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Abstract: The Global Positioning System (GPS) plays an important role in navigation and positioning
services. When GPS signals propagate through a complex space environment, they are suscepti-
ble to interference of ionospheric scintillation. As one of the biggest interference sources on GPS
navigation and positioning, ionospheric scintillation will lead to signal intensity decline and carrier
phase fluctuation, making signal acquisition of the GPS receiver challenging. Thus, an acquisition
algorithm based on differential coherent integration combining accumulation correlation and bit sign
transition estimation is proposed. The coherent accumulation is applied to reduce computational
loads and contribution by the Gaussian white noise in the signal. Moreover, the differential coher-
ence integration is utilized to eliminate data blocks with bit transition, prolonging the coherence
integration time and improving the data utilization rate. Experimental results show that under severe
ionospheric scintillation condition, weak GPS signals can be acquired successfully after improving the
acquisition algorithm, with the acquisition probability reaching 50% when the signal-to-interference
ratio (SIR) drops to −34 dB. Comparing to the differential coherence integration, the complexity of
the calculation reduces to only 21.75% effectively after the improvement. The execution time is less
than half of the differential coherence integral.

Keywords: GPS acquisition; coherent accumulation; bit sign transition; differential coherent integra-
tion; ionospheric scintillation

1. Introduction

GPS plays a critical role in economic, infrastructure, social development, national
defense, and security [1], providing continuous positioning and timing services for various
applications, including civilian and military use. To ensure successful navigation and
positioning, the acquisition and tracking modules are essential for software receivers,
requiring a rough estimation of carrier frequency and code phase [2]. However, GPS signals
are susceptible to distortion when passing through complex environments, such as adverse
weather, dense building occlusion in cities, and multipath effects [3]. Such phenomena
will disrupt the code and carrier parameters of a GPS receiver, and even result in the
loss of GPS signal acquisition and tracking, making it impossible to obtain positioning
information. Ionospheric scintillation, one of the main sources of GPS signal interference,
frequently occurs in low latitude regions and can lead to decreased carrier-to-noise ratio
(C/N0) of the signal, making it difficult to capture by receivers, resulting in cycle slips,
phase errors, and increased carrier Doppler shifts [4]. This ultimately leads to a degradation
in position and navigation solution accuracy [5], as illustrated in Figure 1. In light of
these extreme space weather interferences, it is necessary to study weak signal receiver
acquisition algorithms that are low in calculation and high in speed. Moreover, quick and
accurate signal reacquisition is critical to ensure the tracking robustness of the receiver once
it loses lock due to severe ionospheric scintillation interference.

Electronics 2023, 12, 1343. https://doi.org/10.3390/electronics12061343 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061343
https://doi.org/10.3390/electronics12061343
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6729-0407
https://doi.org/10.3390/electronics12061343
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061343?type=check_update&version=1


Electronics 2023, 12, 1343 2 of 13

Electronics 2023, 12, x FOR PEER REVIEW 2 of 14 
 

 

accurate signal reacquisition is critical to ensure the tracking robustness of the receiver 

once it loses lock due to severe ionospheric scintillation interference. 

                                                            

Ionospherer

GNSS

Aeroplane

GNSS Receiver

GNSS position 
and navigation

Electron 
densityHight

(km)

60

1000

Ionospheric delay

Ionospheric 
scintillation

Ionospheric 
irregularities

Receiver

Positioning 
error

Signal degradation 
and unlocked

 

Figure 1. Ionospheric effects on GNSS signals. 
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In early GPS receivers, a serial acquisition algorithm was commonly used, which had
high computational complexity and long acquisition times. To address these issues, parallel
frequency space acquisition and parallel code phase acquisition algorithms were proposed,
significantly improving acquisition speed, but these methods are not suitable for weak
signal environments. Coherent integration methods, including coherent, non-coherent, and
differential coherent integration, are generally used to improve the signal-to-interference
ratio (SIR) and address signal acquisition challenges in weak signal environments [6].
Coherence integration is the most effective method to improve SIR gain, but is sensitive
to navigation bit sign transition. Lin et al. pointed out that non-coherent integration is
effective only with a small number of integrals [7]. Hussain et al. proposed an adaptive
data length method for acquisition by adjusting the times of non-coherent integration
according to levels of noise and signal power, but it is also restricted to bit transition [8].
Elders-Boll et al. proposed differential coherence integration to reduce square loss while
retaining incoherent integration’s insensitivity to the data bit jump [9]. However, this
method decreases the number of useful satellite signals, limiting SIR gain. Huang et al.
proposed a method based on block zero compensation to eliminate data with a bit jump
by splitting and zero filling, and then performing incoherent integration to capture the
weak signal [10]. However, this method requires large computational resources and has
a slow operation speed. Combining coherent and incoherent integration can effectively
improve signal-to-noise ratio (SNR) gain by dividing data into blocks, performing coherent
integration first, and then incoherent accumulation [11]. Nevertheless, this method has a
maximum data length of 20 ms and experiences some loss in incoherent integration. Jeon
et al. discussed the bit transition problem of GPS L2-CM and L5 signals, having a data
bit duration of the same as the code period length, which is totally different from the GPS
L1 signal [12]. In addition, comparative experiments are conducted on three acquisition
strategies of coherent, non-coherent, and differential coherence algorithms. It is found that
the coherent channel combination has the best performance, but the relative sign between
the estimated data and the pilot frequency is required [13,14].

To summarize, there are several shortcomings on dealing with acquisition problems
during a severe ionospheric scintillation scene, as listed in the following:

(1) Serial acquisition algorithm is slow and computationally complex;
(2) Parallel frequency space and parallel code phase acquisition algorithms are ineffective

in a weak signal;
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(3) Coherent integration is sensitive to navigation bit sign transition and non-coherent
integration is only useful with fewer integrals;

(4) Block zero compensation has limitations in data length and loss of incoherent integra-
tion.

As a solution to the drawbacks mentioned above and aiming at the acquisition of
weak satellite signals caused by ionospheric scintillation, an acquisition algorithm based
on differential coherent integration combined with coherent accumulation and bit sign
transition estimation is proposed in the framework of a parallel code phase acquisition
algorithm. Based on the differential coherent integration, the coherent accumulation is
combined to reduce the noise in the signal and realize fast acquisition. The bit transition
estimation is combined to exclude data with bit transition, prolong the coherence integration
time, and realize weak signal acquisition with severe ionospheric scintillation.

The remaining part of the article is organized as follows: Section 2 briefly introduces
the principles of the signal acquisition algorithm. Section 3 introduces the methodology,
especially the accumulation correlation, bit sign transition estimation, and implementation
process. Section 4 introduces the results of experiments and analyzes the effects of the
algorithm. Section 5 concludes the effectiveness of the proposed methods.

2. Basic Principles of Signal Acquisition
2.1. Parallel Code Phase Acquisition Algorithm

In this paper, a parallel code phase acquisition algorithm is selected as the basis
because the execution time of single satellite acquisition is far less than serial acquisition
and parallel frequency space acquisition, which will greatly decrease the computation
complexity and increase acquisition speed. The following principle of the parallel code
phase acquisition algorithm, which is obtained in [15], will be briefly introduced.

In order to make a circular cross correlation between the input signal and the local
signal without the shifted code phase, a method of performing circular correlation through
Fourier transforms will be described.

Suppose there are finite sequences x(n) and y(n), both with length N: the circular
cross-correlation sequence between x(n) and y(n) is computed as:

z(n) =
1
N ∑N−1

m=0 x(m)y(m− n). (1)

In the following, the scaling factor 1
N will be omitted. After the N-points Fourier

transform, z(n) can be expressed as:

z(n) =
N−1
∑

n=0

N−1
∑

m=0
x(m)y(m− n)e

−j2πkn
N

=
N−1
∑

m=0
x(m)e

−j2πkn
N

N−1
∑

n=0
y(m− n)e

j2πk(n−m)
N

= X(k)Y∗(k)

(2)

where Y∗(k) is the complex conjugate of Y(k).
A schematic diagram of the parallel code phase search algorithm is shown in Figure 2.

The input signal is multiplied by the locally generated carrier signal to obtain in-phase I
signal and quadrature-phase Q signal, which are regarded as the real and imaginary parts
of the complex signal x(n), respectively; x(n) can be expressed as:

x(n) = I(n) + jQ(n). (3)
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Figure 2. The schematic diagram of the parallel code phase search algorithm. 
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Figure 2. The schematic diagram of the parallel code phase search algorithm.

The generated C/A code is transformed into the frequency domain and the result is
complex conjugated.

After the fast Fourier transform (FFT) of the x(n) being multiplied with the FFT of
the C/A code, the result of the multiplication is transformed into the time domain by the
inverse fast Fourier transform (IFFT). The absolute value of the IFFT output Z represents
the correlation between the complex signal and the C/A code. If there is a peak in the
correlation, the index of this peak marks the C/A code phase of the input signal. In this
paper, the added result of correlation elements after squaring is taken as the final decision
result R. The ratio of the peak R to the second largest peak v is compared to the threshold,
so as to determine whether the acquisition is successful.

2.2. Differential Coherent Integration

The differential coherence integration computes the correlation values of two adjacent
moments by conjugate multiplication and then accumulates the outcomes [16,17]. The
schematic diagram is shown in Figure 3.
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The formula for the decision result Rdi f f−coh is as follows:

Rdi f f−coh =

∣∣∣∣ N
∑

k=2
ZkZ∗k−1

∣∣∣∣2
=

∣∣∣∣ N
∑

k=2
(Ik + jQk)(Ik−1 + jQk−1)

∗
∣∣∣∣2

=

∣∣∣∣ N
∑

k=2
[(Ik Ik−1 + QkQk−1) + j(Qk Ik−1 + IkQk)]

∣∣∣∣2
(4)

where the Zk is the kth coherent integral result, N is the number of incoherent accumulations
in differential coherence, and Z∗k−1 is the complex conjugate of Zk−1.

In general, it is assumed that the input signal and the local reference signal are in
perfect synchronization with no code phase shift and no Doppler frequency residual. The
signal mainly exists in the I branch, and the Q branch is the noise after the coherent
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integration. In the sequence data, signal amplitude is unchanged, and the mean value of
noise is 0. In this case, QkIk−1 + IkQk ≈ 0, Equation (4) can be replaced as:

Rdi f f−coh =

∣∣∣∣∣ N

∑
k=2

(Ik Ik−1 + QkQk−1)

∣∣∣∣∣
2

. (5)

Currently, most of the processing and analysis of the differential and integral algo-
rithms used is based on Equation (5), because of the simplicity of their explicit expressions.

However, in the real weak signal environment, because of inevitable Doppler residual,
the signal exists not only in the authentic part, but also in the imaginary part of the output.
Therefore, if only the authentic part of the signal is taken for detection, such as the simple
expressions of Equation (5), the signal energy will be lost, leading to poor acquisition
performance. As a solution to this problem, this paper will use the full expression of the
equation, which is Equation (4).

3. Methodology
3.1. Coherent Accumulation Principle

Coherent integration is the correlation between satellite signals and local replication
signals of equal length. With the extension of integration time, the points of FFT/IFFT
operations for satellite signals and local replication signals will increase exponentially,
which will lead to a sharp increase in the amount of computation and a decrease in the
acquisition speed. Meanwhile, non-coherent integration squares correlated values so that
the noise is squared at the same time, introducing considerable new noise into correlation
results, which is always called squaring loss. With the increase in accumulation times, the
squaring loss increases, which significantly affects the performance of integration.

Therefore, this paper adopts the method of coherent accumulation. The signal to be
processed is superposed, and then FFT is used for correlation calculation [18]. Its principle
is as follows: assume that xl(tn) is the received signal to calculate correlation, with a length
of 1 ms; y(tn) is the C/A code signal replicated locally. As mentioned above, the relevant
operation can be expressed as:

Z(k) = Xl(k)Y∗(k) (6)

where Xl(k) represents FFT of xl(tn), Y∗(k) is obtained by the complex conjugate of y(tn)
through FFT.

Assuming that the correlation accumulation length of signals is L ms, the correlation
accumulation times are L:

Z∆(k) =
L
∑

l=1
Xl(k)Y∗(k)

= Y∗(k)
L
∑

l=1
FFT[xl(tn)]

= Y∗(k)FFT
[

L
∑

l=1
xl(tn)

]
.

(7)

Therefore, the C/A code periodic signals that need to be accumulated are first super-
imposed, and then calculated for correlation coefficients based on FFT. Only one correlation
operation and a small amount of accumulation operation are required to obtain the results
of multiple correlation operations.

For example, if the sampling frequency is 6 Mhz, that is, there are 6000 points per C/A
code cycle, the number of points required to perform FFT is 6000L points for traditional
coherence integration of L ms data. As for L ms data accumulation, the accumulation
method is shown in Figure 4. In this way, only 6000 points need FFT operation. Coherent
accumulation not only reduces the computation complexity and improves the acquisition
speed, but also multiplies the amplitude of the useful signal while ensuring that the mean
of the white Gaussian noise is still 0.
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Figure 5. Schematic diagram of bit sign transition estimation. 

3.3. Algorithm Implementation Process 

The schematic diagram of the acquisition algorithm based on differential coherent 

integration combining coherent accumulation and bit sign transition estimation proposed 

in this paper is shown in Figure 6. 

Figure 4. Schematic diagram of coherent accumulation.

3.2. Bit Shift Estimation Principle

Although differential coherence integration is less sensitive to bit sign transition than
coherence integration, differential coherence integration cannot completely eliminate the
effect caused by bit shifts. Assuming that 20 ms data with bit sign transition exists in each
processing, and every 4 ms data are treated as a data block, a total of five data blocks are
superimposed and correlated, respectively. The navigation data bits corresponding to each
data block are Da = +1, Db = +1, Dc = −1, Dd = −1, and De = −1. Data blocks DaD∗b =
+1, DbD∗c = −1, DcD∗d = +1, and DdD∗e = +1 are obtained by conjugate multiplication of
adjacent. The result of differential coherent integration is DaD∗b + DbD∗c + DcD∗d + DdD∗e =
1. As can be seen, in this case, the acquisition results are severely attenuated. Therefore,
bit sign transition estimation is utilized in this paper, with its principle shown in Figure 5.
In order to overcome the influence of bit sign transition, record the minimum value after
conjugate multiplication of the correlation values of adjacent data blocks of 4 ms, and
eliminate this minimum value caused by bit sign transition [19].
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∗ + 𝐷𝑏𝐷𝑐
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3.3. Algorithm Implementation Process

The schematic diagram of the acquisition algorithm based on differential coherent
integration combining coherent accumulation and bit sign transition estimation proposed
in this paper is shown in Figure 6.
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The specific implementation steps are as follows:

(a) Divide the data of continuous N ms into M data blocks. The length of each data block
is L, N = M× L;

(b) Accumulate each data block in step (a), separately;
(c) Generate in-phase and ortho-phase carriers by the carrier generator. They are mul-

tiplied by the accumulation result of step (b) to obtain I and Q signals, which are
the authentic and imaginary parts of the complex signal Xi(k), i = 1, 2, 3, · · · , M,
respectively;

(d) Transform the local code generated by the local C/A code generator into the frequency
domain by FFT and obtain its complex conjugate C∗(k);

(e) Multiply the corresponding elements of complex signal Xi(k) and C∗(k), getting IFFT
result ri(k);

(f) Conjugate the correlation values of adjacent blocks, R2
m = r∗m−1rm, m = 2, 3, · · · , M;

(g) Compare all R2
m, and select the minimum R2

m = R2
n and then remove. It is considered

that there is bit sign transition in this section of data;
(h) Obtain the final decision value is R2

di f f−coh based on the absolute value of the remain-

ing R2
m:

R2
di f f−coh = ∑m

2 R2
m, m 6= n; (8)

(i) Determine whether the ratio of the peak value R2
di f f−coh to the second largest peak

value is greater than the threshold. If it is greater than the threshold, the acquisition
is successful. Otherwise, the local carrier and code phase are adjusted for the next
acquisition.

4. Results
4.1. Experimental Settings

In this section, the acquisition effect, acquisition probability, and acquisition speed of
the four acquisition algorithms are compared and analyzed. For convenience of expression,
the improved differential coherent integration acquisition algorithm below refers to the
proposed weak signal acquisition algorithm based on differential coherent integration
combining coherent accumulation and bit sign transition estimation proposed in this paper.
It is assumed that the length of data acquired by the four methods is 20 ms. The following
Table 1 lists the specific settings of the four acquisition algorithms:

In order to compare and analyze the four acquisition algorithms, this paper simulates
intermediate frequency satellite signals with different SIR in the Matlab environment. The
intermediate frequency of simulation data was set to 0, the sampling frequency was set to
3 MHz, the signal was superimposed with Gaussian white noise, and the SIR was set from
−40 to −22 dB with an interval of 1 dB.
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Table 1. Experimental acquisition algorithm-specific settings.

Acquisition Algorithm Parameter Settings

Coherent integration Coherent integration time: 20 ms
Coherent and

non-coherent integration
Coherent integration time: 2 ms

Number of incoherent accumulations: 10 times
Differential coherent

integration
Coherent integration time: 1 ms

Number of differential coherent integration: 19 times
Improved differential
coherent integration

Coherent accumulation time: 2 ms
Number of differential coherent integration: 9 times

4.2. Evaluation of Acquisition Effects

Firstly, the effects of different acquisition algorithms under different SIR are compared.
Generally, satellite signals with SIR less than −22 dB are called weak signals [20]. In
this paper, the ratio of the largest peak value to the second largest peak value is used to
determine whether the acquisition is successful. The acquisition threshold is set to 2.3
and the search step is set to 500 Hz. In order to compare, the simulated signal of the
satellite number 10 (PRN10) was used for testing, whose C/A code phase was 2430, and
the Doppler frequency was 3000 Hz. When the SIR is set to −22 dB, −34 dB, and −38 dB,
respectively, the results of the relevant values acquired by the four algorithms for PRN10
are shown in Figures 7–9.
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As can be seen from Figure 7, the correlation peak of the coherent integration is not
obvious, while the other algorithms can see obvious peaks with Doppler frequency around
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3000 Hz, and the code position is about 2430 code chip. The magnitude of the correlation
value of the coherence integral is 1013, and the magnitude of the correlation value of
coherent-non-coherent integration, differential coherence integration, and the proposed
improved differential coherent integration are all 1012. Because of bit sign transition in
coherence integration, the magnitude of the correlation result is lower than that of other
methods.

As shown in Figure 8, when the SIR is reduced to −34 dB, the correlation peak of the
coherence integral is completely drowned by noise, while an obvious correlation peak can
be seen under the other three algorithms.

As can be seen from Figure 9, when the SIR drops to −38 dB, an obvious peak
can be detected by the proposed improved differential coherent integration, whereas the
correlation peaks of other algorithms were completely drowned by noise. It is proven that
the improved algorithm can capture signals in a lower SIR environment.

4.3. Comparison of Acquisition Probability

In order to obtain the acquisition probability under different signal intensity, the Monte
Carlo simulation experiment is carried out. Four different algorithms were used to acquire
the PRN10 of simulated signals with SIR from −40 to −22 dB. The acquisition probability
of the algorithm is obtained every 2000 times under the conditions of the current SIR. The
acquisition probability curve is shown in Figure 10.
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When the SIR is greater than −31 dB, except for the coherence integration, the
other three acquisition algorithms can complete the signal acquisition. When the SIR
is −38~−31 dB, the acquisition probability of improved differential coherent integration is
higher than coherent and non-coherent integration and differential coherent integration.
Even when the SIR is−34 dB, the acquisition probability of the proposed algorithm can still
reach 50%. When the SIR is lower than −36 dB, the acquisition probability of improved dif-
ferential coherent integration is less than 20%, while the acquisition probability of coherent
integration, coherent and non-coherent integration, and differential coherent integration is
close to 0. In conclusion, under the condition of low SIR, the acquisition probability of the
differential coherent integration combining coherent accumulation and bit sign transition
estimation is higher than the other three algorithms, which can acquire signals with low
SIR with high acquisition sensitivity.

4.4. Analysis of Acquisition Speed

In terms of computation complexity, assuming that N is the number of sampling points
in a coherent integral operation and M is the number of incoherent integral operations,
the complex multiplicative quantity required for a correlation operation is NM log2(N).
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Taking the sampling frequency of 3 MHz simulated in this paper as an example, the
complex multiplicative quantity of a single acquisition by the four acquisition algorithms
compared in this paper can be obtained, as shown in Table 2. It can be seen that the complex
multiplicative quantity of the improved differential coherent integration in this paper is the
minimum, with only 21.75% of the highest. Because the coherent accumulation adopted in
this algorithm can reduce the number of FFT/IFFT operation points, it is able to achieve a
faster acquisition speed.

Table 2. The acquisition speed of the four algorithms.

Acquisition Algorithm Complex Multiplicative
Quantity Single Acquisition Time

Coherent integration 9.52 × 105 t
Coherent and non-coherent

integration 7.53 × 105 0.91 t

Differential coherent
integration 1.43 × 106 1.30 t

Improved differential
coherent integration 3.11 × 105 0.56 t

Although the absolute computing time depends on different hardware devices and
simulation platforms, the time consuming of different algorithms on the same device
and platform is also of great significance. Under the circumstance of SIR = −22 dB, the
above four methods are tested on the acquisition task of PRN10. Assuming that the single
acquisition time of coherent integration is t (t = 0.49375 ms), the acquisition time of other
methods is expressed by t with coefficients. Table 2 shows the calculation speed of each
algorithm. It can be seen that the improved differential coherent integration is the least,
which is less than half of that of the unimproved differential coherence integration.

4.5. Authentic Data Verification

For the authentic signal acquisition experiment, the intermediate frequency data
collected in Brazil on 27 February 2014 were played back by the Global Navigation Satellite
System signal playback instrument (GNPB-MF) to reproduce the authentic scene when
the ionospheric scintillation appeared. Four acquisition algorithms were used to acquire
number 19 satellite (PRN19), and continuous 2000 groups of 20 ms data were acquired
(total length of data was 40 s). The changes in the amplitude scintillation index (S4) and
carrier-to-noise ratio (C/N0) in this period are shown in Figure 11.
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During this period, PRN19 was interfered by severe ionospheric scintillation, and its
C/N0 fluctuated significantly, with the lowest of only 19.97 dB.

The search step is set at 500 Hz and acquisition threshold at 2.3 to determine the
successful acquisition in the test. The Monte Carlo simulation experiment was conducted
on the results of the four acquisition methods, and the acquisition probability was generated
every 2000 times. The statistics obtained are shown in Table 3. As can be seen from the
Table 3 below, the proposed method in this paper has the highest acquisition probability in
this authentic severe ionospheric scintillation scenery, reaching 96.1%.

Table 3. Acquisition probability statistics of four algorithms for authentic signals.

Acquisition Algorithm Acquisition Probability

Coherent integration 61.2%
Coherent and non-coherent integration 95.9%

Differential coherent integration 94.4%
Improved differential coherent integration 96.1%

5. Conclusions and Discussion

In this paper, a weak GPS signal acquisition algorithm based on differential coherent
integration combining coherent accumulation and bit sign transition estimation is pro-
posed. The method is based on differential coherent integration and combines coherent
accumulation to achieve fast acquisition and reduce noise in signal. Bit sign transition
estimation is also used to exclude the data blocks containing bit sign transition, so as to
prolong the coherence integration time and realize weak GPS signal acquisition. Comparing
the performance of the proposed algorithm with three traditional weak signal acquisition
algorithms, the results prove that:

(1) Under the same low SIR condition, the correlation peak of the signal acquired by the
proposed method is more obvious, and the acquisition effect is best;

(2) Under the same SIR condition, the proposed method has a higher acquisition probabil-
ity of 50% when the SIR drops to −34 dB. Under real severe ionospheric scintillation,
the acquisition probability of the proposed method is higher than that of traditional
methods under the same experimental conditions;

(3) The proposed acquisition algorithm can effectively reduce the computation complex-
ity, which is only 21.75% of the unimproved differential coherence integration, and
the acquisition time is less than the unimproved differential coherence integration.

The significance of this research lies in improving the acquisition performance when
GNSS signals suffer from serve ionospheric scintillation. It will also be of great guidance
in other aspects of interference on GNSS signals. However, the improved acquisition
algorithm should be also designed for other types of GNSS signals to avoid bit transition,
such as GPS L5 and Beidou signals. In future work, we will focus on designing high-
performance tracking and positioning algorithms to impair errors caused by ionospheric
scintillation, which will be meaningful for designing an advanced real-time software
receiver.
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