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Abstract: Aiming at the problems of the difficult extraction of small target feature information,
complex background, and variable target scale in unmanned aerial vehicle (UAV) aerial photography
images. In this paper, an anchor-free target detection algorithm based on fully convolutional one-
stage object detection (FCOS) for UAV aerial photography images is proposed. For the problem of
complex backgrounds, the global context module is introduced in the ResNet50 network, which
is combined with feature pyramid networks (FPN) as the backbone feature extraction network to
enhance the feature representation of targets in complex backgrounds. To address the problem of the
difficult detection of small targets, an adaptive feature balancing sub-network is designed to filter
the invalid information generated at all levels of feature fusion, strengthen multi-layer features, and
improve the recognition capability of the model for small targets. To address the problem of variable
target scales, complete intersection over union (CIOU) Loss is used to optimize the regression loss and
strengthen the model’s ability to locate multi-scale targets. The algorithm of this paper is compared
quantitatively and qualitatively on the VisDrone dataset. The experiments show that the proposed
algorithm improves 4.96% on average precision (AP) compared with the baseline algorithm FCOS,
and the detection speed is 35 frames per second (FPS), confirming that the algorithm has satisfactory
detection performance, real-time inference speed, and has effectively improved the problem of missed
detection and false detection of targets in UAV aerial images.

Keywords: object detection; drone aerial photography; global context block; multi-scale feature
fusion; adaptive equalization network

1. Introduction

In recent years, Unmanned aerial vehicles (UAVs) have been widely used in traffic
monitoring, sea area search and rescue, aerial photography, and other fields due to their
small size, convenient operation, and high imaging resolution. UAV object detection is one
of the important branches of computer vision tasks, and the target instances in the images
can be captured efficiently by processing the images captured by UAVs.

The design of traditional object detection algorithms is mainly based on artificially con-
structed features, such as scale invariant feature transform (SIFT) [1], Haar-like (Haar) [2],
Deformable Part Model (DPM) [3], etc.

However, its limitations are that the manually designed features require a large amount
of prior knowledge, fail to make full use of deep semantic information, and have weak
generalization ability. In recent years, with the rise and development of deep learning
technology, the use of Convolutional Neural Networks (CNNs) has been applied to object
detection tasks.

CNN-based object detection algorithms are generally divided into two categories,
namely, two-stage algorithms and single-stage algorithms. The two-stage algorithm is to
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first generate a series of candidate frames as samples by the algorithm, and then classify
the samples through CNNs. The single-stage object detection algorithm does not need
to generate a candidate frame, but directly predicts the bounding box and target type
of the object. Typical representatives of two-stage algorithms include region-CNN (R-
CNN) [4], Faster R-CNN [5], Mask R-CNN [6], etc. Typical representatives of single-
stage algorithms include You Only Look Once (YOLO) [7], single shot multi-box detector
(SSD) [8], RetinaNet [9], etc. Aiming at the problems of object detection in UAV aerial
images, many scholars have carried out a series of studies. Liu et al. [10] designed and
added a multi-branch parallel feature pyramid network (MPFPN) on the Faster R-CNN
and introduced a supervised spatial attention module (SSAM) to effectively improve the
detection performance of UAV image targets in complex backgrounds, but the detection of
small targets still needs to be improved. Liang et al. [11] proposed a spatial context analysis
method for object re-inference based on the SSD algorithm, which greatly improves the
detection accuracy of small targets, but there are false detection cases for targets in complex
contexts. Zhou et al. [12] designed a metric-based object classification method to solve
the classification problem of untrained subclass objects and modified the localization loss
function to improve the localization performance of small objects.

As for the object detection algorithm, it can be divided into anchor-based algorithm
and anchor-free algorithm according to the setting of anchor frame or not. The anchor-
based method needs to pre-set a certain number of anchors at each position in the feature
map of the image, and then classify and regress each anchor. The anchor-free method
does not need to pre-set the anchor and directly detects the object on the image. The
main difference between the two methods is whether to use anchor to generate proposal.
Compared with the anchor-based algorithm, the anchor-free algorithm can greatly reduce
the amount of additional parameters and reduce the memory occupied by the calculation.
Many anchor-free networks that have emerged in recent years are also suitable for object
detection of UAV aerial images. For example, CornerNet [13] proposed for the first time
to predict the target as a pair of key points through a single neural network, using box-to-
corner prediction instead of anchor for localization and target detection. CenterNet [14]
models the detection object as a single center point of the bounding box and uses the heat
map generated by the convolutional network to predict and classify the single centroid.
Zhang et al. [15] improved on the basis of YOLOX network and proposed the skip scale
feature enhancement module BiNet, which effectively improved the detection accuracy
of small targets. Inspired by FoveaBox, Liu et al. [16] reset the target detection layer and
proposed a HollowBox algorithm for multi-size features, which effectively reduces the false
detection probability of drone detection. Hou et al. [17] applied the fully convolutional
one-stage object detection (FCOS) algorithm to ship detection to further improve the
detection performance of ship targets. Mao et al. [18] proposed ResSARNet based on the
improvement of FCOS to obtain powerful detection performance by compressing the model
parameters. The above anchor-free frame algorithm, in which FCOS performs detection
by pixel-by-pixel point-wise regression, not only gets rid of the anchor frame but also
outperforms most target detection algorithms in terms of performance. However, it still has
limitations. Although the algorithm uses feature pyramid network (FPN) for multi-level
prediction, the detection effect is still unsatisfactory for targets with large scale changes and
cases where different targets overlap each other.

Therefore, this paper uses the single-stage target detection algorithm FCOS without
anchor frames as the benchmark algorithm to improve it. The main contributions of
the article are as follows: (1) To improve the backbone network, introduce the Global
Context Block (GC-Block) into the residual block of the ResNet50 network, and improve the
network’s capture of UAV targets in complex backgrounds ability. (2) Propose the Adaptive
Feature Balancing Subnet (AFBS) structure, which can effectively balance the low-level and
high-level features from the multi-level feature map, avoiding the dilution of its information
flow when passing across layers, thus effectively improving the detection accuracy of small
targets. (3) Use complete intersection over union (CIOU) Loss to optimize the regression
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loss, thus giving the model regression process scale sensitivity and strengthening the
algorithm’s ability to detect multi-scale targets.

2. Materials and Methods
2.1. Baseline

FCOS is a single-stage anchor-free object detection algorithm based on FCN proposed
by Tian Z et al. [19], which detects by means of pixel-by-pixel regression. The specific
method is that FCOS performs a regression operation on each feature point on the feature
map to predict four values (l,r,t,d), which, respectively, represent the distance from the
feature point to the upper, lower, left, and right sides of the target boundary frame. As
shown in Figure 1, the network consists of three parts: the backbone network (Backbone),
the feature pyramid (Feature Pyramid Network, FPN) [20], and the output section Detection
head, which includes Classification, Regression, and Center-ness branches.
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FCOS mainly has the following advantages: (1) By getting rid of the anchor box, it
avoids the complex intersection over union (IOU) calculation and reduces the training
memory footprint. (2) It can be used as a Region Proposal Network (RPN) for two-stage
detectors, and its performance is significantly better than anchor-based RPN. (3) Strong
universality, the improved model can be applied to other visual tasks. In summary, this
paper chooses the FCOS algorithm as the benchmark algorithm.

2.2. Algorithm of This Paper

The algorithmic network architecture of this paper is shown in Figure 2.
The model uses the ResNet50 network for feature extraction of the input image to

obtain the initial features, selects the obtained C3, C4, and C5 features to send to FPN
for feature fusion, and then uses the outputs P3, P4, and P5 as the input feature map
of adaptively spatial feature fusion (ASFF) [21]. Firstly, ASFF adjusts and integrates the
features of other levels to the same resolution and then multiplies and, finally, sums the
fusion with the corresponding weights of the feature maps at each level, and the features
of different levels are adaptively fused to achieve the purpose of filtering conflicting
information. The output feature maps from this network are M3, M4, M5, and M5 are
down-sampled twice to obtain M6 and M7, respectively. The five-level features of M3, M4,
M5, M6, and M7 are used as the input of balanced feature pyramid (BFP) [22], which first
integrates the five-level features to generate more balanced semantic features and then
refines to obtain the more differentiated feature maps N3, N4, N5, N6, and N7. Finally,
the identity (layer-by-layer addition) operation is executed to add M3~M7 to N3~N7,
correspondingly, to enhance the original features. The detection head located at the end
of the network detects the enhanced 5-layer features, which enter the detection head first
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through 4 H×W×256 convolutional layers for feature enhancement and then upstream in
parallel through H×W×C and H×W×1 convolution to obtain two branches of classification
and center-ness. The center-ness reflects the distance of a point on the feature map from the
target center. By multiplying the predicted category probability with the corresponding
center-ness, the bounding boxes with high scores are kept in order according to their scores,
so that low-quality bounding boxes are filtered out in the non-maximum suppression
(NMS) process, and the regression detection results are obtained by H×W×4 convolution
in the downstream.
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2.2.1. Improved Backbone Network

The general target detection model uses convolution operation to extract image fea-
tures, but, since the convolution kernel only acts on the local receptive field, only the depth
stacking of the convolution layer can associate all the regional information of the image.
Multiple convolution stacking will increase the difficulty of training, and the network learn-
ing efficiency will be low, which will greatly reduce the positioning accuracy of the model
for UAV image targets. In order to solve the above problems, this paper introduces the
global context block (GC-Block) [23] to improve the residual block of ResNet50, strengthens
the ability of ResNet50 to capture long-distance dependencies, and uses the self-attention
mechanism in the module to model the dependencies between long-distance pixels on the
image. The improved backbone network is shown in Figure 3.
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2.2.2. Adaptive Feature Equalization Subnetwork

Adaptive Feature Balancing Subnet (AFBS) consists of two parts: ASFF and BFP. The
sub-network can not only adaptively learn the spatial weight of the multi-scale feature map,
but also use the deeply integrated balanced semantic features to balance and strengthen
the multi-level feature information, thus the information of small objects can be completely
displayed. The network structure is shown in Figure 4.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 14 
 

 

learning efficiency will be low, which will greatly reduce the positioning accuracy of the 
model for UAV image targets. In order to solve the above problems, this paper introduces 
the global context block (GC-Block) [23] to improve the residual block of ResNet50, 
strengthens the ability of ResNet50 to capture long-distance dependencies, and uses the 
self-attention mechanism in the module to model the dependencies between long-distance 
pixels on the image. The improved backbone network is shown in Figure 3. 

 
Figure 3. Improved backbone network structure. 

2.2.2. Adaptive Feature Equalization Subnetwork 
Adaptive Feature Balancing Subnet (AFBS) consists of two parts: ASFF and BFP. The 

sub-network can not only adaptively learn the spatial weight of the multi-scale feature 
map, but also use the deeply integrated balanced semantic features to balance and 
strengthen the multi-level feature information, thus the information of small objects can 
be completely displayed. The network structure is shown in Figure 4. 

 
Figure 4. Architecture diagram of Adaptive Feature Equalization Subnetwork.

Adaptive Spatial Feature Fusion Module

The key idea of adaptive spatial feature fusion is to learn the fused spatial weights
of features at different scales. multiply the learned parameters of each weight with the
input to filter conflicting information and retain useful information to solve the problem of
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conflicting information when multi-layer features are fused. The specific implementation
steps of this method are as follows:

(1) Feature input. Input the feature maps of different scales in the backbone network.
(2) Feature scaling. Scaling is to keep the channel of feature fusion the same. For the

feature layer that needs to be upsampled, first use 1 × 1 convolution to adjust the
number of channels to be consistent with the target layer, and then use interpolation
to increase the resolution and adjust the size. For the 1/2 scale downsampling layer, a
convolution of size 3 × 3 with stride 2 is used. For the 1/4 scale downsampling layer,
it is necessary to add a maximum pooling layer with a stride of 2 to the convolution
with a size of 3 × 3 and a stride of 2.

(3) Feature Fusion. Assuming that the target layer is l, xn→l
i,j represents the feature vector

adjusted from layer n to layer l at feature map (i, j), and αl
ij, βl

ij, and γl
ij are the spatial

weight parameters of features x1→l , x2→l , and x3→l fused to layer (i, j) at l, respectively.
The feature vectors of different feature maps at (i, j) are multiplied with their respective
weights and then summed. l layer fusion outputs the following equation:

Fl
ij = al

ij · x1→l
ij + βl

ij · x2→l
ij + γl

ij · x3→l
ij (1)

where the weights α, β, γ represent the spatial importance of the features at different
levels, ranging from [0, 1] and summing to 1, generated using the Softmax function
and with λl

αij
,λl

βij
,λl

γij
as control parameters, calculated as follows:

al
ij =

eλl
aij

eλl
aij + eλl

βij + eλl
γij

(2)

Balanced Feature Pyramid

The balanced feature pyramid fully fuses the multi-dimensional features of different
depth feature maps; thus, the fused features take into account both powerful semantic
information and rich geometric information. The work process is divided into four steps:

(1) Feature size adjustment

The five features M3, M4, M5, M6, and M7 participating in feature fusion are adjusted
to the same resolution through interpolation and maximum pooling operations. Because
choosing a larger resolution will increase the network computing burden, a smaller resolu-
tion will be detrimental to small target detection. Therefore, this paper uniformly adjusts
the same size as M5, and this process can avoid the input of additional parameters.

(2) Feature fusion

Feature fusion is to integrate features of different sizes and resolutions to remove
redundant information, as to obtain better feature expression. The fusion is performed as
follows to obtain balanced semantic features:

C =
1
L

max

∑
min

Cl (3)

Among them, Cl represent the l layer feature, lmin and lmax denote the highest and
lowest layer features, respectively.

(3) Feature refinement

The Gaussian non-local module [24] is used to refine the fused features. This module
can refine the fused semantic features to make them more distinguishable, thereby further
improving the performance of object detection in the UAV scene.

(4) Feature enhancement
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The idea of strengthening comes from the design concept of the residual structure.
M3~M7 are added correspondingly to the optimized features through cross-connection
and finally output N3~N7.

2.2.3. Loss Function

The loss function, as the basis for the deep neural network to judge the false detection
samples, largely influences the model’s convergence effect, while providing optimization
direction for the training of object detection network. The loss function of the algorithm
in this paper contains three main components: Focal Loss is used as the classification loss
function, Binary Cross Entropy (BCE) is used as the loss function of center-ness branch,
and CIOU [25] is used as the regression loss function. The total loss L is defined as follows:

L = Lcls + Lcenter + Lreg (4)

Lcls is the classification loss, Lcenter is the loss of center-ness branch, and Lreg is the
regression loss.

(1) Classification loss function

Focal Loss is a loss function used to deal with unbalanced sample classification. When
there are too many negative samples, the classification accuracy will be reduced. By
reducing the weight of easily classified samples, Focal loss enables the model to learn
difficult classified samples in a centralized manner, as to prevent a large number of easily
classified negative samples from dominating model training in the training process. The
formula is as follows:

LFocal =

{
−(1− α)y ∗γ log(1− y∗), y = 0
−α(1− y∗)γ log y∗, y = 1

(5)

Among them, y is the real value, y* is the predicted value, which α is a balance factor
to balance the importance of positive and negative samples, and the value range is [0, 1],
which γ is an adjustable focal length parameter.

(2) Binary Cross Entropy loss function.

FCOS uses the center-ness branch to suppress low-quality detection frames in UAV
image samples. The regression object’s center-ness of a certain position in the sample is
defined as follows:

Centerness * =

√
min(l*, r*)
max(l*, r*)

× min(t*, b*)
max(t*, b*)

(6)

Among them, the l∗, r∗, t∗, b∗ represent vertical distances from the point to the upper,
lower, left, and right boundaries of the ground truth box, respectively.

(3) Improved regression loss function

The regression loss is mainly used to train the ability of the model to accurately locate
the small target of the UAV. The benchmark algorithm uses IOU Loss as the regression loss.
The value of IOU is 0 when the two boundary frames do not overlap. It is effective only
when the two boundary frames overlap, the actual distance between the predicted frame
and the real frame cannot be judged.

Therefore, this paper adopts CIOU Loss instead of IOU Loss. CIOU not only considers
the overlap area and center point distance but also the aspect ratio in the process of
bounding box regression, CIOU Loss can overcome its own defects while making full
use of the advantages of IOU Loss and is sensitive to the transformation of the target’s
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bounding box shape, which is more conducive to the detection of UAV multi-scale targets.
The expressions of IOU and CIOU are as follows:

IOU =
B ∩ Bgt

B ∪ Bgt (7)

LCIOU = 1− IOU +
ρ2(B, Bgt)

C2 + βv (8)

Among them:

β =
v

(1− IOU) + v
(9)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(10)

β is a positive trade-off parameter, and v is used to measure the consistency of the
aspect ratio. B is the predicted frame, Bgt is the ground truth, and C is the minimum frame
diagonal length containing two frames.

2.3. Experimental Conditions
2.3.1. Dataset

The data used in this paper comes from the VisDrone [26] image target detection
public dataset. The dataset includes 10 categories: pedestrians (people with walking or
standing posture), people (people with other posture), cars, vans, buses, trucks, motorcycles,
bicycles, awning tricycles, and tricycles. The VisDrone dataset is composed of 288 video
clips, providing a total of 10,209 static images captured by drones of different heights,
including 6471 images for training, 548 images for validation, and 3190 images for testing,
totaling 2.6 million target instance samples.

2.3.2. Experiment Settings

The experimental platform in this paper used the Ubuntu 18.04 operating system. The
GPU was an RTX A4000 16 G, and the CPU was an Intel(R) Xeon(R) Gold 5320 CPU @
2.20 GHz. The deep learning framework chosen was PyTorch, and the input image size was
512 × 512. When building the network, the batch size was 8, the training was 100 epochs,
the initial learning rate was set to 0.001, and the Adam optimizer was used.

2.4. Evaluation Metrics

In order to verify the effectiveness of the algorithm in this paper, evaluation was
performed from both qualitative and quantitative aspects. Qualitative analysis was mainly
evaluated from a subjective perspective, and quantitative analysis was mainly evaluated
from objective evaluation indexes as a reference.

In this paper, comprehensive average precision AP (Average Precision), APS, APM,
APL, FPS (Frame Per Second), Params (Parameters), and FLOPs (Floating Point Operations)
indicators are used to evaluate the performance of the model. AP means that the IOU
is within the range of [0.50, 0.95], with a step of 0.05. A total of 10 thresholds are used
to change the comprehensive average precision. The higher the AP value, the better the
detection effect of the algorithm. The formula is shown in (11).

AP =
1

classses∑
c
(

1
|thresholds|∑t

TP(t)
TP(t) + FP(t)

) (11)

In the formula, classes and thresholds represent the number of target categories and
the IOU threshold, respectively. c is the element in classes, and t represents the value in the
threshold interval. TP is True Positives, representing positive samples that are correctly
classified. FP stands for False Positives, which represent positive samples that have been
misclassified. FPS is used to evaluate the real-time performance of the model, and the
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higher the value the better the real-time performance of the algorithm. According to the
COCO evaluation system, APS, APM, and APL, respectively, represent the absolute pixel
area of the object under small (area less than 322), medium (area greater than 322, less than
962), and large (area greater than 962) average precision.

Params is the total number of parameters in the network layer including parameters,
which measures the space resource occupation of the model, the formula is shown in (12).

Params =
D

∑
l=1

K2
l × Nl−1 × Nl (12)

Among them, D represents the total number of layers of the network, Kl, Nl − 1, and
Nl are the convolution kernel size, the number of input and output channels, respectively.

FLOPs measure the number of floating-point operations of the model, reflecting the
computational complexity of the model. The formula is shown in (13).

FLOPs =
D

∑
l=1

Hl ×Wl × K2
l × Nl−1 × Nl (13)

In the formula, D represents the total number of layers of the network, Hl, Wl represent
the height and width of the output feature map of the layer, and Kl, Nl − 1, and Nl are the
convolution kernel size and the number of input and output channels, respectively.

3. Results
3.1. Module Ablation Experiment

Baseline is FCOS algorithm, M1 is FCOS + GC-Block, M2 is FCOS + GC-Block +
AFBS, M3 is FCOS + GC-Block + AFBS + CIOU, which is the algorithm in this paper. All
experiments are tested on the VisDrone dataset, using AP, FLOPs, Params as metrics. The
final performance comparison results are shown in Table 1.

Table 1. Comparison of ablation experiments.

Model Baseline GC-Block AFBS CIOU AP (%) FLOPs (G) Params (M)

FCOS
√

18.86 77.79 32.02
M1

√ √
19.95 77.83 34.12

M2
√ √ √

23.43 82.73 39.32
M3

√ √ √ √
23.82 82.73 39.32

According to the experimental results in Table 1, compared with the baseline algorithm,
it can be seen that, the AP of M1 has increased by 1.09%, and the Params increased by
2.1 M, the FOLPs have only increased by 0.04 G, which shows that the introduction of GC-
Block increased the detection accuracy while generating negligible computational overhead.
Compared with the baseline algorithm, M2 has increased AP by 4.57%, FLOPs increased
by 4.94 G, and Params increased by 7.3 M, which shows that although AFBS improves
the detection accuracy of the model through a stronger ability to adaptively fuse different
feature information, the complex network structure increases the computational complexity
of the model. M3 is the algorithm proposed in this paper, and the overall performance of
the network reached the highest gain. Compared with the baseline algorithm, it increased
AP by 4.96%.The values of the two evaluation indicators PLOPs and Params are basically
the same as those in M2, which also shows that changing the loss function does not affect
the calculation amount of the model.

In order to further evaluate the detection effect of the improved algorithm proposed in
this paper in real special scenes, UAV aerial images with dense distribution of small targets,
multi-scale targets and complex backgrounds are selected in the VisDrone dataset, and the
FCOS algorithm and the algorithm in this paper are tested. The effect comparison is shown
in Figure 5.



Electronics 2023, 12, 1339 10 of 14

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14 
 

 

performance of the network reached the highest gain. Compared with the baseline algo-
rithm, it increased AP by 4.96%.The values of the two evaluation indicators PLOPs and 
Params are basically the same as those in M2, which also shows that changing the loss 
function does not affect the calculation amount of the model. 

In order to further evaluate the detection effect of the improved algorithm proposed 
in this paper in real special scenes, UAV aerial images with dense distribution of small 
targets, multi-scale targets and complex backgrounds are selected in the VisDrone dataset, 
and the FCOS algorithm and the algorithm in this paper are tested. The effect comparison 
is shown in Figure 5. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. Visual comparison of detection effect between the FCOS algorithm and the improved al-
gorithm in this paper. (a,c,e) are the detection results of FCOS ; (b,d,f) are the detection results of 
the algorithm in this paper. 

Figure 5. Visual comparison of detection effect between the FCOS algorithm and the improved
algorithm in this paper. (a,c,e) are the detection results of FCOS ; (b,d,f) are the detection results of
the algorithm in this paper.

Comparing Figure 5a,b, in the case of dense distribution of small targets, the FCOS
algorithm mistakenly recognizes the school uniforms stacked next to the basketball poles as
people, while the algorithm in this paper does not have this error. Comparing Figure 5c,d,
there are a large number of targets of different scales in the figure. The FCOS algorithm
did not recognize the cars on the river bank, the people in the grass, and the tricycle
driving on the sidewalk on the right, and missed detection. The algorithm in this paper
can better adapt to the change in the target size and thus accurately identify it. Comparing
Figure 5e,f, in the case of complex background environments, the algorithm in this paper
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can still identify vehicles farther away on the road, and it can also detect overlapping
targets normally, while FCOS misses detection. According to the comparison, it can be seen
that the algorithm in this paper can better combine the superior information in high-level
features and low-level features by adaptively fusing multi-layer features and has stronger
identification and positioning capabilities for small targets and multi-scale targets.

3.2. Comparative Experiment

In order to verify the effectiveness of the algorithm in this paper, the model in this
paper is compared with the current classic model. All experiments are trained on the
VisDrone dataset and tested under the same hardware conditions. The experimental results
are shown in Table 2.

Table 2. Performance comparison of each algorithm.

Method Backbone AP (%) APS (%) APM (%) APL (%) FPS FLOPs (G) Params (M)

Faster
R-CNN ResNet50 16.49 7.25 25.32 37.73 16 79.21 41.18

SSD VGG-16 12.03 5.75 20.12 35.04 40 37.60 26.47
RetinaNet ResNet50 16.85 7.91 23.97 36.82 23 84.35 37.03

R-FCN ResNet101 19.65 9.89 26.35 41.28 19 132.38 78.16
YOLOV3 CSPDarkNet 15.05 6.28 21.45 36.18 38 75.14 61.50

FCOS ResNet50 18.86 8.65 25.01 36.32 25 77.79 32.02
Proposal ResNet50 23.82 14.11 27.25 41.85 35 82.73 39.32

As can be seen from Table 2, the Params of the single-stage target detection algorithm
SSD is 26.47 M, the FLOPs are 37.60 G, and the AP value is 12.03% lower than other
algorithms, but this algorithm has a greater advantage in Params. It can also be seen that
although the R-FCN algorithm has relatively high detection accuracy, its computational
complexity is also the highest. Compared with several other classical algorithms, the
proposed algorithm has achieved the best detection effect. Among them, the improvement
of small target detection accuracy is the most evident. Compared with the suboptimal
R-FCN algorithm, the AP has increased by 4.22%, and the inference speed is relatively high.
The FPS value is 35, and the FLOPs and Params are 82.73 G and 39.32 M, respectively. To
sum up, the proposed algorithm achieves better detection performance on the premise of
maintaining a small computational overhead, and it has great advantages compared with
other algorithms in processing UAV aerial photography image target detection tasks.

Figure 6 is a visual comparison between the algorithm in this paper and other main-
stream algorithms, which more intuitively reflects the detection accuracy and speed of each
algorithm.
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It can be seen from Figure 6 that the SSD algorithm has the highest inference speed,
and the detection time of a single picture is only 50 ms. Faster R-CNN has the lowest
detection efficiency, and the reasoning time for a single image takes 63 ms. Compared with
several other algorithms, the reasoning efficiency of the algorithm in this paper is relatively
high, and it has good real-time performance.

This paper also compares the three classic target detection algorithms selected on the
VisDrone dataset, and the detection effect is shown in Figure 7:
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This paper extracts target sample instances during the day and night, respectively,
and compares the detection results of the four algorithms. It can be seen that RetinaNet,
Faster R-CNN, and YOLOV3 have different degrees of missing detection for small targets
and targets with similar distances, while the algorithm feature learning in this paper is
relatively sufficient. Compared with the other three algorithms, there were no missed
or false detections. In summary, the detection accuracy of the proposed algorithm for
all kinds of targets is higher than the other three, especially for small targets. This is
because AFBS can better combine the superior information of high-level features and
low-level features in the feature map through the adaptive fusion of multi-layer features
and has stronger identification and localization ability for small targets and multi-scale
targets. In the case of low illumination at night, the other three algorithms also have some
missing detections. The algorithm in this paper weakens the background noise interference
and strengthens the multi-scale features of interest in the network, showing strong anti-
interference ability in the face of complex background information and effectively improves
the missed alarm situation. In general, it has stronger recognition ability for small-scale,
complex backgrounds and large scale transformation UAV image targets when processing
UAV image target detection tasks, and it effectively avoids false alarms and missed alarms.

4. Conclusions

In this paper, we made improvements based on the FCOS algorithm to improve the
effect of target detection for UAV aerial images. (1) Improvements were made to the
backbone network by embedding the global context module in the backbone network
and combining it with the FPN to enhance the algorithm’s perception and understanding
of the relevance of the environment in which the target is located and to improve the
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detection accuracy of small UAV targets in complex backgrounds. (2) An adaptive feature
balancing sub-network was designed to effectively balance the dominant information in
multi-layer features and reduce the false detection probability of the algorithm for small
targets. (3) Finally, CIOU Loss was used to improve the regression loss function to enhance
the detection capability of the algorithm for targets with larger scale transformations. The
results show that the algorithm in this paper has a better detection effect on different scale
targets in different aerial photography scenes. Compared with the baseline algorithm, the
algorithm in this paper improves the AP by 4.96%. Compared with other mainstream
algorithms, the algorithm in this paper has strong competitiveness and reduces the cases
of missing detection and false positives. It is an effective aerial image target detection
algorithm. In addition, the proposed algorithm has good real-time performance, which is
far better than Faster R-CNN, and the detection speed is comparable to that of YOLOV3.
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