space frequently by using the strategy in [61]. Whenever a node is set to be changed the
state space is updated and a scheduling action is triggered. Specifically, scheduling events
occur when (i) DAGs finish executing, and the executor is released; (ii) a stage is completed
and its substages need to be executed; and (iii) a new DAG arrives. In this paper, a DAG
randomly arrives to ensure that an agent does not acquire prior knowledge before DAG
arrivals, but instead completely relies on the scheduling strategy to make decisions.

Extracting DAG features needs to consider their structural information; however,
different DAGs have different sizes, which brings difficulties to feature extraction. The
authors of [6,13] use the adjacency matrix of a DAG to extract features by splitting a
DAG. This method loses a DAG’s partial dependency information. This paper uses a
GNN [10,20,49] to implement a scale feature extraction network [62] that can directly embed
dependency information into node features. In Figure 3, the GNN uses the parameter
information of each node and its predecessor nodes to extract node features. Equation (9)
shows the method for computing node features:

eGm
n = g1

(
∑n′∈ϕ(n) f1

(
eGm

n′

))
+ NGm

n (9)

where eGm
n is the feature of node n. NGm

n is the original information of n. ϕ(n) is the
predecessor node set of n. f1(·) and g1(·) are different non-linear functions. All nodes’
features in each DAG are used to extract DAG features in Equation (10), and global features
are synthesized through global DAG features in Equation (11):

eGm = g2

(
∑n∈Gm

f2

(
eGm

n

))
(10)
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eG = g3

(
∑Gm∈M f3

(
eGm

))
(11)
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eGm is the feature of Gm and eG is the global feature. f2(·), g2(·), f3(·), and g3(·) are
non-linear functions, such as f1(·) and g1(·).

However, task dependencies may cause agents to select invalid nodes [10,15,20], such
as nodes that have already been executed or whose predecessor nodes have not yet been
completed. Although this problem can be solved by rescheduling, it may lead to task
accumulation, which will increase platform burden. To solve this problem, this paper adds
a filter, p(e) (in Equation (12)), after extracting features. The node may be selected only
when eGm

n × p(e) 6= 0 (in Equation (13)). This method only sends the node features that
meet scheduling conditions into the policy network, which not only ensures task validity
but also reduces state space size:

p(e) =
{

1 i f e is available
0 else

(12)

eGm
n , eGm , eG ←

(
eGm

n , eGm , eG
)
× p(e) (13)

At this time, the state space is represented as three parts: a DAG set, M =
{Gm|1 ≤ m ≤ M}; the available node set, N = {Nn|1 ≤ n ≤ N}, of each DAG; and param-
eters, NGm

n = (druation_time, task_num, exe_num), within each node, where exe_num is the
executor number of Gm.

Extracted features are passed to the policy network. The policy network consists of
two parts: The first part uses node features and DAG features as inputs with which to
calculate the scheduling probability of each node. Agents will select the highest probability
node to execute a scheduling action. The second part inputs DAG features and global
features, which are used to calculate the probability of the parallelism level for each DAG.
The number of output layers is V. Agents assign the maximum number of executors to
the target node by using the degree of parallelism with the maximum probability. They
are [node, paral]. Scheduling decisions in real scenarios need to estimate AUT

(
NGm

n

)
as

accurately as possible based on historical data but use the complete time provided by a
dataset during training.

After executing a scheduled action, the environment produces a reward and the next
state. Agents retain AFT

(
NGm

n

)
to calculate AFT(Gm). The state, action, and reward are

stored, while the next batch of nodes is scheduled and executed. AvgJCT will be calculated
after all of the nodes in a DAG are completed, as shown in Equation (3).

4.2. Adaptive Priority Experience Replay

After all DAGs are executed or the buffer capacity reaches the upper limit, the model
will be optimized. This paper uses JCT as the performance metric with which to calculate
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the agent scheduling objective and sample optimization objective. The sample rate, sr, is
determined by the policy network. The efficiency of experience utilization is improved
by gradually expanding from a small amount of good experience to the whole experience,
thereby improving convergence speed and model performance [58]. In the optimization
process, the GNNs and filters are the same as those in Section 4.1.; only the policy network
adds a fully connected network in order to calculate the sample rate.

First, this paper sets sr ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} to reduce the action space. The
highest probability level is chosen as the sr at each episode. The sr is utilized to select
experience. At the beginning of training, the sr will be initialized randomly. The new action
and sr are then calculated by the policy network. Since each experience will calculate an sr,
before the end of each episode the model will select the highest frequency sr as the real sr
of the next episode. In Equation (14), sri is the sample rate of different levels:

sr = argmax
sri

(
count(sri)

∑ count(sri)

)
(14)

The advantage of the current agent is calculated at time t by using Equation (15), after
which a high Adv experience is defined as the good experience and the other is the poor
one. The neural network adaptively adjusts the importance of the two types of experience.
It guides the model to use a small amount of good experience first, after which it gradually
expands to use all experience. The advantage of this method is that when the model uses
a small amount of good experience it can speed up the model convergence; when using
a large amount of experience it can avoid the model from falling into a local optimum.
Because all experience is still used in the end, the bias in sampling is reduced. baseline(Rt)
is derived from the average Rt of all trained agents [63]:

Advt = ∑
t

Rt − baseline(Rt) (15)

In Equation (16), experience t will be selected if t is the top sr of the buffer. Good
experience is beneficial for accelerating convergence, but bad experience should not be
forgotten [64]. While using good experience, this paper randomly selects some instances of
bad experience from the remaining experience (in Algorithm 1). As the training progresses,
the model expands the selected experience scope from a small amount of good experience
to a large amount of experience; it will also adaptively adjust the sample rate in the process
until all experience is used:

Advt =

{
Advt i f Advt is the top sr and the end sr2

null else
(16)

Finally, the model parameters, θ, will be updated using Advt in Equation (17) and
Equation (18), where πθ represents the current policy; α = 0.01 is the learning rate;
Entπθ

(at) is the policy entropy of using at for policy πθ ; the higher the probability of
action, at, the higher the accuracy of the decision and the smaller Entπθ

(at); and we repre-
sents the weight of policy entropy, decreased from 1 to 0.01. We want the dominance term,
logπθ(st, at)Advt, to be larger, and the policy entropy term, we × Entπθ

(at), to be smaller:

Lπθ
(st, at) = logπθ(st, at)Advt − we × Entπθ

(at) (17)

θ← θ+ α∑t∇θLπθ
(st, at) (18)

There are two problems with this experience-utilizing strategy: The first is how to
determine the amount of good experience and bad experience. The second is that the model
will tend to use a higher sr. For the first question, as training progresses the model should
already be able to use good experience to find a better solution. To avoid becoming stuck
in local optima, it requires more randomization and more experience for exploration (in
Algorithm 2). If the model performance is good, the sr will be increased to use more bad
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experiences to enhance exploration ability. Conversely, reduce sr and hope model finds
a better solution as soon as possible by making full use of good experiences. The second
problem will cause the amount of experience to rise rapidly, in which case it will soon
use all experience. The sr is updated only when the result is true by judging whether the
performance has improved before updating the model.

Algorithm 1: Scheduler Decision Process

Input: State St and Reward Rt;
Output: Action At;
Initialize the model parameter;
For i in epoch:

Initialize workflow data and environment parameter;
While True do

Select ai
t ∈ At for each si

t ∈ St according to πθ(St, At);
Execute actions, then observe Rt and get the new state Si

t+1;

Store
(

St, At, Rt, Si
t+1

)
in replay buffer D;

If workflow is None:
End While

End if
Calculating sr as Equation (14) and Advt as Equation (15);
Selecting experiences t form D as Equation (16);

For
(

St, At, Rt, Si
t+1

)
in selected samples:

Select ai
t ∈ At for each si

t ∈ St according to πθ(St, At);
End for
θ← θ+ α∑t∇θLπθ (st, at) , update sr;

End for

Algorithm 2: The Sampling Process

Input: replay buffer D and sr;
Output: selected samples;
Get sr and replay buffer D;
Sorted the replay buffer D by Advt;
Better sample num = sample_nums× sr (top Advt samples);
Poor sample num = better_sample_nums× sr (random selecting);
Selected samples = Better sample + Poor sample;

This paper formulates the level for the sr, which helps to reduce the action space.
The sr determines the effect of APER. The model can accelerate convergence with good
experience. On the other hand, memorizing bad experience can avoid poor actions. Increas-
ing experience is beneficial in terms of improving adaptability when facing unexpected
situations.

Different from most of the existing algorithms that assign schedules to all nodes, the
proposed method only uses executable nodes to plan and schedule actions. This being
the case, the computational complexity of the policy network is O

(
k2d2m n

stage + k2d2mv
)

,
where k2 is the number of network layers, d is the number of hidden features, m is the
number of DAGs, n is the number of nodes in a DAG, stage is the number of stages in
a DAG, and v is the number of executors. Because of the requirement to have all of the
nodes’ features, the complexity of the GNN is O

(
k1d2mn + k1dme

)
, where k1 is the number

of network layers, e is the number of edges in a DAG. In addition, the complexity of
observing state and effectiveness is O(mn + v). Therefore, the computational complexity
of the proposed model is O

(
k1d2mn + k1dme + k2d2m n

stage + k2d2mv + mn + v
)

.
This proposed method can reduce the computational complexity of the neural network

caused by the large action space but cannot shorten the length of the action trajectory. This
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being the case, this paper uses APER to improve the training speed because of long
motion trajectories. When learning, the computational complexity of the proposed model
is O

(
sr
(

k1d2mn + k1dme + k2d2m n
stage + k2d2mv + mn + v

))
.

4.3. An Illustrative Example

Initially, the agent only chooses action randomly. The policy may be poor and cannot
schedule in time, causing tasks to pile up; however, through the reward function the agent
only needs to improve the reward to achieve the optimization objective. Referring to the
human process of learning important and difficult knowledge, when an action trajectory is
generated the agent will learn a policy from high-reward experience. Of course, the residual
experience also needs to be learned randomly. In training, the agent gradually increases
the amount of experience, which is a method for increasing the experience complexity
until all experiences are used. This is a method from “easy experiences” to “complexity
experiences“. It is worth noting that this paper also uses rewards as a basis for determining
the amount of used experience to reduce the error from different targets. This is a trial-and-
error process for the agent, which will learn a policy through interaction with the cloud
platform to minimize JCT.

We use two DAGs, as shown in Figure 4, to illustrate the scheduling and optimizing
processes of an agent, where nodes NG1

1 and NG2
5 have been executed. Assume that there are

only two DAGs in the environment, the model randomly initializes the network parameters
on the first episode, and sr = 0.2.
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Firstly, the agent will observe the environment state, s1, including DAGs and cluster
resources, extracting features, NGm

n =
(

eGm
n , eGm , eG

)
, as shown in Equations (9)–(11). These

features of NGm
n are filtered in Equation (12) to ensure that only NG1

1 , NG2
5 are waiting to be

selected. Then, the features of NG1
1 , NG2

5 are sent into the policy network to calculate the

node probability, p
(

NGm
n

)
. Meanwhile, noise is introduced to increase the randomness.

The model will provide a preference to choose argmax
NGm

n

(
p
(

NGm
n

))
, assuming that NG1

1

is selected as node. Similarly, paral is calculated in the same way. This being the case,
a1 = [node, paral] is ensured. After NG1

1 is executed, the state, s1, action, a1, and reward, r1,
are stored in the buffer. The r1 is obtained by druation_time. The state transfers from s1 to
s2 and the action space transfers from

(
NG1

1 , NG2
5

)
to (N G1

2 , NG1
3 , NG2

5

)
. The agent repeats

the above process and selects action at until all DAGs have been executed.
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Assume that the action trace in the buffer is (a1 = NG1
1 , a2 = NG2

5 , a3 = NG1
2 , a4 = NG1

3 ,
a5 = NG1

4 , a6 = NG2
6 , a7 = NG2

7 ). The model will then be optimized with APER by this trace
in Figure 5. The agent calculates Rt as shown in Equation (14) and the advantage, Advt, as
shown in Equation (15) for at. The experience with high Advt will be selected according
to the sorted Advt, choosing three experiences, as in Equation (16), and assuming to use
a1, a5, a6. The agent recalculates the action probability, p′(t), for the three experiences and
then calculates the expected reward, E(r) = ∑t p′(t)× Advt. At this time, the sr probability
is calculated in addition to the node probability and paral probability. The sr with the
highest frequency is affirmed as the sample rate of the next episode, as in Equation (13).
Finally, the model is updated by Equation (17) and Equation (18) only if E(r) is greater than
sum(Rt ) of the corresponding at. At this point, the first episode is completed.
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Figure 5. Training process.

In the first episode the agent randomly chooses nodes and the number of experiences.
During the rest of the training the agent will utilize trial and error, and learning how to
choose actions will increase the rewards in the process. The APER algorithm accelerates
learning by prioritizing high Advt experience and guarantees performance by gradually
adding experience until all traces are learned. This is a simulation of the human learning
process.

5. Experiments
5.1. Experiment Settings

Dataset. In this paper, three types of datasets, Tpc h [65], Alibaba cluster data [66] (ali-
data), and scientific workflows [67], are used for conducting random arrival task scheduling
tests. Table 2 shows part of the dataset information. In addition, this paper randomly
selects some tasks in order to form a mixed dataset to further enhance the diversity of
scheduling scenarios. Experiments show that the scheme in this paper can bring better
performance improvements in multiple scenarios.

The model is trained offline by a simulator [10] that can access profiling information
from a real Spark cluster, such as JCT and DAG structure. This paper simulates the Poisson
process of job arrival, assuming average arrival times of 25 s and 50 s, randomly sampling
tasks, and repeating 10 times when using these datasets for testing. This paper treats
the scientific workflows as a dataset with 22 DAGs. Decima is used as the comparison
algorithm in this paper. It uses a GNN and RL for scheduling decisions and performs well
in single scene; however, it has invalid scheduling action and does not have PER.
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Table 2. Datasets in this paper.

Dataset Amount Sample
Amount

Average
Arrival Time

Tpc-h Twenty-two queries are generated under 7 data
scales of 2 G, 5 G, 10 G, 20 G, 50 G, 80 G, and 100 G 100 25 s

alidata Two million from real cluster running data 1000 25 s

Scientific
workflows

Scientific Workflow Number of Nodes

20 50 s

CyberShake 30, 50, 100, 1000
Epigenomics 24, 47, 100, 997

Inspiral 30, 50, 100, 1000
Montage 25, 50, 100, 1000

Sipht 29, 58, 97, 968
Floodplain 7

HEFT 10

Mixed 1000. 32% from Tpc-h, 64% from alidata, and 4%
from scientific workflow 1000 50 s

5.2. Use Different Datasets

Figure 6 shows the JCT of the proposed model and Decima randomly tested on the
alidata (a), scientific workflows (b), and Tpc-h (c) 10 times. The ordinate represents JCT,
where it being lower indicates better performance. Both of the models are trained using
Tpc-h. The model with APER has a steady and huge improvement in alidata. Additionally,
the performance is better in most cases when using scientific workflows; however, the
performance is worse on Tpc-h in most cases.
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The reason why the proposed model works well on alidata is due to it being from a real
cluster scheduling trace. Its tasks have stronger diversity and a larger number. Diversity
helps the model capture task features more comprehensively. The large number benefits
more trial and error of the model and enhances generalization. In contrast, Tpc-h only
has 154 pieces of data, and the number of DAG nodes generally ranges from 2 to 18. It is
from 2 to 100 in alidata. When good results are achieved on alidata, the model has been
“overfitted” on Tpc-h. This paper argues that this is the reason why APER performs worse
on Tpc-h.

There are large fluctuations for the two algorithms in scientific workflows. This is
because they have fewer pieces of data but larger differences between DAGs. For example,
in the same batch of DAGs some DAGs have a small number of stages and high parallelism;
some DAGs have major runtimes concentrated in a few stages; and some DAGs have an
extremely large number of nodes. However, the performance of the proposed model is
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still better. Figures 7 and 8 show the variance of all nodes’ JCT and the variance sum of all
DAGs’ JCT in Tpc-h and scientific workflows. The variance is calculated using the running
time. The differences within the two datasets are shown.
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In the zeroth, second, fourth, and eighth experiments the variance in the two graphs
is low, denoting that the execution times of all of the nodes are relatively close. At this
time, the four scheduling strategies can achieve better performance. The variances in the
third and seventh experiments are relatively large, denoting that the difference in the task
execution times between nodes in a single DAG is high. In addition, the execution times
of all of the DAG nodes are also different. Compared with Decima, this paper model is
more suitable for highly random scheduling processes. In the sixth experiment the overall
variance is extremely high, but the sum of the variances of the DAG is low, showing that
the difference in the execution times of nodes within a single DAG is low but the difference
between each DAG is extremely large. For example, the number of sampled scientific
workflow nodes is around 1000 or below 50. The model is difficult to adapt to drastic
changes with fewer DAGs, but it performs better in mixed data, as shown in Figure 9.
Compared with Decima, this model still has certain advantages in many scenarios.
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Considering the characteristics of three datasets, the mixed dataset consists of 32%
Tpc-h, 64% alidata, and 4% scientific workflows, which is then tested 10 times. The Figure 9
shows the performance comparison plots of the proposed model and Decima on the mixed
dataset tested 10 times. It is observed that the proposed model generally outperforms the
contrastive models. Table 3 shows the JCT of 10 experiments, showing that this model’s
JCT is better than Decima on the mixed dataset, with an average advantage of around 37%,
with higher R and shorter task completion times. The fluctuation in the third, fourth, and
fifth tests is because the sampled DAG variance is too high.

Table 3. JCT(s) on the mixed dataset.

1 2 3 4 5 6 7 8 9 10 Total Average

The proposed
model 1864.8 1560.6 1505.3 1556.0 1377.1 2014.3 1313.9 1768.3 1430.8 1724.6 16,115.7 1611.6

Decima 2854.5 7879.6 31,178.6 17,337.5 29,293.5 5221.1 3498.1 2281.9 7574.0 1748.7 108,867.4 10,886.7

Relative
advantage

This
model/Decima

65.33% 19.81% 4.83% 8.97% 4.70% 38.58% 37.56% 77.49% 18.89% 98.62% 14.80% 37.48%

5.3. Comparison of Different Algorithms

In this paper’s experiments, some common algorithms and state-of-the-art algorithms
are used for comparison:

(1) Decima with idle slots [20]. Based on Decima, the JCT can be reduced by delaying
the running of some tasks for a period by intentionally inserting idle time slots for
relatively large tasks.

(2) GARLSched [68]. A reinforcement learning scheduling algorithm combined with
generative adversarial networks. It uses an optimal policy in the expert database
to guide agents to learn in large-scale dynamic scheduling problems while using a
discriminator network based on task embedding to improve and stabilize the training
process. This is an independent task scheduling algorithm.

(3) Graphene [69]. A classic task heuristic scheduler based on DAGs and heterogeneous
resources. It improves cluster performance by discovering potential parallelism
in DAGs.

Table 4 shows the average JCT and relative performance of the proposed model and
the comparison model when using Alibaba cluster data. These figures are calculated
through comparison with Decima. “/” indicates that the comparison algorithm did not
perform, and the original algorithms are also no test results. The average JCT is calculated
by Equation (4).

Table 4. Average JCT of different algorithms on Tpc-h and alidata.

Algorithm Proposed
Model Decima Decima with

Idle Slots GARLSched Graphene

Average JCT
on Tpc-h 58.93 53.57 / / 76.61

Average JCT
on alidata 182.04 444.01 381.85 261.69 586.09

When using APER, the average JCT of each DAG on alidata is only 41% of Decima,
which is better than other comparison algorithms. This paper argues that the reason for
the better results of Decima is that Tpc-h is used to train and test simultaneously. This is
corroborated by the JCT of Decima over the proposed model on Tpc-h, which is consistent
with the Figure 6. Because alidata are from real cluster traces, it can be considered that this
model is more suitable for real scheduling scenarios.
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5.4. Ablation Experiment

APER can not only enhance the robustness when a large amount of experience is used,
making it suitable for more application scenarios, but it can also help models converge if
using a small amount of good experience. Figure 10 shows convergence curves, in which
a is when using APER and b is without using APER. The loss is calculated according to
Equation (10), and it will increase until convergence. Although both graphs converge at
around 1000 episodes, this is because we does not drop to a fixed value until the 1000th
episode and the impact of Entπθ

(at) is huge in the early stage. Starting from the 400th
episode, the model is stable to use for all experiments. This is also why the convergence
curve has smaller and smaller fluctuations before the 400th episode but steadily rises after
that. This paper believes that steady convergence instead of violent fluctuation is one of
the reasons why the model can achieve better performance in the early stage, because the
model can perform scheduling decisions under a relatively stable policy.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 21 
 

 

 
(a) (b) (c) 

Figure 10. Convergence curves. (a) APER and GNN; (b) without APER; and (c) without GNN. 

The paper also tests the role of a GNN. Figure 10c shows the convergence curve of 
the model without a GNN. The loss curve is similar to Figure 10a, which shows the effec-
tiveness of APER; however, it converges more slowly. It is shown that loss fluctuates 
greatly without a GNN. This is because a GNN is used to extract dependencies between 
nodes in a DAG. It aggregates the information of each node and its successors, which is 
equivalent to pre-calculating the time from this node to the end of a DAG for each node. 
This way of predicting the completion time of each DAG measures the value of each 
schedulable node from a global perspective and makes the model more inclined to take 
scheduling actions that can reduce the total task completion time. The model without 
GNN can calculate scheduling actions only based on the information of schedulable nodes 
and cannot consider the global perspective. The model will prefer to select nodes with 
shorter execution times rather than nodes with shorter expected DAG completion times. 
This may lead to a longer JCT, thus making the loss more volatile. Finally, this paper se-
lected the stabilized proposed model and the model without a GNN for ten instances of 
testing on the mixed dataset. This is shown in Figure 11, where orange is the proposed 
model and blue is the model without a GNN. As mentioned above, the model without a 
GNN performs worse. 

 
Figure 11. Impact of a GNN on JCT. 

6. Discussion and Conclusions 
Task scheduling in cloud environments has been a research hotspot. This paper de-

signs a cloud platform task scheduling model based on APER, which is used to improve 

Figure 10. Convergence curves. (a) APER and GNN; (b) without APER; and (c) without GNN.

The paper also tests the role of a GNN. Figure 10c shows the convergence curve
of the model without a GNN. The loss curve is similar to Figure 10a, which shows the
effectiveness of APER; however, it converges more slowly. It is shown that loss fluctuates
greatly without a GNN. This is because a GNN is used to extract dependencies between
nodes in a DAG. It aggregates the information of each node and its successors, which
is equivalent to pre-calculating the time from this node to the end of a DAG for each
node. This way of predicting the completion time of each DAG measures the value of each
schedulable node from a global perspective and makes the model more inclined to take
scheduling actions that can reduce the total task completion time. The model without GNN
can calculate scheduling actions only based on the information of schedulable nodes and
cannot consider the global perspective. The model will prefer to select nodes with shorter
execution times rather than nodes with shorter expected DAG completion times. This
may lead to a longer JCT, thus making the loss more volatile. Finally, this paper selected
the stabilized proposed model and the model without a GNN for ten instances of testing
on the mixed dataset. This is shown in Figure 11, where orange is the proposed model
and blue is the model without a GNN. As mentioned above, the model without a GNN
performs worse.
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6. Discussion and Conclusions

Task scheduling in cloud environments has been a research hotspot. This paper
designs a cloud platform task scheduling model based on APER, which is used to improve
a platform’s adaptability to complex, dynamic, and multiscenario scheduling tasks. The
model can directly optimize a scheduling strategy by interacting with a cloud platform, as
well as by gradually expanding from specific experience to general experience, to ensure
that the model can achieve better results in complex environments. The experimental
results show that the proposed model not only has a more robust performance in random
scheduling environments in various scenarios but also accelerates convergence to a certain
extent. This demonstrates the effectiveness of the scheduling framework and APER.

The proposed algorithm still has some shortcomings and optimization directions:
(1) Pre-emptive scheduling. In real cloud platforms it is often necessary to consider urgent
tasks. It is possible to consider task priority while calculating scheduling actions or using
MARL. (2) Add performance metrics. The performance metrics of the proposed model are
relatively simple, and others, such as the loading time of hardware resources, throughput,
waiting time, etc., can be used at the same time.
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