
Citation: Lu, D.; Fei, J.; Liu, L. A

Semantic Learning-Based SQL

Injection Attack Detection

Technology. Electronics 2023, 12, 1344.

https://doi.org/10.3390/

electronics12061344

Academic Editor: Rameez Asif

Received: 9 February 2023

Revised: 8 March 2023

Accepted: 11 March 2023

Published: 12 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Semantic Learning-Based SQL Injection Attack
Detection Technology
Dongzhe Lu, Jinlong Fei * and Long Liu

State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China
* Correspondence: feijinlong_2021@163.com; Tel.: +86-13683818083

Abstract: Over the years, injection vulnerabilities have been at the top of the Open Web Application
Security Project Top 10 and are one of the most damaging and widely exploited types of vulnerabilities
against web applications. Structured Query Language (SQL) injection attack detection remains a
challenging problem due to the heterogeneity of attack loads, the diversity of attack methods, and
the variety of attack patterns. It has been demonstrated that no single model can guarantee adequate
security to protect web applications, and it is crucial to develop an efficient and accurate model
for SQL injection attack detection. In this paper, we propose synBERT, a semantic learning-based
detection model that explicitly embeds the sentence-level semantic information from SQL statements
into an embedding vector. The model learns representations that can be mapped to SQL syntax
tree structures, as evidenced by visualization work. We gathered a wide range of datasets to assess
the classification performance of the synBERT, and the results show that our approach outperforms
previously proposed models. Even on brand-new, untrained models, accuracy can reach 90% or
higher, indicating that the model has good generalization performance.

Keywords: SQL injection attack; deep learning; web application vulnerability detection

1. Introduction

Injection vulnerabilities are specific vulnerabilities triggered by developers or im-
perfect design processes [1]. With the rapid expansion of the Internet infrastructure, the
increasing reliance on digital information by an increasing number of users highlights
the importance of information and data protection [2]. Data security is defined as the
use of hardware or software to prevent unauthorized access, modification, or destruction
of information.

Structured Query Language (SQL) injection is a code injection attack that executes the
input data as code, thus violating the data-code separation principle [3]. An attacker can
insert SQL commands into the query string of a web form submission, Uniform Resource
Locator (URL), or page request and change the SQL statement execution logic to gain access
to resources or change data stored in the database when a web application is passing SQL
statements to the backend database for database operations without strict filtering of user
input parameters, as shown in Figure 1.
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Figure 1. How SQL injection attacks work.

SQL injection attacks have become a popular tactic among cyber attackers due to their
ease of implementation and high threat level. Traditional rule-based detection models are
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inefficient and ineffective at detecting variant attacks. Simultaneously, there are numerous
free SQL injection tools available on the Internet, lowering the bar for carrying out SQL
injection attacks, while flaws in development languages, limitations in some developers’
professionalism, and a lack of web security awareness increase the likelihood of successful
attacks on websites. As a result, it is critical to develop a reliable and accurate SQL injection
attack detection model for web application security.

In this paper, we present synBERT, a semantic learning and deep learning-based
technique for detecting SQL injection attacks. For the first time, we apply a pre-trained
model to the field of vulnerability attack detection and demonstrate that the model can
fully learn sentence-level semantic information. It outperforms other detection algorithms
in terms of classification accuracy and can distinguish between SQL injection statements
and SQL statements. This paper’s contributions are listed below.

(i) We collect a more comprehensive malicious dataset, covering the full range of SQL
injection attacks. Moreover, benign samples are selected not only from the plain text
but also from normal SQL statements. This method has the potential to reduce the
number of false alarms.

(ii) For raw traffic, we detect injection attacks not only in URL fields but also in re-
quest body and request header fields. To some extent, this reduces the possibility
of underreporting.

(iii) We propose a new detection model—synBERT, which is based on semantic compre-
hension. When compared with other detection models, it outperforms Convolutional
Neural Networks (CNN) [1], Multilayer Perceptron (MLP) [4,5], Long Short-Term
Memory (LSTM) [6,7], and others [8,9].

(iv) We use a structural probe to assess how well the synBERT model learns sentence-level
semantic information, and we visualize it with heat maps and tree maps.

The remainder of the paper is organized as follows. Section 2 introduces SQL injection
attacks and the most commonly used vectorization methods, as well as the benefits and
drawbacks of traditional attack detection methods. Section 3 introduces our proposed
model and its principles. Section 4 expands on the structural probe’s design principles
and visualization. Section 5 conducts a comprehensive test of synBERT’s performance and
selects a new test set for secondary evaluation. Section 6 concludes the paper and suggests
future works.

2. Background and Related Work
2.1. SQL Injection Attacks

Structured Query Language Injection Attack (SQLIA) is one of the most important
and dangerous vulnerabilities in interactive online applications [3]. Web applications with
databases that store important information are one of the targets of SQLIA. According to
Mitre [10], SQL injection attacks are one of the oldest, most prevalent, and most damaging
types of security attacks facing web-based information systems.

The causes of SQL injection can be broadly grouped into two categories: dynamic
string construction and insecure database configuration. The former includes incorrect
handling of escape characters, incorrect handling of types, incorrect handling of join queries,
incorrect handling of errors, and incorrect handling of multiple commits. The latter includes
pre-installed users by default, running as root or SYSTEM or Administrator privileged
system users, and allowing many system functions by default.

After summarizing, the classic SQL injection methods are classified in the following
ways. According to the way of constructing and submitting SQL statements, they can be
classified into: cookie injection, GET injection, POST injection, Hyper Text Transfer Protocol
(HTTP) header injection, and second order injection. According to the execution effect, it
can be divided into blind injection and backdated injection, mainly the following: boolean-
based blind injection, time-based blind injection, error reporting-based blind injection, joint
query injection, stacking injection, annotation character injection, wide-byte injection, and
reduplication style.
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In addition to this, SQL injection vulnerabilities are often exploited in more novel
and sophisticated attacks, such as Fast-Flux SQL Injection and compound SQL Injection
(a combination of a SQL injection attack and other web application attacks). There are
many examples.

(a) SQL+ Distributed Denial of Service (DDoS): This attack is used to hang the server and
exhaust the resources so that users cannot access it. To track the DDoS attack, the com-
mands that can be used in SQL injection are encoding, compression, connection, etc.

(b) SQL+ Domain Name System (DNS) Hijacking: By using this type of attack, the
attacker intends to embed a SQL query in the DNS request and capture it to make it
propagate across the internet.

(c) SQL+ Cross Site Scripting (XSS): XSS is a client-side code injection attack where an
attacker can inject malicious code into the input fields of an application. After inserting
the XSS script, it will execute and try to connect to the application’s database. The code
to extract the data from the database can be obtained using the iframe command [11].

(d) SQL+ Insufficient authentication: if the security parameters are not initialized, an
attacker can access sensitive content without verifying the user’s identity. So attackers
exploit this vulnerability to inject SQL injection code.

In general, the harms caused by SQL injection include the following. (a) An attacker
can access the data in the database without authorization and steal the user’s privacy as
well as personal information, resulting in the leakage of the user’s information. (b) Add
or delete operations to the data in the database, such as privately adding or deleting
administrator accounts. (c) If a website directory has write permission, the attackers can
write a web page Trojan. The attacker can then tamper with the web page and publish
some illegal information. (d) After steps such as privilege extraction, the highest privileges
of the server are obtained by the attacker. The attacker can remotely take control of the
server, install a backdoor, and be able to modify or control the operating system.

2.2. Traditional Detection Methods

Although the traditional vulnerability detection technology shows many shortcomings
in many application scenarios, its research provides the technical basis and feasible devel-
opment direction for the subsequent research of more intelligent vulnerability detection
technology. The traditional methods for detecting SQL injection attacks are static analysis,
dynamic analysis, combined static and dynamic analysis, and parameter filtering, and the
detection architecture is shown in Figure 2.
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Static analysis methods detect type errors and syntax errors by analyzing incoming
statements, which mainly refers to source code analysis without running the program to
determine if there is a possibility of SQL injection. Many traditional web attack mitigation
is achieved by statically analyzing incoming web traffic, also known as signature detection.
This strategy involves creating a signature of a web attack, and when that signature is
detected, suspicious traffic can be blocked through a firewall or other security device. This
method has the advantage of being fast, implemented in real-time, and protecting network
resources, but the disadvantage is that only known attacks can be detected.
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Wassermann and Su [12] proposed a combined automated reasoning and static analy-
sis approach to prevent SQL injection attacks and experimentally demonstrated that this
approach can detect the presence of reduplicative attacks in real-time SQL queries. How-
ever, it cannot detect other types of attacks. A static analysis framework, called SAFELI [13],
was proposed for identifying SQL injection attack vulnerabilities at compile time. SAFELI
can identify vulnerabilities that may lead to violations of information security for the
corresponding user input. The limitation of this approach is that SQL injection attacks are
detected only in Microsoft-based products.

The dynamic analysis approach determines whether a statement is malicious by
analyzing the final implementation of a statement, which mainly refers to detecting the
presence of SQL injection attacks in an application by performing dynamic penetration
tests at runtime or using generative models when the source code of the web application is
not available.

Pan et al. [14] proposed a RSMT-based approach for web application attack detection
that analyzes call tracing as the runtime behavior of a web application. RSMT uses an
auto-encoder for analysis and uses graphs as data calls. In RSTM, a smaller amount of
labeled data is used to calculate the reconstruction error of the autoencoder and to establish
a threshold to distinguish between normal and abnormal behavior. However, further
research is still needed to investigate the efficiency of retraining the autoencoder, and it
may not be able to support the detection of zero-day attacks. Moreover, the authors did not
compare with more complex network structures. Shin [15] proposed an automated white-
box security testing framework to detect SQL injection attacks. The warnings generated
by static analysis tools or automated black-box testing tools can be reduced, and the main
limitation of dynamic analysis is that vulnerabilities in web applications can only be located
by relying on the attacks that have already appeared. Therefore, this method can also not
cope with zero-day attacks.

Combined static and dynamic analysis detection is a hybrid approach that combines
static code inspection with real-time monitoring at runtime to detect and block SQL injection
attacks. The static analysis phase analyzes the program source code and builds a SQL
statement security model based on the program source code, while the dynamic analysis
phase compares the requests submitted to the database with the model of static analysis
and accesses them normally if they are the same or denies access if they are different.

Wang et al. [16] proposed a method for SQL vulnerability detection based on injection
analysis techniques. Firstly, based on the combination of dynamic and static analysis, a
detailed analysis of injection statements in terms of data flow and program behavior is
carried out, and then a SQL vulnerability determination algorithm based on lexical feature
comparison is implemented. Finally, a SQL vulnerability detection system is designed
and built by combining alias analysis techniques, behavior models, and lexical feature
comparison. ASSIST was a technique [17] that used a combination of static analysis and
program transformation for automatic query sanitization to prevent SQL injection in code.
However, similar to AMNESIA [18], this technique also leads to false negatives due to
imprecision. Qing and He [19] proposed an approach to detect and prevent SQL injection
attacks by using analytic techniques to extract legitimate SQL queries and match them with
Aspect Oriented Programming (AOP). However, the main limitation of the method is that
the source code of the program must be visible.

Parameter filtering methods mainly refer to filtering invalid characters based on reg-
ular expressions and blacklists. It is a hazy, non-independent concept that is frequently
used in conjunction with static or dynamic analysis methods. Ref. [20] divides SQL param-
eters into six elements, uses the static analysis sequence of injection points and filtering
omissions, and passes them as parameters to the dynamic detection module to generate
more targeted test cases. However, there are some obvious drawbacks to this approach.
One is that the test cases stitched together according to the rules are very limited, and the
other is that the source code of the program must be known ahead of time. Katole et al. [21]
combined query processing methods and parameter filtering methods to give a method to
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detect the difference between the original SQL query and modified injected SQL query by
parameters, which can detect SQL injection attacks before any data is lost from the web
application, thus making the system more secure. The drawbacks are that detecting SQL
injection attacks is time-consuming, and more robust methods need to be developed for
different business requirements.

Traditional Web protection technology uses feature detection to detect SQL injection,
and its method is to identify specific injection parameters at a specific access request URI
and write thousands of detection rules depending on the type and version of the Web server
where SQL injection vulnerabilities exist. However, these rules can only defend against
SQL injection attacks on Web servers that have been discovered, and the detection features
also lack universality, making it difficult to defend against more complex SQL injection and
0day injection attacks.

2.3. Artificial Intelligence-Based Detection Methods

AI detection methods for SQL injection first emerged using feature engineering plus
machine learning methods, which use statistical feature extraction methods for feature
engineering. It is followed by training various classifiers of machine learning or inte-
grated learning models and detecting the presence of SQL injection attacks in real data
streams. Statistical feature extraction includes feature extraction by word statistics and
expert abstraction by empirical feature extraction methods. The former generally uses Term
Frequency–Inverse Document Frequency (TF-IDF) or N-gram methods, and the latter relies
on the experience of security experts. Under this approach, whether the data samples and
expert experience are sufficient and effective determines the final detection results.

Makiou et al. [22] used a combination of a machine learning classifier and rule engine
to detect SQL injection attacks, improving the detection performance of traditional rule-
based methods. First, the HTTP request traffic is divided into different parts to detect the
presence of SQL injection. A plain Bayesian classifier is used to characterize the presence of
certain keywords and symbols in SQL statements. To reduce false positives during training,
the model gives a higher penalty for misclassifying SQL injection attacks as normal traffic.
After the classification is complete, the suspicious traffic is forwarded to a pattern-matching
detection engine based on a simplified security rule set for in-depth analysis. The accuracy
of the method is 97.6%. The advantage is that the detection location contains not only URLs
and POSTs but also HTTP headers, whereas most detection methods ignore SQL injection
detection in headers for simplicity and efficiency purposes. The disadvantage is that the
analysis continues using the rule engine after the machine learning model, which loses
the generalization of machine learning and does not overcome the limitations of the rules
themselves to detect unknown SQL attacks.

Choi et al. [23] introduced general methods of natural language processing, such as
the n-gram, into the detection of SQL injection statements with good results. Candidate
tokens for the n-grams were limited to SQL functions pulled from an ordered occurrence
frequency list in SQL Command. However, the method cannot cope with complex joint
injection attacks. Obviously, due to the limitations of the n-gram, the method is also unable
to cope with multiple obfuscated and mutated injection statements. A new approach for
SQLi detection based on unsupervised machine learning [24] used a dual Hidden Markov
Model (HMM), but the process was very complex and time-consuming, which affected
the performance and resulted in more false positives. In [25], the authors made further
improvements by developing methods that are more suitable for fast traffic networks and
SQL injection attack detection. The authors proposed the use of machine learning methods
for detection, providing an accurate means of improving network egress filtering.

Natural language processing based on deep learning has received increasing atten-
tion in recent years and has made significant advances, such as the use of convolutional
neural networks for text classification to better capture the local relevance of text. Deep
learning, unlike traditional machine learning algorithms, does not require complex feature
engineering, and its performance typically improves with increasing training data. In
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other words, it is far more scalable than traditional machine learning algorithms. A wide
range of researchers [26] continue to propose new techniques in the field of SQL injection
attack detection, and detection performance has improved as a result. Of course, no single
technique can solve all problems, and each has its own set of scenarios to consider as well
as drawbacks.

Fang et al. [27] designed to convert sample data into word vectors as the input of the
model and uses LSTM models to detect, demonstrating that LSTM-based methods have
better detection results than Recurrent Neural Network (RNN) and CNN-based methods.
However, there are still many challenges and problems. First, due to the lack of open
SQL injection datasets, it is difficult to obtain enough training samples during the training
process, leading to overfitting. Second, there are many types of SQL injection attacks, each
with its own specific performance and judgment features, and the samples of different
forms of attacks are unevenly distributed. When the distribution is unbalanced, i.e., the
training data for a certain type of anomaly is too small, it is difficult for deep learning-based
methods to achieve good detection results.

Ref. [8] built the MLP and LSTM models to learn the statistical features and character
order features of URL parameter strings, respectively. The experimental results show that
the accuracy of the MLP model is much higher than that of the Naïve-Bayes algorithm,
the SVM algorithm, the SVM + Social Media Optimization (SMO) algorithm, and the
SVM + Particle Swarm Optimization (PSO) algorithm proposed by some scholars. The
LSTM model, although its detection time is much longer than that of the MLP model, it
has a unique advantage. On the contrary, the effect of this statistical feature extraction is
very sample-dependent, i.e., the model trained in this case has a weak generalizability,
which will be mentioned later. Zhongdong Zhu [4] systematically proposed a framework
for detecting SQL injection attacks based on HTTP traffic in the context of complex HTTP
traffic. The model building module proposed a modeling method for detecting payloads of
arbitrary length and a training method for variable-length sequences with guaranteed effi-
ciency. The framework had a low false alarm and missing reporting rate in a real network
environment. However, the author only proposed a theoretical framework without pro-
viding any experimental data or results. Moreover, the method of concatenating statistical
features and word embeddings is theoretically ineffective because the dimension of word
embeddings is dozens or even hundreds of times that of statistical features.

Currently, the latest machine learning approaches in Web security focus more on
methods that combine machine learning algorithms with semantic features of Web code,
caring not only about the statistical features of words in a sample but also about the
contextual situational semantics of words, achieving better practical results than traditional
detection methods and statistical-based AI approaches.

Muyang Liu et al. [28] proposed a deep natural language processing-based tool Deep-
sqli for generating test cases for detecting SQL injection vulnerabilities. By employing deep
learning-based neural language models and lexical prediction sequences, Deepsqli can
learn the semantic knowledge embedded in SQL injection attacks, enabling it to transform
user input (or test cases) into a semantically relevant and potentially more complex new test
case. Experiments were conducted to compare Deepsqli and Sqlmap on six real-world web
applications with different scales, features, and domains. The empirical results demonstrate
the effectiveness and superiority of Deepsqli, leading to the identification of additional
SQL injection vulnerabilities. This approach can be used to exploit unknown SQL injection
vulnerabilities, but it still gives us some insights, especially in the areas of test case genera-
tion and semantic knowledge learning. Ref. [29] proposed a model for SQL injection attack
detection based on machine learning techniques implemented in the business logic layer
of Web applications. It claimed to improve the efficiency of SQL injection attack detection
by extracting semantic features from dynamic and static analysis that could effectively
indicate SQL injection attacks. However, this work is only theoretical and has not been
tested by experiments.
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3. Detection Model synBERT

It is well known that Bidirectional Encoder Representations from Transformers (BERT)
are used for pre-training to learn word vector representations of specific words in a given
context. BERT uses the encoder part (left of Figure 3) of the transformer architecture [30].
Its most important feature is that it discards traditional RNNs and CNNs and effectively
solves the tricky long-term dependency problem by transforming the distance of two words
at arbitrary positions through an attention mechanism.
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As shown in Figure 3, the gray area on the left is a block, and each block contains
multiple layers. Add & Norm adds the input and output vectors of the multi-head attention
layer to get a new set of vectors and then performs layer normalization. The linear layer is
a fully connected neural network, which projects the vectors generated by the encoder as
logits. Then the softmax layer normalizes the linear layer’s output to get log_probs.

The input of the BERT encoder is a sequence of tokens, and the output is a sequence
of vectors, where each input token corresponds to a vector. The input of the BERT model
has three parts: token embedding, segment embedding, and position embedding. The
internal structure of BERT consists of two parts. First, an initial embedding is created for
each token by combining a pre-trained word vector with a position vector and text vector
information. The position encoding is independent of the input content. Furthermore, this
initial embedding sequence is passed through multiple blocks to produce a new sequence
of contextual embeddings at each step.

In this paper, synBERT is designed for the features of SQL injection statements, with
three component modules: the knowledge layer, the representation layer, and the encoder
layer. The knowledge layer is responsible for the injection of knowledge and the generation
of sentence syntax trees, the representation layer is responsible for projecting the syntax
tree, a sequence of inputs, into a representation vector; and the encoder layer is responsible
for encoding the representation vector based on the information provided by the injected
triadic knowledge.
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In this paper, the original position embedding is changed to a semantically relevant
position embedding, i.e., the semantic information of the SQL statement is embedded
explicitly in the input layer. Figure 4 visually represents how we replace the original
position embedding with a custom embedding.
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synBERT describes the three embedding features of the input as wordpiece embedding,
syntactic-position embedding, and segment embedding. Wordpiece refers to the division of
words into a limited set of common subword units that can strike a compromise between
word validity and character flexibility. Syntactic-position embedding refers to encoding
the semantic and syntactic information corresponding to each token into a feature vector.
Segment embeddings are used to distinguish between two sentences, e.g., whether B is the
continuation of A. For sentence pairs, the feature value of the first sentence is 0 and the
feature value of the second sentence is 1.

Therefore, we use two submodels for the task of computing and classifying the em-
bedding vectors. First is a preprocessor, which converts a string into a numeric tensor. The
second one is an encoder that accepts the tensor dictionary returned by the preprocessor
and performs the trainable part of the embedding vector computation. This split processing
allows the input to be processed asynchronously before being fed to the training loop.
Figure 5 illustrates the structure of the synBERT model.
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At the same time, we scale down the original model to reduce the number of neurons,
resulting in a significant reduction in the amount of machine operation. Compared with
the baseline model of BERT, synBERT is able to increase the computational speed by more
than five times. The specific parameter values and meanings are described in Section 5.1.

4. Structure Probe
4.1. Syntax Tree of SQL Statements

For SQL statement compilation, lexical analysis is used to split the SQL string into
tokens that contain keyword recognition. Take the statement “select a from table where
c = ‘aaaaaaaaa’” as an example, and split it into words to get [select, a, from, table, where,
c, =, ‘aaaaaaaaa’], each of which has a different attribute. That is to say, “select” is a DML
statement, while “=” is a comparison operation symbol. Syntax analysis involves the use
of top-down or bottom-up algorithms to parse tokens into abstract syntax trees. Syntax
parsing rules for SQL statements, generally consist of two steps: identifying syntax-related
statements and adjusting the syntax tree structure. Take the statement “Select col_1, col_2
as b from DT_A;” as an example, the level of its syntax tree is as follows.

|- 0 DML ‘Select’
|- 1 Whitespace ‘ ’‘
|- 2 IdentifierList ‘col_1, . . . ‘
|- 0 Identifier ‘col_1’
| ‘- 0 Name ‘col_1’
|- 1 Punctuation ‘,’
|- 2 Whitespace ‘ ’
| ‘- 3 Identifier ‘col_2, . . . ’
|- 0 Name ‘col_2’
|- 1 Whitespace ‘ ’
|- 2 Keyword ‘as’
|- 3 Whitespace ‘ ’
| ‘- 4 Identifier ‘b’
| ‘- 0 Name ‘b’
|- 3 Whitespace ‘ ’
|- 4 Keyword ‘from’
|- 5 Whitespace ‘ ’
|- 6 Identifier ‘DT_A’
| ‘- 0 Name ‘ DT_A’
‘- 7 Punctuation ‘;’

The objects in the above syntax tree structure are inherited from the base class Token,
and the parent node contains the information of the child nodes. Token has two instance
attributes ttype and value, and the class attributes and the regular expressions used for
parsing are shown in Table 1.

Table 1. Class attributes and their regular expressions.

Base Types and Sub-Attributes Examples Example of Regular Expressions

Comment – –|)#\+.*?(\r\n|\r|\n|$

Assignment var:=val :=

Operator + [+/@#%ˆ&|ˆ-]+
Comparison =, > [<>=~!]+

Text \r\n “.*?”
Whitespace \s

Newline \r \r\n|\r|\n
Punctuation ; : ( ) [ ] , . [;:()\ [\ ],\ . . . ]
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Table 1. Cont.

Base Types and Sub-Attributes Examples Example of Regular Expressions

Keyword from, GROUP BY CASE|IN|VALUES|USING|FROM|GROUP\s+BY
DDL CREATE, ALTER CREATE(\s+OR\s+REPLACE)?\b
DML SELECT, UPDATE SELECT|INSERT|UPDATE|DELETE

Name c (?<![\w\])])(\ [[ˆ\ ]\ []+\ ])

Placeholder ?, * (?<!\w)[$:?]\w+

Literal hello \d+|\w+|.+
String aaaa ‘\’.*?\’

Number 111 \d
Identifier database, table, column \w
Wildcard * \*

Note: The first column shows all the attributes and sub-attributes that “Token” contains. The content in each solid
line box indicates the same class. The dotted lines make the table more readable. Using “Text” as an example, the
inclusion relationship (from lowest to highest) is as follows: Newline -> Whitespace -> Text -> Token.

4.2. Structure Probe for synBERT

Sentences are sequences of discrete symbols, but neural networks operate on continu-
ous data–vectors–in high-dimensional space, and it is clear that a successful network will
transform the discretized input into some sort of geometric representation. For example, the
influential Word2Vec system [31], has been shown to place related words near each other in
a space where certain directions in the space correspond to semantic distinctions. Syntactic
information, such as numbers and tenses, is also represented by the orientation of space. An
analysis of the internal states of RNN-based models shows that they represent information
about soft-level grammars in a form that can be extracted by a hidden layer network [32].
Qualitative, visualization-based work [33] suggests that attention matrices may encode
important relationships between words. One finding of Hewitt and Manning [34] was that
BERT appeared to create a straightforward representation of the entire parse tree, which
motivated our work. The authors found that the square of the Euclidean distance between
contextual embeddings is roughly proportional to the tree distance in dependency parsing.
Ref. [35] clarified the internal representation of linguistic information by BERT, finding
evidence of syntactic representations in the attention matrix. The papers cited above show
that language processing networks create a rich set of intermediate representations of
semantic and syntactic information.

In this paper, we use the structural probe to verify whether the improved synBERT
model reflects the syntactic tree structure of SQL statements, i.e., we can prove that the
BERT model learns the syntactic tree structure as long as the distance between word vectors
exhibits the pattern of the Pythagorean theorem.

Assuming that the two nodes of the syntax tree are wi and wj, two words for hi and hj,
computing the distance between the two high-dimensional vectors can be transformed into

d =
(
hi − hj

)T(hi − hj
)

(1)

This can be translated into computing a semi-positive definite measure matrix A = BT B
to satisfy the

dB
(
hi, hj

)
=
(
hi − hj

)T A
(
hi − hj

)
=
[
B
(
hi − hj

)]T B
(
hi − hj

)
(2)
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The matrix elements of the B-matrix are learned by training a neural network with a
loss function set to the difference of the distance between the word vectors dB

(
hi, hj

)
and

the word tree distance dtree
(
wi, wj

)
, i.e.,

loss = ∑l
1∣∣sl
∣∣2 ∑i,j

∣∣∣∣dtreel

(
wl

i , wl
j

)
− dB

(
hl

i , hl
i

)2
∣∣∣∣ (3)

where l denotes any statement,
∣∣∣sl
∣∣∣ denotes the number of words in the lth statement.

We use the trained synBERT to perform dependency parsing tests on SQL statements,
and the testing Algorithm 1 is shown below.

Algorithm 1: Structure Probe Resolution Dependency Algorithm

Input: Sentence of n words wl
1:n, a sequence of vector representations hl

1:n, a linear transformation
B ∈ Rk∗m, a positive semidefinite symmetric matrix A ∈ Sm∗m

+
Output: parse depth ||wi ||
Steps:

(1) for i do
(2) dB(hi)←[B(hi)]

T B(hi)
(3) hi A = dB(hi)
(4) return torch of shape (batch_size, max_seq_len)
(5) for i, j do

(6) dB

(
hi, hj

)
←
[

B
(

hi − hj

)]T
B
(

hi − hj

)
(7) ||

(
hi − hj

)
||A = dB

(
hi, hj

)
(8) return torch of shape (batch_size, max_seq_len, max_seq_len)
(9) UnionFind(matrix(dB ))
(10) return a single distance image and depth image

Taking the statement “Select col_1, col_2 as b from Table_A;” (Note: Table_A here is
the table name of the example, not a chart in this paper) as an example, the visualization
of the parsing depth and parsing distance obtained using the structure probe is shown in
Figure 6. It can be seen that the results are generally similar to those of the SQL parser: “b”
has the deepest depth in the syntax tree, followed by “as”; “col_2” is similar to “col_1”;
“Table_A” is deeper than “from”. The heat map of the predicted parsing L2 distances is
shown in Figure 7.
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Figure 6. Predicted parse depth. The horizontal coordinate is the position of the word in the SQL
statement, and the vertical coordinate is the depth (relative value) of the word in the syntax tree
learned by the model. It can be seen that the depth of the syntax tree computed by the synBERT
model is similar to the actual value.
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Figure 7. Predicted parse distance. This heat map shows the distance between two of these tokens.
The light to dark color indicates the distance from near to far. For example, it can be seen that “col_1”
and “col_2” are closest together, and they are at the same depth in the syntax tree.

The results are mapped to the distance of each token in the parse tree, and tikz-
dependent LaTeX is returned, exporting its constructed minimum spanning tree in PDF
format, as shown in Figure 8.
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Experiments show that using the synBERT enables lexical-level semantic analysis and
sentence-level semantic analysis of SQL statements and SQLi statements. Furthermore,
more accurate detection and classification of SQL injection attack statements can be made.

5. Experimental Results and Analysis
5.1. Evaluation Indicators

The evaluation metrics proposed in this paper aim to evaluate the detection model in
a dichotomous scenario. We used the following evaluation metrics: accuracy, true positives,
false positives, true negatives, and false negatives.

According to the confusion matrix shown in Table 2, the accuracy represents the
proportion of the total sample that the model predicts correctly and is calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP is a correctly classified SQLi sample, FP is a non-injected sample incorrectly
classified as SQLi, TN is a correctly classified non-injected sample, and FN is a SQLi sample
incorrectly classified as normal.

Table 2. Confusion matrix.

Predicted

Positive Negative

Actual
Positive TP FN

Negative FP TN
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Recall, also known as TPR, indicates the percentage of positive samples correctly
predicted for all actually positive samples. The precision rate indicates the percentage of
positive samples that are correctly predicted for all samples that are predicted positive. The
precision and recall rates are calculated as

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 score combines Precision and Recall and is a summed average of the two.

F1 =
2× Precision× Recall

Precision + Recall
=

2TP
2TP + FP + FN

(7)

The FPR, or false positive rate, reflects the ability of the model to correctly predict the
purity of positive samples.

FPR =
FP

FP + TN
=

FP
N

(8)

5.2. Dataset Evaluation

The positive sample dataset in this paper is derived partly from public channels,
namely Common Vulnerabilities & Exposures (CVE), China National Vulnerability Database
(CNVD), Exploit Database, and other public vulnerability information repositories within
the last four years, and partly from vulnerability recurrence and contest collection. The
negative sample dataset is derived from network traffic on campus and the Kaggle website.
This covers four major scenarios. We build the vulnerability environment based on the
docker-compose dockerfile and capture HTTP traffic for vulnerability information provided
by websites (e.g., VULHUB). We write programs to extract the attack payloads from sam-
ples that exist as traffic packets (mostly obtained through contests). We manually analyze
and extract samples that exist in log form. Samples that are valid attack payloads can be
used directly. For the unknown samples, we extract all available fields. This includes the
query string for HTTP GET requests, the request body for POST requests, the User-Agent,
Referer, Cookie, and X-Forwarded-For. The collected samples, according to our statistics,
contain a variety of SQL injection attacks, including boolean-based blind injection, time-
based blind injection, error-based blind injection, stacked injection, wide-byte injection,
union queries, and tautologies. We also consider the dialects of various databases, such as
MySQL, Oracle, SQL Server, and PostgreSQL. Such samples, however, are in the minority,
as attackers frequently use standard SQL to try to inject without knowing what database
the website is using. The statistical information of various database samples is shown
in Table 3.

Table 3. Statistical information of various database samples.

Type Malicious Benign

MySQL 896

3155

Oracle 1035

SQL Server 957

PostgreSQL 48

Plain Text /

Total 2936 3155

According to previous research, almost all results emphasize data preprocessing and
feature engineering methods to improve model performance. The data preprocessing
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methods that correspond to different feature engineering methods may differ, and we only
discuss the generalized preprocessing methods here. For the positive samples, we first
perform URL decoding, UNICODE decoding, and BASE64 decoding in order, as shown in
Table 4. Following decoding, the normalization process is carried out, which includes con-
verting all uppercase letters to lowercase letters, using “datetime” for strings that conform
to date format, using 0 for integers, and rewriting keywords to remove redundancy.

Table 4. Decoding methods and examples.

Coding Methods Before Decoding After Decoding

URL decoding

?id=1%20union%20Select%
201,2,group_concat(concat(username,

0x7e,password))%20from%
20iwebsec.users%0A1%0A

?id=1 union Select
1,2,group_concat(concat(username,

0x7e,password)) from
iwebsec.users

UNICODE decoding se%u006cect select

BASE64 decoding 4oCdIHVuaW9uIHNlbGVjdC
AxLDIsZGF0YWJhc2UoKSM= union select 1,2,database()#

The model used in this paper is synBERT-uncased, i.e., all tokens are converted to
lowercase at the time of preprocessing. The parameters used for training are shown in
Table 5.

Table 5. The parameters of synBERT.

Parameters Parameter Meaning Parameter Value

num_hidden_size number of hidden layer neurons 256

num_hidden_layers number of hidden layers in
Transformer encoder 2

num_attention_heads number of heads in multi-head attention 4

hidden_func hidden layer activation function gelu

hidden_dropout hidden layer dropout rate 0.1

attention_dropout dropout rate of the attention 0.1

epoch number of training epochs 10

By adjusting some hyperparameters to make the model perform better and plotting
the accuracy and loss curves with epochs for the training and validation sets. It can be seen
from Figure 9 that the loss function of the model converges to an accuracy of about 0.9974
and a loss of about 0.0371, and reaches an accuracy of 0.9973 and an F1 score of 0.9964 on
the validation set. We will then compare the methods with those of other papers.

The main controlled experiments in this section are from Refs. [1,4,5,7]. Since the code
and datasets used in these papers are not open source, the model structure and parameter
settings are first reproduced as described in these papers. Preliminary experiments show
that the model does not fully achieve the performance metrics described in the original
papers after changing the dataset, so we fine-tune it to make the comparison results
more convincing.

The feature vector methods used in the comparison experiments include the statistical
feature vector method, the TF-IDF vector method, and the word2vec method. The clas-
sification algorithms or models used are: CNN, LSTM, and MLP. (These algorithms and
models are derived from the aforementioned literature.)

It should be noted that the statistical feature vectors are highly relevant to the dataset.
In this paper, the following features were identified by data analysis of the existing dataset
in conjunction with the findings Refs. [36,37], as shown in Table 6.
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Table 6. Selected features and meanings.

Feature Meaning

1 query_len Length of each query

2 num_word_query The total number of words in a query

3 no_single_qts The number of single quotes in the query

4 no_double_qts The number of double quotes in the query

5 no_punct Total number of punctuation marks in a query

6 no_single_cmnt Number of single line comments in the query

7 no_double_cmnt Number of multi-line comments in the query

8 no_white_space The number of spaces in the query

9 no_percent Number of percent signs

10 no_log_optr Total number of logical operators in the query

11 no_arith_oprtr Total number of arithmetic operators

12 no_null_val Total number of null values in a query

13 no_hexdec_val Total number of hexadecimal values

14 no_alphabet Total number of letters in a query

15 no_digits Total number of digits

16 len_of_chr_char_nul Total number of chr + char + null keywords

17 genuine_keywords Total number of keywords select, top, order, fetch,
join, avg, count, sum, rows, etc.

By plotting the relationship between individual features and labels, we check whether
the feature contributes to the prediction output. Distribution, box-line, violin, and Q-Q
plots of log-transformed distributions and Box-Cox-transformed Q-Q plots are plotted,
respectively. The features with higher discrimination, i.e., 3 to 17, are selected. As shown
in Figures 10–13, the distribution and Q-Q plots on feature 8, it can be seen that the query
has a high probability of becoming a positive sample as the number of spaces increases to
25 afterward. However, neither the log-transformed nor the power-transformed distribu-
tion plots show a good Gaussian distribution shape, so the feature is not taken. Furthermore,
pairwise plots of the sampled features were plotted, and bivariate analysis was performed
to find the range of features that would help distinguish them. Figure 14 shows the paired
analysis plot for features 7 to 10. It can be obtained that features 3 and 6, features 5 and
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6, features 11 and 15, and features 12 and 15 are the features that help predict the labels.
Finally, t-distributed Stochastic Neighbor Embedding(t-SNE) plots are drawn to analyze
whether the features work. As in Figure 15, the vast majority of points are well separated.
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Figure 10. The distribution of feature 8. The horizontal coordinate indicates the number of spaces in
the SQL query, and the vertical coordinate indicates the corresponding probability density function.
The blue line indicates benign samples and the orange line indicates malicious samples. As can be
seen, queries with the number of spaces after 25 have a high probability of becoming malicious.
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Figure 11. Log-transformed distribution of feature 8. The horizontal coordinate indicates the loga-
rithm of the number of spaces in the SQL query, and the vertical coordinate indicates the correspond-
ing probability density function. The blue line indicates benign samples and the orange line indicates
malicious samples. As can be seen, this distribution is not a perfect Gaussian distribution and there is
a lot of overlap between the two categories.
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Figure 12. Q-Q plot of feature 8 by log transformation. After doing Box-Cox transformation on the
distribution of the number of spaces, the sample frequency histogram (left) and Q-Q plot (right) are
plotted. In the Q-Q plot (right), the horizontal coordinate indicates the normal distribution quantile
and the vertical coordinate indicates the data quantile. It is obvious that the feature of the number of
spaces does not follow a normal distribution.
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Figure 13. Distribution map of feature 8 after Box-Cox transformation. The horizontal coordinate
indicates the Box-Cox transformation of the number of spaces in the queries, and the vertical coordi-
nate indicates the corresponding probability density function. The blue line indicates benign samples
and the orange line indicates malicious samples. It can be seen that there is still plenty of overlap
between the two categories.
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Figure 14. Paired plots of sampled features. The correlation between the two variables was
determined by selecting features (here, features 7 to 10) by random sampling and performing
bivariate analysis.
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Figure 15. T-SNE dimensionality reduction classification result. The available features selected by
the bivariate analysis were used to plot the reduced dimensional t-SNE plot. As can be seen, the vast
majority of samples are well separated, indicating that these features are useful.

Different preprocessing and embedding approaches and different classification algo-
rithms are used to binary classify. Table 7 shows the metrics for all comparison experiments.
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The quantitative results show that the embedding encoding using synBERT has better
characterization than others.

Table 7. The experimental results.

Experimental Methods Accuracy (%) Precision (%) Recall (%) F1 (%) FPR (%)

Statistical features + MLP1 87.84 90.63 84.01 87.19 13.06

Statistical features + LSTM1 81.47 82.56 80.80 81.67 17.45

Statistical features + CNN1 88.83 88.32 85.78 87.03 10.24

TF-IDF + MLP2 89.37 85.53 71.09 77.64 10.12

TF-IDF + LSTM2 92.11 85.03 73.40 78.79 8.01

TF-IDF + CNN2 93.16 82.56 80.80 81.67 6.98

Word2Vec + MLP3 92.82 90.67 92.91 91.78 7.52

Word2Vec + LSTM3 93.14 93.56 92.43 92.99 6.40

Word2Vec + CNN3 96.10 97.28 99.11 98.18 3.83

Method of our paper 99.74 99.68 99.52 99.60 0.56

Note: The subscripts 1, 2, and 3 are used to distinguish between model structures that are not identical.

Using statistical features to do detection, the average detection accuracy is 86.04%,
and F1 is 85.29%, which cannot achieve high metrics. This is due to the variability of
SQL injection samples. If the attacker deliberately changes the statistical features using
obfuscated attack samples, this method will have missed and false positives. For SQLi
statements, words that occur more frequently are not necessarily important. The TF-IDF
method (average detection accuracy is 91.54% and F1 is 79.36%) does not assign the weights
of feature words well and will have the problem of insufficient feature extraction. In
contrast, word2vec, as a typical vectorization method, is able to map the distance of words
to the distance in space. Its disadvantage is that, as a static vector, it does not take into
account the discourse order problem. The word2vec method (average detection accuracy
is 94.02% and F1 is 94.31%) is limited by the size of the window and cannot consider the
relevance of a token in the whole sentence. Thus, the definition of semantic similarity in
word2vec is, to some extent, not necessarily related to common sense. The BERT model only
utilizes common contextual features such as word embeddings, and they rarely consider
structured semantic information. However, the synBERT algorithm improves on these
drawbacks. It can embed semantic information in SQL statements to provide rich semantics
for language representation.

5.3. Generalizability Testing

We chose a totally new test set to evaluate the generalization ability of the final model
formed by multiple algorithms, but not as a basis for the choice of tuning model parameters.
The data for the test set is derived from the sample information of SQL injection attacks
published in the 2022 CVE repository as well as normal SQL statements, with no crossover
between the training and test sets, to further validate the generalization performance of the
above-trained models. Table 8 shows the experimental results.

As time goes by, the game between attackers and defenders gradually escalates. More
and more obfuscation and mutation mean traditional detection methods are no longer
applicable, and the advantages of artificial intelligence are gradually coming to the fore.
Semantic-based representations can help machines better identify attack traffic from normal
traffic. We test each model with the latest emerging attack samples, which have not been
learned. The attackers use more diverse variants that destroy some statistical properties, so
this method can only correctly classify 16.71% of the samples. The TF-IDF method is slightly
improved due to the more fixed syntax of SQL statements, but the attacker can combine
different functions or other attacks to achieve their goals. Embedding word vectors can
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achieve 76.63% accuracy, which is the most applied approach in recent years. And the
method in this paper far exceeds the previous work, which is because synBERT can mine
more semantic information. It can distinguish not only between injected statements and
plain text but also between normal SQL statements. Our model can correctly classify most
of the samples, even new types of attacks that have never been learned.

Table 8. Generalization test results.

Experimental Method Number of Test
Samples

Predicted Number of
Correct Samples Accuracy (%)

Statistical features + MLP1 796 133 16.71

TF-IDF + CNN2 796 329 41.33

Word2Vec + CNN3 796 610 76.63

Method of our paper 796 751 94.35
Note: The subscripts represent the model structure that performs best for a certain vectorization method.

It can be seen that the generalization ability of the algorithm and model proposed in
this paper is the best, which further indicates that the model in this paper has the ability to
detect unknown attacks.

6. Conclusions and Future Works

We propose a semantic learning and deep learning-based SQL injection attack detec-
tion model in this paper and evaluate its basic classification performance. We particularly
test the model’s generalization performance using a completely new test set. The experi-
mental results show that traditional algorithms based on statistical features and shallow
machine learning models perform generally well on various evaluation metrics but fail
to detect novel and unknown attacks. The semantic knowledge learning-based word em-
bedding approach is more flexible and can handle this scenario better. The method in this
paper has a higher accuracy rate than the other methods, implying that the model has
better generalization performance. That is, the model in this paper has a higher detection
accuracy for unknown attacks. However, no detection and defense tool (or product) can
meet all of your needs. On the one hand, our model is based on detecting network traffic.
If the SQL injection attack is the result of user input, it will be visible in HTTP traffic, which
synBERT can detect. If a privilege escalation or credential stuffing attack is caused by an
insecure database configuration, it should be detected using traffic behavior analysis and
mitigated using a combination of other methods. On the other hand, while cookie injection
can be detected, attacks against server-side vulnerabilities are helpless. Furthermore, due
to the small sample size, the model does not learn enough SQL dialects, which we hope
to improve in the future. Another long-term goal is to find ways to reduce model volume
while increasing detection speed.
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