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Abstract: Social networks open up a new channel of video sharing and promote the scale and
efficiency of video diffusion. Adjustable and scalable video diffusion is significant for the quality and
performance of the service of video systems. In this paper, we propose a novel epidemic-based video
diffusion strategy using awareness of sociality and mobility in wireless networks (EVDSM). EVDSM
constructs a video diffusion model with the consideration of interest preference, social influence, and
user mobility according to the roles and the propagation process of the Epidemic model. EVDSM
designs an estimation method of interest preference according to content similarity and preference
discrimination between videos; EVDSM designs an estimation method of user roles by investigation
of interest preference and social influence to identify the video sharing behaviors of users and
define the roles of users; EVDSM designs an estimation method of user mobility in terms of data
transmission time and path structure stability. EVDSM proposes a control strategy of video diffusion,
which formulates priority-based pairing between infectors and candidate infectors to achieve joint
optimization of pairing success rate and delivery performance. The simulation results show how
EVDSM achieves much better performance results in comparison with other state-of-the-art solutions.

Keywords: sociality-aware; mobility-aware; video diffusion; epidemic

1. Introduction

The fast-changing communication technologies, such as the deployment of 5G and the
development of 6G, greatly promote network bandwidth and data delivery quality for the
mobile Internet, which effectively supports online services with high requirements of band-
width and delivery performance (e.g., video-on-demand and video living) [1–4]. The video
services rely on rich viewing content to attract a large number of users, which generates
huge traffic demand and consumes a mass of network bandwidth [5–8]. Currently, there is
a deep integration between video services and social networks. The video users make use
of social links between them to distribute video resources, which opens up a new channel
of video spread [9,10]. The frequent interaction and the close social relationships between
users can speed up the diffusion process and promotes the diffusion scale. Increases in
speed and scale of diffusion trigger a run on a bank for the bandwidth resources, which
results in an overload of networks [11–15]. Different levels of network congestion caused
by the violent squeezing of bandwidth resources bring long delays and high packet loss
rate (PLR), which reduces the quality of experience (QoE) of users such as distortion or
discontinuity of videos [16–19]. The high-efficiency allocation and utilization of network
bandwidth based on the control of the diffusion process are significant for the scalability of
video diffusion and the promotion of user QoE.

The social-based video diffusion is similar to an independent cascade: the carriers
of video resources spread video data to their one-hop social neighbors [20–22]. Figure 1
shows the social-based video diffusion in wireless mobile networks. However, interest
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preference for video content and social influence for neighbor partners play a decisive
role in the progress and scale of the video diffusion process, which allows the diffusion
process to be similar to the Epidemic model [23–25]. The users accept the propagative video
data in terms of their interest preferences and their social influence affected by other users.
The multiple diffusion process appears to be a discrete occurrence rather than a regularly
stratified infection. The interest preference and social influence result in the chaotic spread,
which increases the risk of a run on the bandwidth resources; on the other hand, not all
users will accept the diffused video data because there are different conditions for the users
to accept the pushed video data. The prediction of preference and influence effectively
classifies users. The high-success push enables video content to pair users with appropriate
interests and relationships, which achieves low-cost spread messages and well-organized
diffusion. Moreover, the edge delivery of video data based on mobility awareness also
effectively promotes the utilization efficiency of bandwidth resources and reduces variation
levels of data transmission paths.

�

Internet

Social network

Figure 1. Social-based video diffusion in wireless mobile networks.

Recently, numerous researchers have paid close attention to the high-efficiency social-
based video diffusion [26–28]. Some researchers focus on using social video-sharing
methods to address the challenges of social video-sharing caused by boundless coverage
and increased video content [29]. However, the above methods do not synthetically consider
user interests and social influence to promote scale and efficiency of video propagation
with effective launching. Some researchers also focus on social video propagation with
the assistance of key nodes in social networks [30]. However, the above methods do
not synthetically estimate the diffusion capacities of selected key nodes according to
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user interests and social influence, so the accuracy levels of video launching are low.
The existing social-based diffusion methods do not consider both interest preference and
social influence, which does not ensure effective video launching with low message cost.
Further, the mobility of mobile users is neglected by most methods, so the easy delivery
of video data is subjected to dynamic transmission paths. The efficient video diffusion
which implements effective launching in terms of interest and influence levels to promote
diffusion scale with bandwidth-efficient data delivery based on awareness of mobility
should be considered.

In this paper, we propose a Novel Epidemic-based Video Diffusion strategy using
awareness of Sociality and Mobility in wireless networks (EVDSM). EVDSM formulates
the measurement methods of interest preference and social influence of users and uses the
measurement results to define the user roles in the Epidemic-based video spread process.
EVDSM investigates the expected time length of data transmission and stability level of
path structure to estimate the mobility levels of users. In the designed control strategy of
video diffusion, EVDSM calculates the joint optimization results of pairing success rate and
delivery performance according to user roles and mobility stability to formulate the priority
levels pairing between infectors and candidate infectors, which achieves controllable video
spread with efficient video sharing and high user QoE. Simulation results show how
EVDSM achieves much better performance results in comparison with other state-of-the-art
solutions. The main contribution of our work is introduced, as follows.

(1) EVDSM refers to participant roles and the propagation process of the Epidemic
model to build a model of video diffusion which synthetically considers interest preference,
social influence, and user mobility. EVDSM designs a measurement method of user interest
levels for video content by joint consideration of content-based similarity between watched
and popular videos and discrimination between user preference and popular videos.
The weight value of social edges and the success rate of video push between users and
the influence levels of neighbor nodes are used to estimate the social influence levels of
users. Further, the expected time length of data transmission and the stability level of path
structure is used to estimate user mobility levels;

(2) EVDSM defines user roles according to the four roles of the Epidemic model.
EVDSM defines an estimation method of user roles according to interest preference and
social influence and designs an identification method of user roles in terms of video-sharing
behaviors of users. The users are labeled with the corresponding roles to support the
role-based controllable video spread;

(3) EVDSM designs a control strategy of video diffusion with the consideration of
video sharing performance and user QoE. The estimation results of joint optimization of
pairing success rate and video delivery performance according to user roles and mobility
stability are used to define the priority levels of pairing between infectors and candidate
infectors. The control of video spread can promote the effectiveness of video sharing and
ensure user QoE.

2. Related Work

Some researchers continuously focus on social-based video-sharing methods. Chiang
et al. propose a novel collaborative social-aware QoE-driven video caching and adaption
framework (CSQCA) [29]. CSQCA designs a collaborative video caching architecture based
on two-layer multi-access edge computing. The popular videos are cached in multiple
edge servers. CSQCA designs a social-aware proactive cache strategy by investigating
user interactions and a social-based video dissemination process. CSQCA designs a QoE-
driven video adaptation algorithm, which dynamically transcodes the cached videos to
meet the various request. Zhang et al. propose a collaboration mechanism between IoVT
devices with social attributes [31]. The IoVT devices construct the D2D collaborative
group where video content is shared among intragroup members via D2D links, which
effectively offloads controlled traffic of IoVT devices and video data. A collaborative video
streaming strategy is designed based integration of flexibility of D2D communications
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and scalable-high-efficiency-video-coding streams, which reduces the negative influence
of network instability. Hsu et al. propose a social-aware P2P video transmission strategy
for multimedia IoT devices [32]. Multimedia IoT devices are grouped as a peer-to-peer
(P2P) network and implement communications and interactions with each other in the
P2P network. Users classify social neighbors as having different priority levels in terms
of social relationships. The social relationships, transmission progresses of video data,
and mutual resource-sharing contributions of users are estimated and used to construct
the weighted queuing priority classes of users. The users are added to the weighted fair
queue in sequence according to the weighted queuing priority classes. The users with
high-priority classes are selected as the suppliers to transmit video data for the video
requesters, which reduces the negative influence levels of free riders and high QoE via
multimedia IoT devices. Langa et al. propose a novel and lightweight social VR platform
to achieve an interactive live TV show via a professional piece of VR content [33]. Realistic
volumetric representations and affordable capturing systems are designed, which integrate
remote users in shared virtual environments in real-time without the use of synthetic
avatars. The heterogeneous media formats such as 3D scenarios, dynamic volumetric
representation of users, and (live/stored) stereoscopic 2D and 180/360 videos also are
integrated. The interaction between volumetric users and a video-based presenter with
low delay supports dynamic control of the media playout. Cao et al. propose a social-
aware D2D-based video multicast system by investigation of cooperation between mobile
users to implement cooperative video multicast and allocate D2D radio resources [34].
By constructing a model of cooperation among mobile users in terms of social trust and
social reciprocity, the users are grouped into multiple clusters to obtain the lost frames with
the help of compensated frames of other users, which promotes user quality of experience.
A video resource allocation scheme was designed to handle video requests of D2D radio of
intragroup users.

Some researchers continuously focus on social-based video delivery methods. Hu
et al. propose a social video replication and user request dispatching mechanism in the
cloud content delivery network architecture [35], which reduces the maintenance cost of
video systems and delivery delay of video data. The users are clustered into multiple
communities in terms of social relationships, geographical location, and interest preference.
A community-based strategy of video replication and request dispatching is designed
and formulated as a constrained optimization problem. By making use of a stochastic
optimization framework, the formulated constrained optimization problem was proved.
Fan et al. propose a delivery prediction method of social-aware video content by employing
the combined delivery prediction of video content [36]. A prediction problem of probability
that a video is requested for efficient video content delivery in mobile social networks
is formulated. A social- and content-aware video content delivery prediction method
is designed in terms of the active degree of users, the similarity between videos, video
popularity, interest preference, and social relationship. Zhang et al. propose a social-aware
D2D video delivery method in a 5G ultra-dense network by measurement of mobility
similarity [37]. By construction of a social state transition model of user movement based
on encounter duration and shared video length to describe state transition conditions,
a clustering algorithm of encounter events is proposed in terms of similarity between
encounter events, so that the patterns of encounter events with common characteristics are
extracted. The clustered encounter events are further refined and are extracted patterns
of encounter events. Based on the extracted counter patterns, a sample-efficiency rapid
recognition algorithm of encounter pattern is designed, which achieves fast heuristic
recognition of encounter pattern and supports encounter-based video delivery with D2D
communications. Wang et al. review the challenges, approaches, and directions of social-
aware video delivery [38]. The challenges in social-aware video delivery are present
according to the increasing data volume of user-generated video content and the boundless
coverage of socialized sharing. A principal framework for social-aware video delivery
is designed. The unique characteristics of social-aware video access and social content
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propagation are analyzed and formulated. Kilanioti proposes a multimedia content delivery
method in social networks [39]. By making use of user activity in social networks to
stimulate multimedia content prefetching, a dynamic strategy of multimedia information
transmission is designed, which reduces network bandwidth load and the maintenance
cost of surrogate servers. Rajapaksha et al. propose a video content delivery method in
social-based CDNs to reduce the overall network energy consumption [40]. The CDNs and
P2P networks are combined by social connections between users to reduce the number and
delay of data forwarding where users directly share video content via social connections.
Users maintain stored videos in local buffers and supply video data for other users via
P2P connections.

Some researchers continuously focus on social-based video diffusion methods. Niu
et al. constructed a multi-source-driven asynchronous video diffusion model in social
networks [41]. By investigation of the latency of information propagation along social links,
the single-source activation latency of users in social networks was defined and follows the
exponential mixture model. The temporal factor and the influence of multiple sources were
incorporated, which can describe the propagation process of influence. The conclusion that
activation probabilities of users exponentially decrease with increasing time is revealed.
Moreover, the scale of active users who are close to source users determines the time varia-
tion of the exponential function and the influence levels of active users determine the total
activation probability. By making use of maximum likelihood techniques, the algorithm
of the parameter learning method of expectation maximization is designed. Long et al.
construct a model of video viewing and sharing behaviors in social networks [42]. By a
collection of viewing and sharing statistics of videos in a social video application, the tem-
poral dynamics of video viewing and sharing behaviors during the diffusion process are
obtained, which can handle the external influence and periodicity properly. Jiao et al. pro-
pose a video diffusion method by clustering users and selecting the specified relay nodes
in clusters to cooperatively distribute videos [43]. The nodes are grouped into multiple
clusters according to social influence and interest preference. The cluster head nodes are
selected according to social influence and interest preference and act as the relay nodes to
achieve cooperative distribution. A video distribution method based on the assistance of
relay nodes is designed, which achieves mobility-aware cooperative video sharing based
on collaboration between edge nodes. Hu et al. construct an indirect game model for the
interaction reciprocity between users [44]. The Markov decision process is used to describe
the decisions of users to maximize cooperation levels. Wu et al. propose a D2D-based
cooperative video-sharing method based on cooperation in video caching and sharing
between users [45]. The allocation of appropriate video providers for video requesters
relies on investigating historical watched records, sharing initiative, geographical location,
and QoE requirements. Selecting right video providers can effectively promote lookup
success probability and data delivery performance. However, the above methods also do
not synthetically estimate the propagation capacities of selected key nodes according to
user interests and social influence, so the accuracy levels of video launching are low.

3. EVPSM Overview

Figure 2 illustrates the design of EVDSM architecture consisted of the measurement
of interest levels of nodes, measurement of user roles, measurement of node mobility,
and control strategy of video diffusion.
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Figure 2. EVDSM architecture.

(1) Measurement of interest levels of nodes: The estimation of content-based similarity
between popular videos and historical videos watched by nodes can show the interest
levels of nodes for current popular videos; Estimating preference-based discrimination
also reflects different levels between popular videos and historical videos watched by
nodes; Estimating interest levels can effectively measure probabilities that nodes accept
the popular videos in terms of joint similarity and difference between popular videos and
historical videos watched by nodes;

(2) Measurement of user roles: The classification of node roles relies on epidemic-
based four roles by investigating interest preference and social influence; The estimation of
node roles formulates membership rules of node roles; The identification of video sharing
behaviors makes use of the membership rules of node roles to recognize roles of nodes to
pair parties of video sharing. The measurement of user roles can define recurrent behaviors
of nodes and classify nodes in terms of distinguished roles;

(3) Measurement of node mobility: The estimation of the expected time length of
video data transmission shows the communication quality of transmission paths of video
data. Estimating the stability level of path structure shows the negative influence levels of
node mobility for the communication quality of paths. The measurement of node mobility
jointly considers data transmission performance and path structure stability, which promote
measurement accuracy of node mobility variation;

(4) Control strategy of video diffusion: The joint optimization of pairing success rate
and delivery performance can balance sharing scale and user QoE. The priority-based
pairing of sharing parties can control the scale of video diffusion by selecting paired parties
at the joint optimization of pairing success rate and delivery performance, which ensures
the delivery performance of video data.

4. EVPSM Detailed Design

The social networks can be defined as a graph, G = (V, E). V is the set of vertexes
in G. Each user is a vertex in G. E is the set of edges in G. The two vertexes construct
an edge when they communicate with each other. The users use the edges between them
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in G to share video data. The push is the main way of video diffusion in G. The users
who store video data also push video data to other users along the edges in G, which
extends the range of video distribution and increases the scale of upload bandwidth of
video data supply. A large amount of network bandwidth is consumed by the interactive
messages and delivered video data in the process of video diffusion, which causes network
congestion. The bandwidth-efficient video diffusion becomes the key way to reduce the
contradiction between the supply and demand of network bandwidth.

To reduce the message scale of video push, the probability that the users accept the
video data should be pre-estimated before pushing video data, which decreases the invalid
messages of video push. User interests in the video content and the social relationship
between pushers and accepters are crucial factors for a successful video push. User interests
are the relatively stable property of users by long-term accumulation for various video
content and are one of the decisive factors for acceptance of video data. Estimating user
interests in the pushed videos according to user preference is important for video diffusion
with a high success rate. On the other hand, there is a complex social relationship between
video users (e.g., relatives, colleagues, and friends). The lasting social relationship not only
can support the video users to keep continuous communications between them but also
enables social networks consisting of video users to keep relatively static. Stable social
networks with low-cost maintenance boost the spread of video resources because video
users make use of social relationships to share video resources. Therefore, estimating the
social closeness levels between users also is another important factor for video diffusion
with a high success rate.

However, the social relationship only is a channel of video diffusion, which cannot
ensure high-efficiency diffusion using social links between users. To reduce bandwidth
waste in the process of video data transmission, near-end delivery of video data (e.g.,
one-hop transmission) should be ensured. The users use the intelligent handheld terminal
to fetch and watch video content. The dynamic geographical location between suppliers
and requesters of video data causes variations in the data transmission path, which leads to
bandwidth waste of relay nodes in the path of data transmission and the jitter of delay and
packet loss. The video data delivery with low hop and stable paths of data transmission is
a crucial factor for the high-efficiency utilization of network bandwidth.

The process of video diffusion in G seems to be a cascade from vertex to vertex.
However, the influence of content interests and social relationship enables the diffusion
process to follow the epidemic model: the users who store video data are considered the
infectors. The users who lose their interests are considered the immune users; the users
who have interests are considered the susceptibles. When the users who store video data
do not copy the data to other users and lose their interest or complete the task of video
diffusion, the diffusion process in the epidemic model reaches an end state.

4.1. Measurement of User Interest Level

User interest in video content is the intrinsic factor that primarily determines the results
of acceptance and rejection of the pushed videos. The long-term and stable interests in a
kind of video with similar content form a clear preference. The users have a clear preference
for video content such as a taste for comedy and resistance to tragedy. The pushed videos
which belong to the user preference may be accepted with high probability. The playback
time of the pushed videos also keeps a high level relative to other videos with low-level
interests, which can increase the time that the users storing video data provide services of
data delivery for other users. However, the users do not always keep a high-level interest
to watch video content when the videos have high similar content and low discrimination.
The similar or repeated storyline also leads to the tiredness of users. Content immunity
brings a negative influence on the probability of successful acceptance of videos and the
length of playback time of videos. Measurement of the interest level of a user uh for a
new video vi needs to jointly consider similarity and discrimination between vi and videos
watched by uh.
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Let VC = (vca, vcb, ..., vcm) be a set of video categories and vi ∈ vck. Let −→ai be the
vector quantity of a video vi.

−→ai includes multiple attributions such as name, director,
actors, and introduction of vi. The content-based similarity between videos is calculated
using the cosine of the angle between vectors. The similarity value of the two videos vi and
vj can see the formula (1).

S(vi, vj) =
−→ai · −→aj

||ai|| · ||aj||
, S(vi, vj) ∈ [0, 1]. (1)

vchk is a video set. Videos in vchk have been watched by uh. vchk ∈ vck and vi ∈ vchk.
The mean value of similarity between vi and all items in vchk can see the formula (2).

Sihk =

|vchk |
∑

c=1
S(vi, vc)

|vchk|
. (2)

|vchk| returns the number of all items in vchk. Sik ∈ [0, 1] denotes the similarity level
(degree of membership) between vi and vchk. The larger the value of Sihk is, the higher the
degree of membership between vi and vchk is. According to similarity between vi and each
item in vchk, the discrimination between vi and vchk and can see the formula (3).

Dihk =

|vchk |
∑

c=1

lc
Lc
|S(vi, vc)− Sihk|

|vchk|
. (3)

S(vi, vc)− Sihk denotes the deviation between the similarity of vi and vc and average
similarity of vi and all items in vchk. The larger the value of S(vi, vc)− Sihk is, the higher
the discrimination level between similarity of vi and vc and similarity of vi and all items
in vchk. lc is average playback time of vc, Lc is the time length of vc and lc ∈ Lc. lc

Lc
is the

weight value of discrimination between vi and vc. This is as the playback time of the video
is an important factor for the investigation of user interest level. If a user gives a lot of
time to videos with high similarities, the user may have a high immunity level for the
subsequent similar videos. Dihk is the average value of weighted discrimination between vi
and each item in vchk and is considered as the interest offset of vi relative to vchk. Moreover,
because |S(vi, vc)− Sihk| ∈ [0, 1] and lc

Lc
∈ [0, 1], Dihk ∈ [0, 1].

The similarity of vi and vchk denotes the membership level between vi and vchk;
Discrimination of vi and each item in vchk denotes immunity level vi and each item in vchk.
A user has a high-interest level for a video vi, vi has high membership for a preferential
video category of the user and has a clear distinction with each item in the preferential
video category. Therefore, the interest level of uh for vi should be a result of a tradeoff
between similarity and discrimination and can see the formula (4).

ILhi = α× Sihk + (1− α)× (1− Dihk), α ∈ [0, 1]. (4)

α is a regulatory factor and is used to achieve the optimization of similarity and
discrimination. Because Dihk ∈ [0, 1] and Sihk ∈ [0, 1], ILhi ∈ [0, 1]. ILhi represents the
interest level of uh for vi.

4.2. Measurement of User Role

The users may play various roles in different diffusion contexts in terms of the diffusion
process from person to person of the epidemic model, such as source users, followers,
susceptibles, and immune users. For instance, the source users which have initial video
data always undertake tasks of pushing and delivering video data for other users in the
whole process of video diffusion, which can be considered as the infected users. The
followers accept video data from the pushers with high probability and assist the pushers
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to diffuse video data for a long time. The followers decide to accept video data in terms
of property or pushers of video with a very high probability. The immune users are
uninterested in the pushed videos and do not act any role in the process of video diffusion,
which means that the immune users are not influenced by other users or video content
for acceptance of videos. Unlike the immune users, the susceptible users have strong
uncertainty for acceptance of videos and can be influenced by other users or video content.

The object selection of video push based on the priority estimation of video content
and social factors is the key factor for high-efficiency video diffusion. For instance, the push
messages of video data are sent to the infected users. The immune users do not need
the overmuch push messages because of the low-level interest in the pushed videos.
The followers only need one or a very small number of messages because of the high-
level interests for the pushed videos or the close social relationship with the pushers.
The susceptible users are subjected to the influence of video interests and social relationships
to make the decision of acceptance and rejection for the pushed video data in terms of their
preference and quit at any time for the video diffusion. More messages are used to address
the problem of indeterminacy of susceptible users to increase the range of video diffusion.

The identification of user roles can effectively pre-estimate the function of users in the
process of video diffusion, which reduces message overhead and the time cost of video
diffusion. For instance, the followers and the immune accept and reject the pushed video
data with a high probability. The susceptible users become the key factor for the efficiency
and scale of video diffusion. Because the source users usually are marked, the source users
are considered as the initial infected users. The identification of followers relies on the
estimation of interest or social relationships. If a user uh frequently accepts the videos
pushed by the users with a close social relationship, uh can be considered as the social
follower; If uh frequently accepts the videos with high-level interests, uh can be considered
as the interest follower. The common acceptance behaviors between uh and other users for
the same videos are the main measurement factor, which means that the main reason for
acceptance of videos is the social relationship instead of interests. The acceptance success
rate of a user uh corresponding to another user uk can see the formula (5).

FLhk =
|vsk

h|
|vsk→h|

, vsk
h ∈ vsk→h. (5)

vsk
h is a set of videos which are pushed by uk and are accepted by uh; vsk→h is of videos

which are pushed by uk. Each user is a collaborator in social-based video diffusion and
receives multiple videos pushed by multiple users. The event that uh accepts the only video
pushed by uk does not happen, namely FLhk = 1, vsk

h = vsk→h = 1 happens with a low
probability. The average success rate of acceptance of uh can see the formula (6).

FLah =
Nah
Nph

, Nah ∈ [0, Nph]. (6)

Nah is the number that uh successfully accepts the pushed videos; Nph is the total
number that uh receives the pushed videos. FLhk − FLah is the offset of following level of
uh relative to uk and is in the range [−1,1]. The larger the value of FLhk − FLah is, the closer
the social relationship between uh and uk is. Let FLOk be the average offset of the following
level of all users in the whole social networks corresponding to uk and see the formula (7).

FLOk =

|V|
∑

c=1
FLck − FLac

|V| . (7)

V is the set of users in G and |V| returns the number of items in V. FLck − FLac
is the offset between uk and each user uc in social networks. Because FLah ∈ [−1, 1],
FLOk ∈ [−1, 1]. FLhk − FLah > FLOk denotes that uh has the closer social relationship than
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relationship between uk and other users in social networks. uh has a higher probability
of accepting the videos pushed by uk and can be considered as a social follower of uk.
If uh is the social follower of a user uk, we make the prediction that uh necessarily accepts
the videos pushed by uk. Similarly, let Nahk and Nphk be the number of accepted and
pushed videos of uh for the video category vck. The interest level of uh for vck can see the
formula (8).

ILChk =
Nahk
Nphk

. (8)

The average interest level of uh for all video categories can see the formula (9).

ILCh =

|VC|
∑

i=1
ILCi

|VC| . (9)

ILChk − ILCh is the interest offset of uh for vck, namely the interest level of uh for vck
relative to other video categories. The average interest offset of all users for vck in the whole
social network can see the formula (10).

ILCOk =

|V|
∑

c=1
ILCck − ILCc

|V| . (10)

ILCOk denotes the average interest level of all users for vck relative to other video
categories. If ILChk − ILCh > ILCOk, uh has the higher interest level for vck than that of
the most of users and considered as the interest follower. Interested followers have a higher
probability to accept the pushed videos than those of other video categories relative to
other users in social networks. If uh is the interest follower of a video category vck, we make
the prediction that uh necessarily accepts the videos which belong to vck. When a user
is neither a source user nor a follower, they may be the immune users or the susceptible
users. The interest levels are the main estimation factor for the identification of immune
users. If vi ∈ vck is the pushed video to uh, ILhi is the interest level of uh. Let VHSh be
the historical set of videos watched by uh. The interest levels of all items in VHSh can be
calculated according to formula (4). The average interest levels of uh for all items in VHSh
can see the formula (11).

ILh =

|VHSh |
∑

c=1
ILhc

|VHSh|
. (11)

If ILhi ≤ ILh, uh is considered as the immune users; if ILhi > ILh and uh is neither
source user nor follower, uh is considered as the susceptible users. The susceptible users
do not have conspicuous following social and interested levels, but they have relatively
high interest and relatively susceptible characters. The susceptible users have an uncertain
probability of acceptance of the pushed videos, so the social relationship of other users and
their interests in video content can influence the susceptible users to accept pushed videos.
If a user up pushes a video vi ∈ vck to uh, ILhi and SIph denote interest level of uh for vi
and social influence level of up. The probability that uh accepts vi pushed by up can see the
formula (12).

Piph = β× ILhi + (1− β)× SIph, β ∈ [0, 1], (12)

where β is a regulatory factor for interest preference and social influence. The larger the
value of Piph is, the higher the probability that uh accepts vi pushed by up is. The value of
SIph can be calculated according to the following equation.

SIph = wph × Rph × ψh, (13)
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where wph is the weight value of edge between uh and up in social networks and can see
the formula (14).

wph =
fph

|NSh |
∑

c=1
fch

, (14)

where fph is the communications frequency between up and uh; NSh is the set of neighbor
nodes of uh in G and |NSh| returns the number of items in NSh. wph denotes that the
importance level of up relative to all neighbor nodes of uh. Rph the ratio of success rate of
video push of up relative to all neighbor nodes of uh and can see the formula (15).

Rph =
rph

|NSh |
∑

c=1
rch

, (15)

where rph is the success rate of video push of up; The value of rph can see the formula (16).

rph =
Nsph

Ntph
, (16)

where Nsph ∈ [0, Ntph] is the number of successful pushing video of up for uh; Ntph is the
total number of video push of up for uh. Because rph ∈ [0, 1], Rph ∈ [0, 1]. ψh is an influence
factor of neighbor nodes of uh for acceptance of vi and can see the formula (17).

ψh =
|NSSi

h|
|NSh|

, (17)

where NSSi
h ∈ NSh is the subset of neighbor nodes which have accepted vi of uh and

|NSSi
h| returns the number of items in NSSi

h. ψh also denotes the influence level of social
network environment of uh for acceptance of vi. The larger the value of ψh is, the higher the
influence levels of the social network environment of uh is. Because wph ∈ [0, 1], Rph ∈ [0, 1]
and ψh ∈ [0, 1], SIph ∈ [0, 1]. Further, because ILhi ∈ [0, 1] and SIph ∈ [0, 1], Piph ∈ [0, 1].
SIph is the important estimation factor for the pair between pushers and the pushed objects.

4.3. Measurement of User Mobility

Except for the high-success video push, the high-efficiency delivery of video data is
also an important influence factor for the efficiency and performance of video diffusion.
The length of data transmission paths between pushers and push objects determines the
delivery performance of video data. The long paths include multiple relay nodes, so the
bandwidth resources of relay nodes are wasted and the transmission delay is increased;
On the other hand, the mobility of relay nodes also results in the variation of transmission
paths, which increases the risk of packet loss and delay rise. The near geographical distance
between pushers and accepters is an important indicator for transmission paths with low
hop. For instance, if the geographical distance between pushers and accepters is less
than M in wireless mobile networks, where M is the coverage range of one hop wireless
signal, they use one-hop distance to implement high-efficiency transmission of video data
because the transmission paths with one hop distance can directly deliver video data
without the participation of relay nodes and obtain low delay and low probability of packet
loss. The object selection of video push should consider critical reasons such as available
bandwidth, packet loss, and path length.

The available bandwidth and packet loss are communication quality factors of trans-
mission paths. The higher the available bandwidth of paths is, the shorter the transmission
time of video data is. The low packet loss can decrease the retransmission number of
video data, which reduces the transmission time of video data. Let Bhp be average band-
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width of transmission path TPhp between uh and up during a time span from ta to tb.
The transmission time of a video vi can see the formula (18).

Ti
ph =

sizei

Bhp × (1− PLRph)
, (18)

where sizei is the size of vi; PLRph is the average rate of packet loss of TPhp during a time
span from ta to tb. The lower the value of Ti

ph is, the better the communication quality and

efficiency of TPhp is. Ti
ph is a prediction value because the values of bandwidth and packet

loss rate are the statistical-based mean values. Moreover, the length of TPhp is the structure
factor of transmission paths, which makes an impact on the communication quality and
efficiency of TPhp. If the length of TPhp is long, TPhp has many relay nodes. The mobility
of relay nodes leads to the instability of TPhp structure, which increases the risk of packet
loss and delay rise. The bandwidth of relay nodes also is wasted for forwarding video data.
The stability level of path structure of TPhp can see the formula (19).

PSph =
1

log2(|RSph|+ 1)
×

OTph
min

Ti
ph

, (19)

where RSph is the set of all nodes in TPhp and |RSph| returns the number of items in RSph.
log2(|RSph|+ 1) ∈ [1,+∞] denotes the influence level of path length. The longer the path

length of TPhp is, the smaller the value of 1
log2(|RSph |+1) is. OTph

min is the minimum value

among average duration time of one hop relationship between all adjacent nodes based on
the geographical location in TPhp where the range of value of OTph

min can see the formula (20).

OTph
min =

OTph
min, OTph

min ∈ [0, Ti
ph)

Ti
ph, OTph

min ∈ [Ti
ph,+∞).

(20)

The calculation of the average duration time of the one-hop relationship between
all adjacent nodes based on the geographical location in TPhp relies on the statistical
information of duration time that the encountered nodes keep a one-hop relationship.
OTph

min
Ti

ph
∈ [0, 1] denotes the stability level of path structure of TPhp in the process of data

transmission of vi. 1
log2(|RSph |+1) is the weight value of OTph

min
Ti

ph
. The larger the value of path

stability PSph is, the higher the efficiency of path TPhp is. Because 1
log2(|RSph |+1) ∈ (0, 1] and

OTph
min

Ti
ph
∈ [0, 1], PSph ∈ [0, 1]. According to the Equations (12) and (19), when up selects the

objects of pushing vi from the susceptible users, the priority level of a susceptible user uh
can see the formula (21).

ηiph = β× Piph + (1− β)× PSph, β ∈ [0, 1]. (21)

Because Piph, PSph ∈ [0, 1], ηiph ∈ [0, 1]. The susceptible users are selected as the push
objects by the infected users according to the priority estimation value η.

4.4. Control Strategy of Video Diffusion

The purpose of video diffusion focuses on extending the scale and range of distribution
of video copies. The pointless waste and intensive bank runs of network bandwidth result
in network congestion, so the high delay and packet loss caused by congestion results in a
severe negative influence on user QoE. The video diffusion should take into account both
diffusion regulation and high-utilization bandwidth. The diffusion regulation needs to
set the order of diffusion in terms of pre-estimation results of the user role. For instance,
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the users who are pre-estimated as followers can be activated via a video message and
should have high priority. The users who are pre-estimated as immune users can be
neglected, which saves the messages of pushing videos. Objects of pushing videos focus
on the susceptible users which have high uncertainty for the acceptance and rejection of
pushed videos. The initial source users discretely distribute in social networks and employ
the cascaded spread way to diffuse vi from one-hop social neighbors to multiple-hop social
neighbors. In other words, an initial source user uk firstly pushes vi to social neighbors
of uk in G. After the social neighbors of uk accept pushed vi, they push vi to their social
neighbors. vi is pushed to the whole social network via the cascaded spread.

The purpose of diffusion with low message cost requires that the initial source users
effectively recognize the user role and preferentially distribute vi to the followers in social
neighbors and do not send the pushed vi again for the immune users in social neighbors.
Therefore, there are three steps for each user who has been infected in the process of the
cascaded spread: (1) The infected users firstly push vi for their social neighbors and receive
the feedback information containing the results of role, η and PS; (2) The infected users
optimally deliver data of vi to the followers in terms of roles and PS; (3) The infected users
also further deliver data of vi to the susceptible users in terms of the received η. Let INSi
be the set of initial source nodes of vi and INSi also can be considered as a set of infected
users; MNSi is the immune users in G for the diffusion of vi; Let x be the round of video
diffusion in G. The control strategy of diffusion of a video vi is described, as follows.

(1) Initially, x is set to 0 at the first diffusion round. INSi is not an empty set and
MNSi, FNSi and CNSi are the empty sets.

(2) A user up is selected from all items in INSi. Let SNSp be the set of social neighbors
of up. up removes the items in INSi ∩ SNSp and MNSi ∩ SNSp from SNSp, which reduces
the number of sent messages. up sends the information of vi to all items in SNSp. Every item
in SNSp returns a message containing estimation results of role, mobility, and acceptance
probability. up records roles of social neighbors in SNSp: up adds the neighbors which
have stored vi into a neighbor subset SUSP ∈ SNSp and INSi, respectively; up adds the
immune neighbors into a neighbor subset IUSp ∈ SNSp; up adds the follower neighbors
into a neighbor subset FUSp ∈ SNSp; up adds the susceptible neighbors into a neighbor
subset SUSp ∈ SNSp.

(3) up preferentially delivers data of vi to the follower neighbors. If FUSp is an empty
set, the current step is transferred to step 4. Otherwise, if FUSp is not an empty set, up
broadcasts a message containing information of all items in FUSp to all items in INSi.
After all items in INSi receives the message sent by up, they calculate the mobility values
with all items in FUSp and return the estimation results from PS to up. up allocates suppliers
of vi for every item in FUSp. For instance, up selects an item ue in FUSp and implements
the descending sort for the mobility results of all items in INSi with ue. The item ud in INSi,
which has the maximum value of mobility with ue, becomes a supplier of vi corresponding
to ue. up sends a message containing information of ud to ue. If ue agrees with the data
delivery of ud, ue returns an acknowledgment message to up. After ue sends a message
containing information of ue to ud, the pair between ue and ud is finished. After the data
delivery of vi to ue is finished, ue is added into INSi by ud; The updated INSi is broadcasted
to each item in INSi by ud. Otherwise, if ue rejects the data delivery of ud, ue is added
into MNSi by up. After ue is added into INSi or MNSi, ue removes ue from FUSp and
broadcasts the updated INSi or MNSi to all items in INSi, which enables the users in
INSi to avoid sending invalid messages. up iteratively pairs for other items in FUSp in the
same way.

(4) When up finishes the pair for all items in FUSp, up further delivers data of vi to the
susceptible neighbors in SUSp. If SUSp is an empty set, the current step is transferred to
step 5. Because the susceptible neighbors have strong uncertainty for acceptance of vi unlike
the follower neighbors, the diffusion of vi for the susceptible neighbors in SUSp employs
the linear threshold method. For instance, u f is a susceptible neighbor in SUSp and has a
social threshold STf . When u f receives a video vi pushed by up (u f is a social neighbor of
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up), the social influence cumulant for vi can be updated according to the following formula:

STx
f i = STx−1

f i +
c fp f

CFf
, (22)

where STx
f i is the social influence cumulant of u f for vi pushed by up at the xth diffusion

round and ST0
f i = 0. c fp f ∈ [0, CFf ] is the interaction frequency between u f and up in the

process of video sharing; CFf is the total interaction frequency between u f and all social
neighbors in the process of video sharing. If u f accepts vi pushed by up at the xth diffusion
round, u f returns an acknowledgement message to up. up allocates an appropriate supplier
for u f refer to the above step 3; If u f rejects vi pushed by up at the xth diffusion round, up
receives a message returned by u f where the message contains the updated STx

f i according
to the formula (22). If STx

f i ≥ RTs and u f accepts vi, up adds u f into INSi. If STx
f i < RTs,

up continues to push vi to u f at the (x + 1)th round. Because each user has multiple social
neighbors in G, u f receives many messages containing the pushed vi. u f may have been
add into INSi or MNSi at any given moment due to acceptance of vi or STx

f i ≥ RTs. When
up receives INSi or MNSi updated by other users and u f has been added into INSi or
MNSi, up removes u f from SUSp and does not push vi at the (x + 1)th round. up iteratively
pairs for other items in SUSp in the above same way.

(5) When the time of current xth round is completely consumed, the current xth round
is in an end state. If FUS or SUS of all items in INSi is not the empty set, the current
implementation returns to step 2; Otherwise, if FUS and SUS of all items in INSi are empty
sets, the diffusion process of vi is terminated.

The above diffusion process is described in Algorithm 1.

Algorithm 1: Control process of vi diffusion.
1: x is round number of propagation of vi and x = 0;
2: SNS is social neighbor set;
3: FUS is follower neighbor set;
4: SUS is susceptible neighbor set;
5: Fi = 1 is flag of diffusion termination;
6: while Fi = 1
7: for(c=0;c<|INSi|;c++)
8: if x = 0
9: SNSh = SNSh − INSi ∩ SNSh;
10: INSi[h] broadcasts vi to items in SNSh;
11: INSi[h] records information returned by items in SNSh;
12: else
13: SNSh = SNSh − INSi ∩ SNSh −MNSi ∩ SNSh;
14: end if
15: INSi[h] broadcasts FUSh to items in INSi;
16: INSi[h] records information returned by items in INSi;
17: for(c=0;c<|FUSh|;c++)
18: INSi[h] pairs FUSh[c] and items in INSi;
19: if FUSh[c] rejects pairing
20: FUSh[c] is added into MNSi;
21: else FUSh[c] is added into INSi;
22: end for
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Algorithm 1: Cont.
23: INSi[h] broadcasts vi to items in SUSh;
24: INSi[h] records information returned by items in SUSh;
25: for(c=0;c<|SUSh|;c++)
26: if STx

ci ≥ RTs and SUSh[c] accepts vi
27: SUSh[c] is added into INSi;
28: else if SUSh[c] rejects vi
29: SUSh[c] is added into MNSi;
30: end if
31: end for
32: end for
33: if FUS and SUS of all items in INSi are empty
34: Fi = 0;
35: else x++;
36: end if
37: end while

5. Testing and Test Results Analysis

We compare the performance of the proposed solution EVDSM with that of the two
state-of-the-art solutions DMSEM [37] and OCP [46] in a mobile network environment by
making use of the Network Simulator 3 (NS-3). A square scenario with 3000× 3000 m2 area
has 500 mobile nodes. The three solutions employ the random movement model of mobile
nodes. The mobile nodes keep random movement behaviors during 500 s simulation
time. Position coordinates of beginning and ending and movement speed of all mobile
nodes are randomly allocated in advance at initial simulation time. The mobile nodes keep
uniform motion along the path consisted of beginning and ending position coordinates
using the allocated speed. When the mobile nodes arrive at the appointed ending position,
they are allocated the new random destination position, and the movement speed, namely
the stay time of mobile nodes is 0 s. The mobile nodes move to the new target position
without a break using the new allocated speed. [1, 30] m/s is defined as the speed range
of mobile nodes. The number of videos that are requested by mobile nodes is set to 40.
The popularity of all videos follows the Zipf distribution [47]. The probability of requesting
the nth popular video see the formula (23) [48]:

P(n) = ∑i
40 iρ

rρ . (23)

The process in which the mobile nodes request videos during the whole simulation
time follows the Poisson distribution. Initially, the mobile nodes request videos in terms
of the video request probabilities. At the moment, the mobile nodes are allocated random
playback time. When the mobile nodes finish the playback according to the allocated play-
back time, they continue to request the new videos according to the request probabilities.
The length and size of every video are 100 s, which means that the random playback time is
in the range [1, 100] s. The size and playback bitrate of every video is 25 MB and 2000 kbps,
respectively. The number of videos that are stored in the local buffer of mobile nodes is 10.
Every mobile node can store 10 videos in the local buffer. The nodes which provide initial
video data are defined as the source nodes. Every source node can store 10 different videos
to provide supply services of video data for the request nodes, which means that 40 nodes
provide the initial data of 40 videos. 20,000 log entries which are considered historical play-
back trace libraries are generated, which supports the measurement of social relationships
and interest preference. The historical movement trace library is generated, which supports
mobility estimation of EVDSM and encounter pattern extraction of DMSEM.

The simulation scenarios have 36 base stations which act as the access points (APs) to
transmit and forward data. The settings of the physical and MAC layer and modulation
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schemes of network units follow the 5G industrial standardization. The MAC protocol
employs 802.11p and the upper bound of the data rate is set to 27 Mbps. The maximum
communication range is 250 m; The MAC channel delay is 250 ms. The propagation
loss model employs the Friis Propagation Loss Model (FPLM) in NS-3 [49] to eliminate
the performance degraded by random shadowing effects for an unstructured clear path
between receivers and transmitters. The FPLM effectively erases the random effects caused
by shadowing for the simulation results. The D2D settings of the 5G network follow the
settings in the popular studies [50].

Testing Topology and Scenarios

We compared the performance of EVDSM with DMSEM and OCP in terms of the
startup delay (SD), average data transmission delay (ADTD), packet loss rate (PLR), average
freeze time (AFT) and peak signal-to-noise ratio (PSNR), respectively.

Startup delay (SD): Let tri − tsi be the startup delay of a requesting node ni where tsi is
time that ni sends a request message to the video supply node nj and tri is the time that ni
receives the first video data sent by nj. The average SD values see the formula (24).

SD =
∑n

i=1 SDi

n
. (24)

n is the number of nodes which finish startup; SDi is ith startup delay. In Figure 3, SD
denotes the average SD values every 5 s. As Figure 3 shows, the three curves corresponding
to the three solutions corresponding to EVDSM with DMSEM and OCP have the process of
slow fall after a fast rise with the fluctuation. The red curve of EVDSM first experiences a
fast rise from t = 0 s to t = 190 s, has a stable rise from t = 200 s to t = 270 s, has a fast fall
from t = 280 s to t = 400 s and has a slow fall from t = 410 s to t = 500 s. The orange curve of
DMSEM has a fast rise from t = 0 s to t = 170 s, experiences a stable rise from t = 180 s to
t = 270 s, experiences a fast fall from t = 280 s to t = 340 s and has a slow fall from t = 350 s
to t = 500 s. The green curve of OCP has a fast rise from t = 0 s to t = 250 s and keeps a
slow fall trend from t = 260 s to t = 500 s. The SD values of EVDSM are less than those of
DMSEM and OCP during the most of simulation time. The peak value of the blue curve
corresponding to EVDSM is less than those of DMSEM and OCP.
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Figure 3. Startup delay against simulation time.
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Figure 4 shows the average SD values corresponding to the three solutions with
the different speed ranges of nodes. The average SD values have a rising trend with an
increasing speed range of nodes. The red bars of EVDSM experience a slow rise from the
range [1, 5] to [10, 15], have a fast rise from the range [10, 15] to [15, 20] and have a slow rise
from the range [20, 25] to [25, 30]. The orange bars of DMSEM have a slow rise from the
range [1, 5] to [10, 15] and have a uniform rise from the range [10, 15] to [25, 30]. The green
bars of OCP keep the fast rise trend from the range [1, 5] to [10, 15] and experience a slow
rise from the range [15, 20] to [25, 30]. The SD values of EVDSM are less than those of
DMSEM and OCP.
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Figure 4. Startup delay against various speed ranges of nodes.

Initially, the small-scale requests do not bring a large load of video traffic, so the startup
delay keeps the low levels. However, the dynamic watch time of users leads to repeated
requests for diverse videos. Even if the successful video push also does not ensure long
watch time and reduce the number of requests. The large-scale video requests for different
videos promote a load of video supply so that the search time of video supply and the
time of handling request messages are lengthened. Moreover, the increase in the mobility
of nodes also promotes the probability of packet loss, which also increases startup delay.
The decrease in the number of request nodes reduces the load of supply. The optimized
video distribution effectively reduces the search time of video supply and the time of
handling request messages. The values of startup delay fast decrease. EVDSM pairs the
appropriate suppliers for potential video requesters with high probabilities of requesting
videos at a proper time and allocates the suppliers with optimal delivery performance for
video requesters by investigating interest preference, social influence, and user mobility.
EVDSM refers to participant roles and the propagation process of the Epidemic model to
estimate interest preference, social influence, and user mobility for an exact video push
with high success probability and excellent delivery performance. By joint consideration of
content-based similarity between watched and popular videos and discrimination between
user preference and popular videos, EVDSM effectively estimates user interest levels
for video content, which promotes success probabilities of video push and fast finds the
appropriate supply nodes for the video request nodes. The successful video push reduces
the lookup delay. EVDSM defines the estimation rule of user roles according to interest
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preference and social influence and identifies user roles in terms of video sharing behaviors
of users, which effectively defines the range of video sharing and reduces the number of
useless pushes. EVDSM investigates the expected time length of data transmission and
stability level of path structure in historical transmission traces of video data to estimate
variation levels of user mobility, which reduces the negative influence caused by user
mobility for video delivery performance. EVDSM makes use of priority-based pairing
between video supply nodes and user mobility request nodes to effectively push videos.
EVDSM makes use of role identification to predict the scale of video demand and relies on
video push to promote the scale of video supply, which balances supply and demand with
various demands. Therefore, the SD values of EVDSM are lower than those of DMSEM
and OCP at the most of simulation time. DMSEM collects and clusters encounter of nodes
to extract encounter patterns to predict encounter between mobile nodes in the future,
which is used to pair D2D communication parties with one-hop geographical distance and
supports video data delivery via one-hop D2D communications. DMSEM considers the
influence caused by the mobility of nodes based on clustering encounter events that have
similar encounter duration and variations of geographical distance. The long-term stability
of the one-hop D2D communication path reduces interference of path variation to support
high-efficiency video data transmission. The encounter-based data transmission lengthens
the wait delay of transmission and forwarding of data. The random mobility of data also
increases the risk of D2D communication interruption, which further increases the wait
delay for the transmission and forwarding of data. On the other hand, the limited area
and fast speed can promote probabilities of encounter of mobile nodes, so that DMSEM
has the better performance of SD. In OCP, the nodes exchange state lists with each other to
share information on video distribution to achieve dynamic regulation of video caching.
OCP makes use of the collected distribution information to predict the demand variation
of the whole system, which increases and adjusts the video distribution of the whole
network in advance to provide enough video supply. All nodes follow the caching decision
to implement caching and replacement of videos at a uniform period, which effectively
addresses the problems of scale and allocation of video supply caused by large-scale video
demand. The fast variation of demand brings a great challenge for the timeliness of caching
and replacement of OCP. Moreover, OCP does not consider the influence of node mobility
on data delivery. Therefore, the SD values of OCP slightly is larger than those of EVDSM
and DMSEM.

Average data transmission delay (ADTD): The average data transmission delay see
the formula (25).

ADTD =
∑n

i=1 dti

n
. (25)

n is the number of transmission delays of video data during a period t and dt is
transmission delay of video data. The ADTD values every 5 s are shown in Figure 5.
As Figure 5 shows, the three curves corresponding to EVDSM with DMSEM and OCP
have a severe jitter process with the increasing simulation time and keep a fall after a rise.
The ADTD values of EVDSM have lower levels than those of DMSEM and OCP and the
ADTD peak value of EVDSM is less than those of DMSEM and OCP. The ADTD peak value
of DMSEM is lower than that of OCP.
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Figure 5. Average data transmission delay against simulation time.

As Figure 6 shows, the average ADTD values corresponding to the three solutions
have a trend of slow rise with an increasing speed range of nodes. The red bars of EVDSM
keep the slow rise trend from the range [1, 5] to [10, 15] and have a fast increase from the
range [15, 20] to [25, 30]. The orange bars of DMSEM have a slow rise from the range [1, 5]
to [10, 15] and a fast rise from the range [15, 20] to [25, 30]. The green bars of OCP keep
the fast rise at all ranges of video speed. The red bars of EVDSM are lower than those of
DMSEM and SECS.
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EVDSM estimates variation levels of node mobility by investigating the expected time
length of data transmission and stability level of path structure based on the analysis of
historical transmission traces of video data. EVDSM makes use of available bandwidth
and packet loss to estimate the performance of data transmission; EVDSM relies on the
duration time of one hop relationship between all adjacent nodes based on the geographical
location to estimate structure stability levels of the data transmission path. Therefore,
EVDSM can ensure high performance of data transmission. However, the mobility of
nodes brings a severely negative influence on the transmission performance of video
data. The ADTD values of EVDSM also fast increase with the increasing speed of node
movement speed, so the SD values of EVDSM are slightly lower than those of DMSEM and
OCP. DMSEM depends on encounter-based D2D communications to implement video data
delivery. To reduce the negative influence caused by node mobility, DMSEM collects and
analyzes encounters of nodes and clusters encounter events that have similar encounter
duration and variation of geographical distance, which effectively classifies encounter
events to support data transmission with different requirements of data transmission time.
DMSEM further extracts the encounter patterns from the encounter clusters to recognize
and predict encounter events. DMSEM can rely on encounter-based D2D communications
to support high-efficiency data transmission. However, node mobility is the main influence
factor for D2D communications. The fast movement of nodes leads to the interruption of
D2D communications, which greatly increases the transmission delay of data. Therefore,
the ADTD values of DMSEM keep a fast rise trend with increased movement speed.
Because OCP does not consider the influence of node mobility for data delivery and
neglects the measurement of data transmission performance, the ADTD values of OCP are
larger than those of EVDSM and DMSEM.

Packet loss rate (PLR): The ratio between the number of lost video data during a period
t and the total number of sent video data during t is defined as the packet loss rate.

The PLR values during the period t = 10 s are shown in Figure 7. As Figure 7 shows,
the three solutions keep the fall trend with a slight fluctuation during the whole simulation
time. The red curve of EVDSM has a fast fall trend from t = 0 s to t = 200 s and keeps a slight
decrease with the slight fluctuation from t = 210 s to t = 500 s. The PLR curve of EVDSM
is lower than those of DMSEM and OCP during most of the simulation time. The orange
curve of DMSEM has a fast fall from t = 0 s to t = 140 s and a slow fall from t = 150 s to
t = 270 s and keeps a stable trend from t = 280 s to t = 500 s. The green curve of OCP has
a fast fall from t = 0 s to t = 140 s, experiences a slight fall from t = 150 s to t = 360 s and
keeps a stable decrease from t = 370 s to t = 500 s. The green curve of OCP is higher than
those of EVDSM and DMSEM.

As Figure 8 shows, the bars corresponding to the three solutions keep a rising trend
with various speed ranges of nodes. The red bars of EVDSM keep the slow rise trend
from the range [1, 5] to [10, 15] and have a fast increase from the range [10, 15] to [25, 30].
The orange bars of DMSEM have a slow rise from the range [1, 5] to [10, 15] and a fast rise
from the range [10, 15] to [15, 20] and have a stable trend from the range [15, 20] to [20, 25]
and have a fast rise from the range [20, 25] to [25, 30]. The green bars of OCP also have a
fast rise from the range [1, 5] to [10, 15] and have a fast increase from the range [10, 15] to
[25, 30].
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Figure 7. Packet loss rate against simulation time.
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Figure 8. Packet loss rate against various speed ranges of nodes.

EVDSM makes use of data transmission and the stability level of path structure to
estimate variation levels of node mobility based on analysis of historical transmission
traces of video data. EVDSM considers the available bandwidth and packet loss for the
measurement of the performance of data transmission. EVDSM estimates structure stability
levels of the data transmission path in terms of investigation of the duration time of the
one hop relationship between all adjacent nodes based on the geographical location of
nodes. EVDSM effectively reduces the influence of path variation of data transmission
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brought by node mobility. Although the path variation caused by the mobility of nodes
results in the loss of video data, EVDSM depends on the measurement of data transmission
and the stability level of path structure to effectively reduce increment of PLR values
with an increasing movement speed of nodes. Therefore, the PLR values of EVDSM are
lower than those of DMSEM and OCP. To ensure the stability of the data transmission
path and reduce negative influence caused by node mobility, DMSEM clusters encounter
events that have similar encounter duration and variation of geographical distance in
terms of historical encounter records to classify encounter events, which dynamically pair
D2D communication parties in terms of integrating degree between predicted encounter
duration and requirement of data transmission time. To recognize and predict encounter
events, DMSEM extracts the encounter patterns from the encounter clusters and designs
a recognition method for encounter events. The encounter-based D2D communications
support high-efficiency data transmission in DMSEM. Although the PLR values of DMSEM
keep the rising trend, the increment of PLR values of DMSEM also keeps low levels.
OCP does not have the handling method of node mobility and measurement method of
data transmission performance, the PLR values of OCP are negatively influenced by the
increasing node mobility. Therefore, the ADTD values of OCP are larger than those of
EVDSM and DMSEM.

Average freeze time (AFT): The interruption interval time in the process of video
playback of users is used to denote the freeze time. The average freeze time is the ratio
between the total sum of freeze time and the number of freezes during a period t. The AFT
values for every t = 10 s are shown in Figure 9.
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Figure 9. Average freeze time against simulation time.

As Figure 9 shows, the three solutions keep a fall trend after a fast rise with severe
fluctuations during the whole simulation time. The red curve of EVDSM has a fast rise
from t = 0 s to t = 70 s, keeps high levels from t = 80 s to t = 160 s, experiences a stable fall
from t = 350 s to t = 500 s after a fast fall t = 170 s to t = 340 s. The red curve of GSVD keeps
the lower levels than those of DMSEM and OCP at the most of simulation time. The orange
curve of DMSEM has a fast rise from t = 0 s to t = 30 s, keeps high levels from t = 30 s to
t = 280 s, experiences a fast fall from t = 290 s to t = 360 s and has a stable fall from t = 370 s
to t = 500 s. The green curve of OCP has a fast fall from t = 0 s to t = 90 s, keeps high levels
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from t = 100 s to t = 270 s, has a fast fall from t = 280 s to t = 360 s and experiences a slow
decrease from t = 370 s to t = 500 s. The AFT values of OCP are larger than those of EVDSM
and DMSEM and have a larger peak value than those of EVDSM and DMSEM.

As Figure 10 shows, the bars corresponding to the three solutions all have a rising
trend with the variation of the speed range of nodes. The red bars of EVDSM have a slight
increase from the speed range of nodes [1, 5] to [10, 15] and have a slow rise from [15, 20]
to [25, 30]. The orange bars of DMSEM have a fast increase from the range [1, 5] to [5, 10],
have a slight increase from the range [5, 10] to [10, 15], and have a slow rise from [15, 20]
to [25, 30]. The green bars of OCP have a slow rise from the range [1, 5] to [15, 20] and
experience a fast rise from the range [20, 25] to [25, 30]. The AFT values of EVDSM are less
than those of DMSEM and OCP.
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Figure 10. Average freeze time against various speed ranges of nodes.

Video data loss is the main factor of playback interruption. The long interruption time
results in a low quality of user experience. EVDSM investigates data transmission and
the stability level of path structure to ensure transmission performance of video data by
measurement of available bandwidth and packet loss and estimation of duration time of the
one hop relationship between all nodes in the data transmission path based on geographical
location. The stable paths of data transmission help EVDSM obtain low PLR values, which
effectively reduces video data loss and decreases AFT values. Therefore, the AFT values
of EVDSM are lower than those of DMSEM and OCP. DMSEM classifies encounter events
according to similarities of encounter duration and variation of geographical distance by
analysis of historical encounter records, which ensures stable pairing of D2D communica-
tion parties and reduces negative influence caused by node mobility. Even if the movement
speed of nodes increases, the increment of AFT values of DMSEM also is kept at low levels.
Therefore, DMSEM has a similar performance to AFT values. Because OCP does not have
the handling method of node mobility and measurement method of data transmission
performance, the PLR values of OCP are negatively influenced by the increasing node
mobility. Therefore, the AFT values of OCP are larger than those of EVDSM and DMSEM.
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Peak signal-to-noise ratio (PSNR): The video quality is denoted by the peak signal-
to-noise ratio (PSNR) which is measured in decibels (dB) [51]. The value of PSNR see the
formula (26).

PSNR = 20 · log10(
MAX_Bit√

(EXP_Thr− CRT_Thr)2
). (26)

EXP_Thr and CRT_Thr are the expected and real throughput, respectively. MAX_Bit
is the maximum value of the transmission rate.

As Figure 11 shows, the three solutions have a fall trend with the increasing speed of
nodes. The bars corresponding to EVDSM, DMSEM, and OCP have a slow fall from the
range [1, 5] to [5, 10] and experience a slow fall from [10, 15] to [25, 30]. The PSNR bars of
EVDSM are higher than those of DMSEM and OCP.
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Figure 11. PSNR against various speed ranges of nodes.

The PLR is the main influence factor for the values of PSNR. EVDSM makes use
of measurement of data transmission and stability level of path structure to effectively
reduce increment of PLR values with an increasing movement speed of nodes. The PSNR
performance of EVDSM is better than those of DMSEM and OCP. DMSEM investigates
variation levels of geographical distance and encounter duration to reduce the negative
influence of node mobility for data transmission performance so that the PLR values of
DMSEM can keep the low levels and the negative influence caused by the increase of
node movement speed for the PLR values is effectively reduced. DMSEM also obtains
relatively high PSNR values. DMSEM has a similar performance to PSNR. Because OCP
does not have the handling method of node mobility or the measurement method of data
transmission performance, the PLR values of OCP are larger than those of EVDSM and
DMSEM. Therefore, the PSNR values of OCP are less than those of EVDSM and DMSEM.

6. Conclusions

In this paper, we propose a Novel Epidemic-based Video Diffusion strategy using
awareness of Sociality and Mobility in wireless networks (EVDSM). EVDSM constructs a
video diffusion model by investigating interest preference, social influence, and mobility
and defines the four roles of video-sharing users in social networks according to the
Epidemic model. EVDSM uses the content-based similarity between watched and popular
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videos and the discrimination between user preference and popular videos to estimate the
interest levels of users. EVDSM uses the weight value of social edges, the push success
rate, and the influence levels of neighbor nodes to estimate the social influence levels of
users. EVDSM defines an estimation method of user roles according to interest preference
and social influence and an identification method of user roles in terms of the video-
sharing behaviors of users. EVDSM uses the expected time length of data transmission
and the stability level of path structure to estimate user mobility levels. EVDSM defines
the priority levels of pairing between infectors and candidate infectors according to the
joint optimization of pairing success rate and video delivery performance, which promotes
the effectiveness of video sharing and ensures user QoE. The simulation results show that
EVDSM obtains a lower startup delay, a lower average data transmission delay, a lower
packet loss rate, a lower average freeze time, and a higher peak signal-to-noise ratio than
DMSEM and OCP.
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Abbreviations Descriptions

EVDSM
Epidemic-based Video Diffusion strategy using awareness of Sociality
and Mobility in wireless networks

PLR Packet Loss Rate
QoE Quality of Experience
CSQCA Collaborative Social-aware QoE-driven video Caching and Adaption framework
P2P Peer-to-Peer
NS-3 Network Simulator 3
APs Access Points
FPLM Friis Propagation Loss Model
SD Startup Delay
ADTD Average Data Transmission Delay
AFT Average Freeze Time
PSNR Peak Signal-to-Noise Ratio
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