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Abstract: Aiming at the problems of low reconstruction rate and poor reconstruction precision when
reconstructing sparse signals in wireless sensor networks, a sparse signal reconstruction algorithm
based on the Limit-Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) quasi-Newton method is proposed.
The L-BFGS quasi-Newton method uses a two-loop recursion algorithm to find the descent direction
dk directly by calculating the step difference between m adjacent iteration points, and a matrix Hk

approximating the inverse of the Hessian matrix is constructed. It solves the disadvantages of BFGS
requiring the calculation and storage of Hk, reduces the algorithm complexity, and improves the
reconstruction rate. Finally, the experimental results show that the L-BFGS quasi-Newton method
has good experimental results for solving the problem of sparse signal reconstruction in wireless
sensor networks.

Keywords: sparse signal reconstruction; L-BFGS quasi-Newton method; two-loop recursion algorithm;
reconstruction rate

1. Introduction

A wireless sensor network (WSN) is a wireless network composed of a large number of
sensor nodes. Each sensor node needs to collect a large amount of data and transmit it to the
sink node. Traditional data acquisition and transmission methods will cause huge energy
consumption and reduce the service life of nodes [1]. If the collected data is compressed
before transmission, the energy consumption can be greatly reduced and the node life can
be prolonged. However, the traditional Nyquist sampling frequency is too high, resulting
in excess energy consumption. To solve the problem that Nyquist’s sampling frequency is
too high. Jose et al. proposed to apply the compressed sensing (CS) [2] theory to wireless
sensor networks. The CS theory shows that as long as the signal is sparse or can be sparsely
represented, the original signal can be reconstructed undistorted from the measurement of
a linear combination far below Nyquist sampling frequency. The original signals of wireless
sensor networks are sparse, as such, and CS theory is widely used in the reconstruction of
sparse original signals in wireless sensor networks.

At present, the main reconstruction algorithms studied include greedy iterative algo-
rithms [3], non-convex optimization algorithms [4], and convex optimization algorithms [5].
The most classical greedy iterative algorithm is the matching pursuit (MP) algorithm [6].
The algorithm uses residuals to reconstruct sparse signals. The algorithm is relatively
simple, and the reconstruction rate is fast, but the sparsity of signals in a certain transfor-
mation domain is required, and the reconstruction accuracy is poor. It is suitable for cases
with a large amount of data and low reconstruction accuracy requirements, but it is not
suitable for fields with high reconstruction accuracy requirements. Gorodnitsky proposed
a sparse signal reconstruction algorithm based on the wavelet transform [7]. Daubechies
proposed a sparse reconstruction algorithm based on logic and iterative weighted least
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squares minimization [8]. Both algorithms belong to non-convex optimization algorithms,
which can improve the reconstruction accuracy to a certain extent but whose improvement
effect is limited. Daubechies et al. proposed convex optimization algorithms to reconstruct
sparse signals in wireless sensor networks [9]. This method transforms the sparse signal
recovery problem into a convex optimization problem and solves the minimum value of
the objective function. The results obtained are globally optimal, and the reconstruction
accuracy is good and applicable to the realm with high reconstruction accuracy. It requires
fewer measurements, but the computational complexity is very high. A typical convex
optimization algorithm is the basis pursuit (BP) algorithm [10]. The BP algorithm has
high reconstruction accuracy but a low reconstruction rate. William et al. proposed a
gradient-based sparse recovery method [11], which has high reconstruction accuracy and a
fast first-order convergence rate.

Ma Duxiang proposed to apply Newton’s method to a sparse signal reconstruction
algorithm [12]. Newton’s search direction is used to replace the steepest descent direction
and obtain the second-order convergence rate, which improves the reconstruction rate of
the sparse signal to a certain extent. Newton’s method requires the inverse of the Hessian
matrix, which requires large computational quantities and can improve the reconstruc-
tion rate but is limited. The computational quantities are the complexity and time of
the algorithm. The longer the algorithm runs, the greater the computational quantities.
Chen Fenghua used the BFGS [13] algorithm to solve the problem of large computational
quantities in wireless sensor networks. The BFGS algorithm replaces the inverse of the
Hessian matrix with an approximate matrix Hk by iteration, which reduces the amount of
computation. However, the BFGS algorithm needs to calculate and store the n × n matrix
Hk. When dimension n is large, the reduced computation amount is limited. Therefore,
the L-BFGS [14] quasi-Newton algorithm is proposed in this paper to solve the problem of
sparse signal reconstruction in wireless sensors based on compressed sensing. The L-BFGS
algorithm does not need to calculate and store Hk directly but only needs to store m (m<<n)
vector pairs (sk,uk). This solves the shortcoming of the BFGS quasi-Newton algorithm,
which must calculate and store the matrix Hk directly; the size of Hk is n × n. In Section 5,
we prove the feasibility of using the L-BFGS quasi-Newton algorithm to solve the problem
of sparse signal reconstruction in wireless sensors based on compressed sensing.

2. Signal Reconstruction Algorithm Based on Newton Method

In WSNs, it is known that sparse signals x ∈ Rn, and the matrix A ∈ Rm×n (m<<n) [13].
y ∈ Rm is the observation vector. They satisfy the following relation:

y = Ax. (1)

How to reconstruct the original signal x from a linear system is the core problem
of sparse signal reconstruction using compressed sensing in wireless sensor networks.
Equation (1) is underdetermined and has infinite sets of solutions.

In the compressed sensing problem, if the original signal x is known to be sparse under
a certain transformation, the Equation (1) can be transformed into an L0 norm minimization
problem, and the signal is reconstructed by solving the L0 norm minimization problem:

min
x
‖x‖0, s.t.Ax = y, (2)

the L0 norm here is the number of nonzero elements of the vector.
Research shows that sparse signals can be accurately reconstructed by solving the

linear optimization of the L0 norm minimization problem. However, the L0 norm problem
is NP-hard. In other words, the solution to the L0 norm minimization problem needs
to enumerate all the permutations and combinations of non-zero values in the original
signal. Under certain conditions, the L1 norm minimization problem is the optimal convex
approximation of the L0 norm minimization problem [15], and the solution to the L1 norm
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minimization problem is simple. Therefore, solving the L0 norm minimization problem is
transformed into solving the L1 norm minimization problem:

min
x
‖x‖1, s.t.Ax = y. (3)

The L1 norm minimization problem is a convex optimization problem. There are
many methods to solve convex optimization problems, and Newton’s method is one of
them. Newton’s method uses the first-order matrix and second-order Hessian matrix to
approximate the objective function quadratic, and the result is faster than other convex
optimization algorithms.

In practice, it is difficult to directly solve the linear programming problem (3). Since
matrix A is very large and complex to calculate. To simplify the calculation, problem (3)
can be transformed into an L1 regularized least squares problem [16].

min
x

λ‖x‖1 +
1
2
‖y− Ax‖2

2, (4)

where λ is a regularization parameter.
Since ‖x‖1 is a nonsmooth convex function for x, the subgradient basic approach is

not effective in solving the problem (4). The L1 minimization problem (3) can be solved by
solving a suitable smooth form of problem (4).

According to the literature [17], using the Nesterov smoothing technique, ‖x‖1 is
smoothed into the following smooth function:

f (x) =
n

∑
i=1

H(x(i)),

where:

H(u) =

{
u2

2τ , |u| ≤ τ;
|u| − τ

2 , |u| > τ ,

H(u) is the Huber penalty function, τ is a smooth parameter, see literature [18] for relevant
research.

The smooth function f (x) is convex, the gradient ∇f (x) is Lipchitz continuous, and its
components are:

∇ f (x(i)) =

{
x(i)

τ , |x(i)| ≤ τ
sign(x(i)), |x(i)| > τ

(i = 1, 2, 3, . . . . . ., n),

which is:

sign(v) =


1, x > 0;
0, x = 0;
−1, x < 0.

For ease of calculation, let F(x) = λ‖x‖1 +
1
2‖y− Ax‖2

2. Convert the L1 regularized
least squares problem (4) into an unconstrained smooth convex programming problem:

minF(x) = min
x

λ‖x‖1 +
1
2
‖y− Ax‖2

2, (5)

where F(x) is differentiable when Newton’s method is adopted, the search direction of F(x)
is:

dk = −
[
∇2F(x)

]−1
∇F(x). (6)

The gradient of F(x) is:

∇F(x) = λ∇ f (x) + AT(Ax− y).
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∇F(x) is Lipchitz continuous, for the convenience of record, let:

sk = xk+1 − xk,

gk = ∇F(xk),

uk = ∇F(xk+1)−∇F(xk) = gk+1 − gk.

xk is the iteration point of step k, xk+1 is the iteration point of step k + 1, sk is the
iteration difference of adjacent iteration points, gk is the gradient of F(x), uk is the gradient
difference of F(x).

Then, the search direction of Newton’s method can be simplified as follows:

dk = −
[
∇2F(xk)

]−1
gk.

When solving the problem (5), the iteration formula of Newton’s method is:

xk+1 = xk + dk.

When the Newton method is used to solve the sparse signal reconstruction problem in
wireless sensor networks, its advantage is that it has a second-order convergence rate and
that the reconstruction rate is higher than that of other convex optimization algorithms. The
disadvantage of Newton’s method is that it needs the inverse of the second-order Hessian
matrix and a large amount of computation, which will reduce the reconstruction rate to a
certain extent. In addition, it cannot guarantee that the search direction is the descending
direction of the objective function F(x) at x when ∇2F(xk) is not positive definite.

Based on the existing problems of the Newton method, this paper proposes the L-BFGS
quasi-Newton method to solve the problem of sparse signal reconstruction in wireless
sensor networks. In Section 5, it is proven whether the L-BFGS quasi-Newton method can
solve the sparse reconstruction problem of wireless sensor networks.

3. Principles

The L-BFGS quasi-Newton method is an improvement of the BFGS quasi-Newton
method. The L-BFGS quasi-newton method uses the information of the objective function
value and the first derivative to construct a suitable Hk to approximate the inverse of the
Hessian matrix without directly calculating and storing the matrix Hk. The complexity
of the L-BFGS algorithm is lower than that of the BFGS algorithm, and the convergence
speed of the Newton method is maintained. The constructed Hk is positive definite, which
ensures that the search direction is the descending direction of the target function F(x) at x.

Before starting the L-BFGS algorithm, we first recall the famous BFGS method. An
important problem in the BFGS quasi-Newton method is constructing a suitable matrix
Bk, which makes Bk is an approximate matrix of the Hessian matrix. Bk needs to meet the
following conditions:

(1) For all k, Bk is symmetric and positive definite, ensuring that the direction generated
by the algorithm is the descending direction of the objective function F(x) at xk;

(2) The updating rule of a matrix Bk is relatively simple.
In this paper, the search direction dk is obtained by solving the following linear

equation:
Bkdk = −gk.

The updating rule of the matrix Bk is:

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ukuT

k
uT

k sk
. (7)
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When a suitable Bk has been constructed, Hk satisfies the condition Bk+1 = H−1
k+1. The

Sherman-Morrison Woodbury [19] formula is used twice to obtain the updated formula of
the matrix Hk is:

Hk+1 = (I −
skuT

k
uT

k sk
)Hk(I −

uksT
k

uT
k sk

) +
sksT

k
uT

k sk
, (8)

where Hk is the approximation of the inverse of the Hessian matrix and I is the identity
matrix of order n, Hk should satisfy the following conditions:

(1) Hk satisfies the Quasi-Newton equation:

Bk+1sk = yk or Hk+1yk = sk;

(2) Hk is a positive definite symmetric matrix;
(3) The update from Hk to Hk+1 is a low-rank update.

The specific process of the BFGS algorithm is shown in the literature [13]. It is known
that the curvature condition uT

k sk > 0 can guarantee the positive definiteness of Hk+1 when
Hk is positive definite. From Formula (8), an efficient recursive procedure is derived to
compute the matrix-vector product Hk. For completeness, we describe the L-BFGS recursive
procedure for Hk in Algorithm 1.

Algorithm 1: L-BFGS two-loop recursion
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proving the reconstruction rate. The specific step of the L-BFGS algorithm is Algorithm 2. 

The two-loop recursive scheme can find the descent direction only through a simple
calculation. Hence, it is cheap to generate the search direction by using Algorithm 1.

4. Algorithm

In the L-BFGS method, Hk no longer needs to be calculated and stored directly. Instead,
the m latest vectors (sk,uk) saved in the memory are used to update the Hk, which only
needs to store matrices of the size m × n, saving a lot of computation cost and improving
the reconstruction rate. The specific step of the L-BFGS algorithm is Algorithm 2.

In the L-BFGS algorithm, the Wolfe line search is used to obtain the step size αk. Wolfe
line search belongs to a kind of inexact linear search. When using Wolfe line search to find
the step size αk, αk is required to satisfy the following:

f (xk + αkdk)− f (xk) ≤ ρ1αkgT
k dk. (9)

To make (9), flexible, we employ the non-monotone reduction condition on the:

g(xk + αkdk)
Tdk ≥ ρ2gT

k dk, (10)

the parameterρ1 and ρ2 satisfies the conditions (0 < ρ1 < ρ2 < 1).
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Algorithm 2: Limit memory BFGS Algorithm(L-BFGS)

1.Given: ε > 0, k = 0, σ1 ∈ (0, 1
2 ), ρ1 ∈ (0, 1), t ∈ (0, 1);

2. Initialization : x0 ∈ Rn; H0 = I.
3. while ‖gk‖ > ε do
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Finally, compared with the BFGS algorithm, the L-BFGS algorithm does not need
to calculate and store Hk directly; it only needs to store matrices of the size m × d and
calculate Hk by matrices of storage. The high reconstruction rate is improved by discarding
some vectors and sacrificing a little reconstruction accuracy. Therefore, compared with
the BFGS quasi-Newton method, the L-BFGS quasi-Newton method greatly reduces the
computational complexity and makes the reconstruction rate of a sparse signal faster.

5. Verify the Feasibility of the L-BFGS Algorithm

According to Section 2, the sparse signal reconstruction problem of wireless sensor
networks can be transformed into the L1 norm minimization problem. When the solution
is the optimal solution to the L1 norm minimization problem, the sparse signal can be
accurately reconstructed. In other words, when algorithm 2 meets global convergence, it is
feasible.

First, we give some useful inequalities in the following lemma.

Lemma 1. Let Bk be symmetric and positive definite, and Bk+1 is determined by the L-BFGS
correction Equation (7), then the necessary and sufficient condition for Bk+1 symmetric and positive
definite is uT

k sk > 0.

Lemma 1 shows that, if the initial matrix B0 is symmetric and positive definite and
maintains uT

k sk > 0 (∀k ≥ 0) during the iteration. Then, the matrix sequence { Bk+1 }
generated by the L-BFGS correction formula is symmetric and positive definite, so that the
equation Bkdk = −gk has a unique solution dk. It is easy to deduce that

dT
k Bkdk = −gT

k dk.

Since dT
k Bkdk > 0, so gT

k dk < 0. dk is the descending direction of the target function F(x) at
xk.

Lemma 2. If the Wolfe search criterion is adopted in the L-BFGS corrected quasi-Newton algorithm,
there is uT

k sk > 0.

Proof. Since uT
k sk = (gk+1 − gk)

Tαkdk = αk(gT
k+1dk − gT

k dk), according to step 5 of algo-
rithm 2, we have

gT
k+1dk ≥ ρ2gT

k dk,

it is easy to deduce that
uT

k sk ≥ αk(ρ2 − 1)gT
k dk.
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Since ρ2 < 1 and gT
k dk < 0, so uT

k sk > 0. Bk+1 is positively definite. The search direction
generated by the algorithm is guaranteed to be the descending direction of the objective
function F(x) at xk, making the algorithm work normally.�

Lemma 3. If the smooth function of the L1 norm ‖x‖1 obtained by the smoothing technique is:

f (x) =
n

∑
i=1

H(x(i)),

where:

H(x(i)) =

{
x2(i)

2τ , |x(i)| ≤ τ,
|x(i)| − τ

2 , |x(i)| > τ,

then it can be proven that f (x) ≤ ‖x‖1.

Proof. when |x(i)| ≤ τ, f (x) =
n
∑

i=1

x2(i)
2τ = 1

2τ

n
∑

i=1
x2(i) ≤ 1

2τ τ
n
∑

i=1
|x(i)| = 1

2‖x‖1 ≤ ‖x‖1,

when |x(i)| > τ, f (x) =
n
∑

i=1
(|x(i)| − τ

2 ) = ‖x‖1− nτ
2 ≤ ‖x‖1, we have that: f (x) ≤ ‖x‖1.�

From Lemma 3 and the mechanism of Algorithm 2, we immediately obtain the follow-
ing theorem.

Theorem 1. Let {xk} denote the sequence generated by L-BFGS quasi-Newton method iteration.
When the smoothing parameter of ‖x‖1 satisfies τk→0, then {xk} is a bounded sequence. Let x*
denote any limit point of {xk}, then x* is the optimal solution to the L1 norm minimization problem.

Prove the smooth parameter τk for the step k, make x∗k = arg min
x

f (x) denotes the

minimum point of the objective function Fk(x) at step k, and z denote any vector satisfying
Az = y.

Because x∗k = arg min
x

Fk(x), so Fk(x∗k ) ≤ Fk(z), also because Az = y, so:

Fk(z) = λ fk(z) +
1
2
‖Av− y‖2

2 = λ fk(z). (11)

And from Lemma 3, fk(z) ≤ ‖z‖1, then:

Fk(x∗k ) ≤ Fk(z) = λ fk(z) ≤ λ‖z‖1. (12)

Since Fk(x) = λ fk(x) + 1
2‖Ax− y‖2

2, ‖Ax− y‖2
2 ≥ 0, so:

Fk(x) ≥ λ fk(x). (13)

In combination with Equations (11) and (12), the smoothness of fk(x) is:

‖xk‖1 ≤ fτk (xk) +
nτk
2
≤ 1

λ
Fk(xk) +

nτk
2
≤ 1

λ
λ‖z‖1 +

nτk
2

= ‖z‖1 +
nτk
2

.

In addition, when the smoothing parameter τk→0, {xk} is a bounded sequence. On the
other hand, it can also be proved that the limit point x* of the sequence {xk} is feasible. The
limit point x* is the KKT point of the L1 norm minimization problem. Since ‖x‖1 is convex
and problem (3) is a convex programming problem, the KKT condition is sufficient for
optimality, so x* is the optimal solution to the ‖x‖1 norm minimization problem (3). It can
be seen that the sparse signal of the wireless sensor network can be accurately reconstructed
by the L-BFGS quasi-Newton method.
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Corollary 1. Let the L1 norm minimization problem have a unique optimal solution, and let {xk}
represent the sequence generated by an iteration of the L-BFGS method. When k→∞ and τk→0,
the xk converges to x*, where x* = arg min{‖x ‖1:Ax = y}.

6. L-BFGS Quasi-Newton Method Steps

The L-BFGS quasi-Newton method is developed from the BFGS quasi-Newton method.
The basic idea of the BFGS quasi-Newton method is to use the identity matrix I to gradually
approximate the H matrix, which avoids directly calculating the inverse of the Hessian
matrix. However, Hk should be stored each time. Hk is very large, and the reconstruction
rate of the algorithm is lost by direct calculation. According to Equation (8), each iteration
of Hk is obtained by iterating curvature information (sk,uk). Since Hk cannot be stored easily,
then store all the curvature information (sk,uk). This kind of storage saves memory space
and improves the speed of the algorithm.

When the number of iterations is very large, all (sk,uk) cannot be saved. The reconstruc-
tion rate can be improved by discarding some original (sk,uk). Assuming that the number
of storage vectors set is m. When the iteration is m + 1 times, (s1,u1) will be thrown away,
and when the iteration is m + 2 times, (s2,u2) will be thrown away. By parity of reasoning,
only the latest m-group (sk,uk) is retained. In this way, although the reconstruction accuracy
is lost, the memory is saved, the algorithm complexity is reduced, and the reconstruction
rate is improved. So the L-BFGS algorithm can be understood as another optimization of
the BFGS algorithm.

When the L-BFGS quasi-Newton method is used to solve the sparse signal reconstruc-
tion problem in wireless sensor networks, the specific steps are as follows:

Step 1: First initialize the variable, select the initial point x0, and define the operation
error ε. The general value of ε is between 0 and 1, and the initial value of the H matrix is
the identity matrix I of order n;

Step 2: Let k = 1 and calculate the gradient gk at this time;
Step 3: Calculate gk+1. If the norm of gk+1 satisfies the operating error defined, namely

‖gk+1‖ ≤ ε, it indicates that the cut-off condition is met and the algorithm is terminated.
The iteration point xk+1 is the optimal solution. If the cut-off conditions are not met, it is
necessary to go to step 4 and continue to solve the optimal solution;

Step 4: Calculate the search direction dk and the step factor αk, and update xk+1; to
ensure that the search direction is correct. There are many methods to calculate the step
factor αk. Here, the inexact Wolfe line search is used to solve the step factor αk. The step
size can be guaranteed to be larger than 0. In the correct search direction, the xk+1 is closer
and closer to the optimal solution;

Step 5: If k ≥ m, keep the latest curvature information (sk,uk), and delete (sk-m,uk-m).
The L-BFGS quasi-Newton method will retain m bits of data. When it exceeds m bits, it
will delete the curvature information before m bits to improve the calculation speed. This is
also the difference between the BFGS quasi-Newton method;

Step 6: Let k = k + 1; transfer to step 3. Start iterating until the optimal solution is
obtained and the algorithm stops.

Special remarks: In step 1, for the initial value x0, the initial value x0 of iteration should
be selected near the root to ensure the convergence of the iterative process. The most
common way is to choose the initial value by using Newton’s convergence theorem. In
step 4, the correctness of the search direction dk should be ensured. If the search direction is
not the descending direction at x, the iterative point will deviate more and more from the
optimal point, and the sparse signal cannot be accurately reconstructed. There are many
ways to calculate the descending direction, dk. In this paper, a two-loop recursive algorithm
is adopted to find the search direction, which can ensure the accuracy of the search direction
and the two-loop recursive algorithm is simple. In step 5, if k ≥ m is satisfied, calculate the
new curvature information and discard the curvature information before m-bit

(sk-m,uk-m). By giving up small reconstruction accuracy in exchange for a faster recon-
struction rate. If k ≥ m is not satisfied, directly calculate (sk,uk). In step 6, let k = k + 1 and
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start a new iteration; no initialization is required. The result of the previous iteration is its
initial value, and the iteration continues until the optimal solution is obtained.

The flow chart of the L-BFGS quasi-Newton method is shown in Figure 1 as follows:
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7. Experimental Simulation

To verify the effectiveness of the L-BFGS quasi-Newton method in wireless sensor
networks for signal reconstruction, simulation experiments are carried out. The Gaussian
matrix can satisfy the constraint isometry with high probability. In the experiment, the
measurement matrix Φ∈RM×N with Gaussian distribution is used as the observation matrix,
and the Gaussian sparse signal x ∈ RN with variable sparsity is used as the original signal.
The value range of sparsity K is [1,70].

The simulation experiment in this paper takes the reconstruction accuracy and recon-
struction time of each algorithm for the original signal as the main evaluation criteria, and
the unit of time is a second (s). In the simulation experiment, each experiment is carried out
1000 times, and the average reconstruction accuracy and average reconstruction time of the
1000 experiments are taken as the final reconstruction accuracy and reconstruction time.

This paper mainly compares the reconstruction accuracy and reconstruction time of the
BP algorithm, the NSHTP [20] algorithm, the BFGS algorithm, and the L-BFGS algorithm
under conditions of sparsity. When the data changes, the difference in reconstruction
accuracy is small. This paper mainly analyzes the reconstruction accuracy of two sets of
data: n = 512, m = 256, and n = 256, m = 128. The reconstruction time is greatly affected by
the data size. To better compare the reconstruction time of each algorithm, four groups of
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data are selected to compare and test: n = 128, m = 64; n = 256, m = 128; n = 512, m = 256;
n = 1024, m = 512.

First, there are two simulation diagrams about the reconstruction accuracy. In Figure 2,
n = 256 and m = 128. As can be seen from the figure, there is little difference in reconstruction
accuracy between the four algorithms. The reconstruction rate of the four algorithms is
high. The BP algorithm has the worst reconstruction accuracy. The reconstruction accuracy
of the BP algorithm starts to decrease when K = 35. The BP algorithm cannot reconstruct
the signal when K = 62. The BFGS algorithm has the best reconstruction accuracy, and the
difference between the proposed algorithm and the BFGS algorithm is very small. Both
algorithms begin to reduce the reconstruction accuracy when K = 40 and cannot reconstruct
the signal when K = 72. In general, the reconstruction accuracy of the BFGS algorithm is
slightly higher than that of the proposed algorithm, but the reconstruction accuracy of the
proposed algorithm is higher than that of the NSHTP algorithm and the BP algorithm.
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Figure 2. Reconstruction precision of each algorithm under different sparsity (n = 256, m = 128).

In Figure 3, n = 512 and m = 256. At this time, the reconstruction accuracy is slightly
different for n = 256 and m = 128; however, the reconstruction accuracy of all algorithms
has deteriorated. It shows that the larger n and m, the worse the reconstruction accuracy.
The difference between the proposed algorithm and the BFGS algorithm is still very small
and within an acceptable range.

Secondly, there are four simulation diagrams about the reconstruction rate. In Figure 4,
n = 128 and m = 64. It can be seen from Figure 4 that the reconstruction time of the BP
algorithm is higher than the other three algorithms, which require the longest reconstruction
time and the lowest reconstruction rate. The reconstruction time of the NSHTP algorithm
and BFGS algorithm is between the BP algorithm and the proposed algorithm, and the
proposed algorithm requires the shortest reconstruction time and the highest reconstruction
rate. The reconstruction time of the BFGS algorithm is twice that of the proposed algorithm,
and the reconstruction rate of the proposed algorithm is higher than that of the BFGS
algorithm. As can be seen from the figure, when the data is short, the reconstruction rate of
all algorithms is high, and the sparsity has little influence on the reconstruction time. There
is no obvious mutation point when the sparsity increases in the reconstruction time.
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Figure 3. Reconstruction precision of each algorithm under different sparsity (n = 512, m = 256).
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Figure 4. Reconstruction time of each algorithm under different sparsity (n = 128, m = 64).

In Figure 5, n = 256 and m = 128. The reconstruction time by the four algorithms is
significantly higher than that when n = 128 and m = 64. It indicates that with the increase
in data length, the time for signal reconstruction is longer and the reconstruction rate is
lower. As can be seen from Figure 5, the proposed algorithm has the shortest reconstruction
time and the fastest reconstruction rate. The reconstruction time of the BP algorithm
is the longest, and the reconstruction rate is the worst. The reconstruction times of the
NSHTP algorithm and the BFGS algorithm are between the BP algorithm and the proposed
algorithm. In general, when the signal length increases, the reconstruction rate of all
algorithms will be affected, but the reconstruction rate of the proposed algorithm is the
fastest, which is significantly higher than the BFGS algorithm.
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Figure 5. Reconstruction time of each algorithm under different sparsity (n = 256, m = 128).

In Figure 6, n = 512 and m = 256. All algorithms require longer reconstruction times,
which get longer as the length of the data increases. The proposed algorithm still has the
shortest reconstruction time and the fastest reconstruction rate. The BP algorithm still
has the worst reconstruction rate. When K = 40, the BP algorithm has a small mutation
point, and when K = 45, the NSHTP algorithm also has a small mutation point. Both the
proposed algorithm and the BFGS algorithm have no obvious mutation point. It indicates
that when the data length increases, the sparsity has little influence on the BP algorithm
and the NSHTP algorithm but no obvious influence on the proposed algorithm and the
BFGS algorithm. In general, when n = 512 and m = 256, the proposed algorithm has the
shortest reconstruction time and the fastest reconstruction rate among the four algorithms.
It is less affected by sparsity, and the reconstruction rate is significantly higher than the
BFGS algorithm.
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Figure 6. Reconstruction time of each algorithm under different sparsity (n = 512, m = 256).

In Figure 7, n = 1024 and m = 512.The exact reconstruction time of all algorithms
becomes longer, but the reconstruction time of the proposed algorithm is the shortest and
the reconstruction rate is the fastest. The BP algorithm has the longest reconstruction time
and the worst reconstruction rate. As shown in Figure 7, with the increase in sparsity, the
BP algorithm has a mutation point when K = 30. When K = 35, the NSHTP algorithm



Electronics 2023, 12, 1267 13 of 15

has a mutation point, and the BFGS algorithm has a small mutation point. When K = 45,
small mutation points appear in the proposed algorithm. It indicates that when n = 1024
and m = 512, sparsity has an impact on all algorithms. The BP algorithm and the NSHTP
algorithm have a greater impact, and the proposed algorithm and the BFGS algorithm have
a smaller impact. In general, the reconstruction rate of the proposed algorithm is the fastest
and most stable, which is significantly better than the BFGS algorithm in the reconstruction
rate.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 15 
 

 

 
Figure 6. Reconstruction time of each algorithm under different sparsity (n = 512, m = 256). 

In Figure 7, n = 1024 and m = 512.The exact reconstruction time of all algorithms be-
comes longer, but the reconstruction time of the proposed algorithm is the shortest and 
the reconstruction rate is the fastest. The BP algorithm has the longest reconstruction time 
and the worst reconstruction rate. As shown in Figure 7, with the increase in sparsity, the 
BP algorithm has a mutation point when K = 30. When K = 35, the NSHTP algorithm has 
a mutation point, and the BFGS algorithm has a small mutation point. When K = 45, small 
mutation points appear in the proposed algorithm. It indicates that when n = 1024 and m 
= 512, sparsity has an impact on all algorithms. The BP algorithm and the NSHTP algo-
rithm have a greater impact, and the proposed algorithm and the BFGS algorithm have a 
smaller impact. In general, the reconstruction rate of the proposed algorithm is the fastest 
and most stable, which is significantly better than the BFGS algorithm in the reconstruc-
tion rate. 

 
Figure 7. Reconstruction time of each algorithm under different sparsity (n = 1024, m = 512). 

Finally, by comparing n = 128, m = 64; n = 256, m = 128; n = 512, m = 256; n = 1024, m 
= 512, the reconstruction time of four groups of data was simulated. It can be found that 
the larger the length of data, the longer the time for signal reconstruction, and the worse 

0 10 20 30 40 50 60
sparsity K

1

2

3

4

5

6

7

8

9

10

BP
NSHTP
BFGS
L-BFGS

0 10 20 30 40 50 60
sparsity K

0

5

10

15

20

25

30

35

40

45

50
BP
NSHTP
BFGS
L-BFGS

Figure 7. Reconstruction time of each algorithm under different sparsity (n = 1024, m = 512).

Finally, by comparing n = 128, m = 64; n = 256, m = 128; n = 512, m = 256; n = 1024,
m = 512, the reconstruction time of four groups of data was simulated. It can be found that
the larger the length of data, the longer the time for signal reconstruction, and the worse the
rate for signal reconstruction. When n = 512, m = 256, and K = 25, the signal reconstruction
time of the BP algorithm is 9.11 s, the NSHTP algorithm is 4.23 s, the BFGS algorithm is
5.17 s, and the proposed algorithm is 1.93 s. When n = 1024, m = 512, and K = 25, the signal
reconstruction time of the BP algorithm becomes 37.25 s, the NSHTP algorithm becomes
12.57 s, the BFGS algorithm becomes 15.93 s, and the proposed algorithm becomes 4.84 s.
It can be seen that when the data length and matrix size are doubled, the reconstruction
time of the BP algorithm is more than 4 times the growth of the data, the reconstruction
times of the NSHTP algorithm and BFGS algorithm have been tripled, and the proposed
algorithm becomes 2.5 times the growth of the data. It shows that when n and m grow,
the reconstruction rate of the proposed algorithm is the most stable and fastest. Through
the simulation of reconstruction accuracy and reconstruction rate, it can be seen that the
L-BFGS algorithm is slightly worse than the BFGS algorithm in reconstruction accuracy,
but the reconstruction rate is significantly higher than the BFGS algorithm. In general, the
L-BFGS algorithm is superior to the BFGS algorithm and is more suitable for sparse signal
reconstruction in wireless sensor networks.

8. Conclusions

Aiming at the problem of a low reconstruction rate when the Newton method is used
to reconstruct sparse signals in wireless sensor networks, this paper proposes to use the
L-BFGS quasi-Newton algorithm to improve the reconstruction rate. The L-BFGS does not
need to store and calculate Hk directly; only two matrices of size m × n need to be stored.
This algorithm, by discarding some vectors and sacrificing some reconstruction accuracy,
greatly reduces the reconstruction time and improves the reconstruction rate compared
with the BFGS algorithm. At the same time, the simulation experiment is carried out to
compare the reconstruction accuracy and reconstruction time of the proposed algorithms,
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the BFGS algorithm, the NSHTP algorithm, and the BP algorithm. Experiments show
that the reconstruction accuracy of the proposed algorithm is higher than that of the BP
algorithm and the NSHTP algorithm but slightly lower than that of the BFGS algorithm.
However, the reconstruction rate of the proposed algorithm is the fastest and most stable
among the four algorithms, which is two times higher than the BFGS algorithm. Therefore,
the proposed algorithm has a high reconstruction rate and certain advantages in terms of
reconstruction accuracy. It is a better reconstruction algorithm than the BFGS algorithm.
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