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Abstract: Hazardous material vehicles are a non-negligible mobile source of danger in transport and
pose a significant safety risk. At present, the current detection technology is well developed, but it also
faces a series of challenges such as a significant amount of computational effort and unsatisfactory
accuracy. To address these issues, this paper proposes a method based on YOLOv5 to improve the
detection accuracy of hazardous material vehicles. The method introduces an attention module in the
YOLOv5 backbone network as well as the neck network to achieve the purpose of extracting better
features by assigning different weights to different parts of the feature map to suppress non-critical
information. In order to enhance the fusion capability of the model under different sized feature maps,
the SPPF (Spatial Pyramid Pooling-Fast) layer in the network is replaced by the SPPCSPC (Spatial
Pyramid Pooling Cross Stage Partial Conv) layer. In addition, the bounding box loss function was
replaced with the SIoU loss function in order to effectively speed up the bounding box regression and
enhance the localization accuracy of the model. Experiments on the dataset show that the improved
model has effectively improved the detection accuracy of hazardous chemical vehicles compared
with the original model. Our model is of great significance for achieving traffic accident monitoring
and effective emergency rescue.

Keywords: hazardous material vehicles; object detection; YOLOv5; attention mechanism

1. Introduction

Chemical raw materials play a pivotal role in people’s lives, industrial production and
the development of science and technology. With the continuous improvement of China’s
industrialization, the demand for chemical raw materials from all walks of life is increasing
day by day. However, some chemical materials are explosive, corrosive, flammable, toxic
and other characteristics, and once leakage occurs, it may cause a certain degree of harm
to the human body and the surrounding environment [1]. Therefore, it is vital to ensure
the safety of hazardous chemicals. According to statistics from the China Federation of
Logistics and Purchasing (CFLP), more than 1 billion metric tons of hazardous chemicals
are transported by road in China every year, accounting for more than 60% of the total
transport of hazardous chemicals, and this proportion is still rising [2]. According to data
from the State Administration of Safety Supervision and the fire service, 77% of accidents
occur during transportation [3]. The transport of hazardous chemicals has become one
of the highest risks in the safety of hazardous chemicals. Therefore, in order to reduce
casualties and property damage, it is imperative to supervise hazardous chemical vehicles
in transit.

In recent years, deep learning and machine vision have developed rapidly, such as
object detection and image segmentation [4]. This provides the technical basis for the
identification of hazardous material vehicles. The use of vehicle detection technology
to identify important roads in the detection of dangerous chemical vehicles, from road
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management departments for the vehicle to real-time dynamic monitoring, can avoid or
reduce the occurrence of traffic accidents, or in the event of dangerous chemical transport
accidents, can provide timely and effective emergency rescue, as best as possible avoid
secondary accidents, reduce casualties and limit property damage [5].

At present, vehicle recognition technology can be divided into two categories accord-
ing to the required hardware and software basis: one is the recognition method using
physical parameters and the other is the recognition method using image processing tech-
nology [6]. Vehicle recognition based on physical parameters has high requirements on
hardware, and although the recognition accuracy of this method is high, its cost is great and
the maintenance work on the hardware during its use is also difficult. Vehicle recognition
based on image processing technology is the extraction of feature information (color, tex-
ture, size, shape, etc.) from vehicle images using certain methods where possible. Vehicle
image recognition is a process of multiple operations on the vehicle image, by using a
specific algorithm to convert the vehicle image into a feature vector representation, and the
obtained feature information is differentiated by a classification algorithm [7].

In recent years, vehicle detection has been the focus of many researchers and there has
been a proliferation of research on vehicle detection. Bochkovskiy et al. proposed a new
YOLO architecture. Firstly, the CSPDarknet (Cross Stage Partial Darknet) is used as the
backbone network and the SPP (Spatial Pyramid Pooling) is used for feature fusion for the
first time. Then, the PAN (path aggregation network) structure is used as the neck of the
model to do a further fusion of feature maps. Glenn Jocher proposes a YOLOv5 network
model based on it, using adaptive anchor frames, automatic learning based on the training
set as well as LeakyReLU and Sigmoid as activation functions. The SPPF (Spatial Pyramid
Pooling Fast) layer is proposed to replace the SPP layer first. The algorithm can achieve
fast and accurate detection [8]. Wang et al. proposed a new object detection algorithm. In
this algorithm, the SPPCSPC (Spatial Pyramid Pooling Cross Stage Partial Conv) module
is proposed for the first time and the original SPPF module is replaced by this module
to achieve better feature fusion [9]. Woo et al. proposed a convolutional block attention
mechanism, and the classical network model such as ResNet using this module can make
the network more focused on the object and exhibits remarkable effects in the field of
object detection [10]. Gevorgyan et al. proposed a new bounding box regression algorithm.
This algorithm considers the direction of mismatch between the ground truth box and the
prediction box and can effectively improve the accuracy of model inference [11].

Djenouri et al. proposed an improved regional convolutional neural network, which
first uses a SIFT extractor to remove noise (set of outlier images) and then builds an
improved regional convolutional neural network to detect vehicles at different scales,
achieving improvements in detection accuracy and proposing a new hyperparametric
optimization model based on evolutionary computation that can be used to optimize the
deep learning framework of parameters [12]. Wang et al. proposed a new method for
vehicle detection based on multi-sensor fusion. First, multiple sensors are combined to
extract the target vehicle. Second, the potential area of the vehicle in the feature map is
estimated according to the distribution of the target vehicle detected by the sensors, and
predicting the region of interest (ROI) of the vehicle according to pixel regression. Finally,
four new haar-like feature templates are developed to enhance the detection performance
of vehicles [13]. This method can remarkably enhance vehicle detection performance in
severe weather.

In the process of vehicle detection, current detection algorithms face challenges such as
large calculations and unsatisfactory detection accuracy. Dong et al. proposed an improved
lightweight YOLOv5 method for vehicle detection. The method introduces the C3Ghost
and Ghost modules in the YOLOv5 neck network and the convolutional attention module
in the backbone network to improve the detection accuracy of the algorithm, and then
further considers CIoU loss as the bounding box regression loss function to speed up the
bounding box regression and improve the localization accuracy of the algorithm [14]. The
effectiveness and superiority of the method are demonstrated by example analysis and
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comparison. Li et al. propose a hierarchical joint CNN model. The method uses a Faster
R-CNN to extract multiple feature maps for the vehicle image; then, a CNN is used to
train multiple feature maps, and finally, multiple classifiers are used to achieve the fine
recognition of vehicles [15]. Mi et al. proposed a fusion algorithm of aggregated region
classes and two-stage SVM classifiers for the detection of container trucks in ports. This
method can display better truck detection performance than traditional methods [16].

In order to rapidly detect moving vehicles in road transportation, Chen et al. propose
an SSD-based vehicle detection algorithm. The method replaces the backbone network of
SSD (single-shot multibox detector) with the MobileNet-v2 network to achieve a lightweight
model, and introduces an attention mechanism in the model to enhance the model’s ability
to extract vehicle features. Finally, a bottom-up feature fusion architecture is built based
on a deconvolution module to enhance detection accuracy [17]. Kang et al. proposed a
remote sensing satellite video motion vehicle fast detection method with an automatic
region of interest constraint. Firstly, the region of interest of the moving vehicle is rapidly
and automatically acquired; then, the fast detection of moving vehicles in the region of
interest is achieved based on an improved Gaussian background subtraction under the
region of interest constraint [18]. Zhang et al. proposed a detection algorithm based
on sample adaptive segmentation. The method adopts different update strategies for
different detection regions to achieve an adaptive update of background samples, and
randomly penetrates the diffuse background points into the foreground region with a
certain probability to update the background samples in its neighborhood, achieving
the fast detection of vehicles in motion [19]. Alsanad et al. proposed a real-time truck
monitoring algorithm based on YOLOv2. Aiming at the shortage of traditional methods
that only pay attention to the position of the class target to predict its probability in the class,
this method considers the whole image area for strong target detection, which improves the
effectiveness of truck detection [20]. Zhang et al. proposed a non-maximum suppression
method based on position priority to achieve the detection of mud trucks. This method
designs a new bounding box matching algorithm to solve the problem of object loss when
the IoU of two proposals is greater than a threshold and redefines the loss function to fit
the improved method. Experiments prove the effectiveness of this method [21].

The main source of image data for vehicle detection is traffic surveillance images [22].
In recent years, vehicle detection algorithms have flourished, especially the YOLO family
represented by the use of deep learning methods. However, these methods require man-
ually labeling a large amount of data to train the network model [23]. Currently, most of
the datasets are labeled with vehicles captured during the daytime, while vehicle images
at night are scarce [24]. Li et al. proposed a domain adaptive (DA) method based on a
Fast R-CNN. The method can increase the number of labeled nighttime vehicle images
in the dataset by using the existing labeled daytime vehicle images to complement the
unlabeled nighttime vehicle images, thus improving the detection capability of the model
for nighttime vehicles [25]. Chen et al. propose an information fusion-based algorithm for
detecting vehicles driving at night, using millimeter wave radar and vision sensors to detect
vehicles ahead at night in order to provide comprehensive and reliable information for
night-time driving safety [26]. Hua et al. proposed an improved YOLOv3 model algorithm
based on dark channel defogging to address the problem of poor detection accuracy due
to the serious influence of fog in the process of vehicle detection in foggy weather. First,
the image is defogged by the dark channel algorithm to improve the clarity of the image,
and then an attention mechanism is introduced to further the feature extraction of the
feature map used for detection, which improves the algorithm’s ability to mine feature
information [27].

In this paper, an algorithm based on an improved YOLOv5 model is proposed for the
detection of hazardous chemical vehicles. The main contributions include (1) integrating
the attention module in the feature extraction network to enhance the quality of feature
extraction for hazardous chemical vehicles by paying attention to spatial semantic infor-
mation and channel semantic information; (2) replacing the spatial pyramid pooling layer
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(SPPF) in the backbone network by the Spatial Pyramid Pooling Cross Stage Partial Conv
(SPPCSPC), which can enhance the fusion ability of the model under different size feature
maps; (3) replacing the CIoU loss in the loss function by SIoU loss, which can effectively
accelerate the speed of bounding box regression and increase the localization accuracy of
the algorithm.

2. Methodology

The YOLOv5 algorithm makes predictions based on the whole image, giving all the
detection results at once [28]. YOLOv5 has four different sizes of network models, namely
YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x. YOLOv5x has the largest model and thus
has the highest detection accuracy. YOLOv5s has the smallest model, but it has the fastest
detection speed. In this paper, YOLOv5s is chosen as the baseline model and improved
to maximize detection accuracy while keeping the detection speed largely unchanged.
This section details the architecture of the improved hazardous material vehicles detection
model.

Specifically, the input images were first processed using Mosaic data enhancement,
image scaling and adaptive initial anchor box calculation, and then the enhanced images
were fed into the improved YOLOv5 network model for hazardous chemical vehicle
detection. To further improve the semantic quality of the output of the feature from the
feature extraction network, we replaced the original SPPF layer by the SPPCSPC in the
backbone, and added attention modules to the backbone and neck of the network to focus
on spatial features and channel features. The CIoU in the original bounding box loss is
replaced with SIoU, effectively improving the inference accuracy.

2.1. Data Augmentation

To obtain a well-performing neural network model, a large amount of data is often re-
quired, but the task of acquiring new data is often time-consuming and labor-intensive [29].
The use of data augmentation techniques can make full use of computers to generate
data and increase the amount of data, for example by using scaling, panning, rotating,
color transformations, etc. It is beneficial for data augmentation to increase the number
of training samples and the ability to increase the generalization power of the model by
adding suitable noisy data [30].

In order to obtain excellent detection results, data augmentation is also used in
YOLOv5. YOLOv5 uses Mosaic data augmentation to increase the amount of data for
small targets in the dataset and enrich the number of samples by randomly flipping, scaling
and cropping four images into a new image. The Mosaic data enhancement effect is shown
in Figure 1.

Figure 1. Illustration of the architecture of the Mosaic data enhancement.

2.2. Feature Extraction Backbone Network

YOLOv5 uses the CSP-Darknet53 network as the backbone of the model, which is
mainly composed of modules such as Focus, Convolution block and C3 module. Specifically,
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the Focus module divides the feature data into four parts, each corresponding to two down
samples, spliced in the channel dimension and then convolved to obtain a binary down-
sampled feature map with no information loss, the structure of which is shown in Figure 2.
The convolution module is the basic convolution unit of YOLOv5, which performs two-
dimensional convolution, batch normalization and activation operations on the feature map,
in turn. The C3 module consists of several modules called bottleneck residual connections,
in which the feature map passes through two convolution layers and then performs an
additive operation with the original feature map. This structure accomplishes the migration
of residual features without increasing the channel depth. The structure of the C3 module
is shown in Figure 3.

Figure 2. Illustration of the architecture of the Focus module.
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Figure 3. Illustration of the architecture of the C3 module.

The attention mechanism allows the model to better focus on vehicle information
features and suppress non-vehicle information features, enabling the model to extract
more accurate semantic information about the vehicle [31]. We add an attention module
to the YOLOv5 backbone network to recalibrate the feature maps in order to enhance the
feature representation capabilities. The attention module generates attentional feature map
information in both channel and spatial dimensions, and then the feature map information
is multiplied with the previous feature map for adaptive feature correction to produce the
defined feature map. The architecture of the attention module is shown in Figure 4.

Channel

Attention

Module

Input Feature Spatial

Attention

Module

Refined Feature

Figure 4. Illustration of the architecture of the attention module.

Channel attention mechanism focuses on the feature relationships between channels
in the feature map to generate the channel attention, and its module structure is shown
in Figure 5. Channel attention performs global maximum pooling and mean maximum
pooling in the channel dimension of the feature map to aggregate the feature information in
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the spatial dimension, respectively. Finally, a channel attention feature map of Mc ∈ RC×1×1

is obtained. This feature map is used as the input of the spatial attention module. The
specific formula is formulated as follows:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max)))
(1)

Input feature F

MaxPool

AvgPool

Channel Attention Module

Shared MLP

Channel Attention
Mc

Figure 5. Illustration of the architecture of the channel attention module.

After paying attention to the channel attention, the feature map is input into the
spatial attention module, and its model structure is shown in Figure 6. First, the global
max-pooling and global avg-pooling based on the channel dimension are performed, and
then both tensors are spliced in the channel dimension. The spliced tensor depth is reduced
to 1 in the channel dimension by a convolution operation. Spatial attention features are
generated after sigmoid activation, and finally the original feature map is fused with the
spatial attention features to obtain the feature map focusing on spatial information. The
specific formula is formulated as follows:

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)]))

= σ( f 7×7(Fs
avg; Fs

max)
(2)

Spatial Attention Module

Channel-refined
feature F 

[MaxPool, AvgPool]

Conv
layer

Spatial Attention
Ms

Figure 6. Illustration of the architecture of the spatial attention module.

2.3. Neck

The neck of the YOLOv5 model consists mainly of Conv modules, C3 modules and
SPP (Spatial Pyramidal Pooling), and uses a PANet (Path Aggregation Network) as the
neck for feature aggregation. Specifically, the SPP (Spatial Pyramidal Pooling) performs
max-pooling of different convolutional kernel sizes and integrates features. It can convert
arbitrary-sized feature maps into fixed-sized features and effectively solve the problem of
the repeated extraction of related features by convolutional neural networks. The structure
of the SPPF (Feature Pyramid Pooling Fast) is shown in Figure 7a.

To further improve the capability of network feature fusion, we replaced the SPPF
of YOLOv5 by the SPPCSPC module to enhance the detection capability of the model for
different scales. The structure of SPPCSPC is shown in Figure 7b below.

In neural networks, the deeper the networks, the better the extraction of object feature
information and the better the detection of the object by the model. However, the network
model also makes the location information of the object blurred, and causes the loss of
feature information for small objects as it continues to deepen. YOLOv5 adopts a PANet
structure for the multi-scale fusion of features, which enables the bottom feature map to
contain more semantic information of vehicles through top-down upsampling [32]. The
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PAN structure achieves bottom-up subsampling through convolution. The PAN structure
achieves bottom-up downsampling by convolution, so that the top-level feature map
contains stronger information about the location of the vehicles. The specific process is
shown in Figure 8. Through the feature aggregation, the feature maps of different sizes
contain richer semantic information and location information, thus ensuring the accuracy
of the detection of different sizes of hazardous materials vehicles.

ConvBNSiLU

K5，s1，p2

ConvBNSiLU

K5，s1，p2

ConvBNSiLU

K5，s1，p2
ConvBNSiLU
K1,s1,p0,c512

Concat

ConvBNSiLU
K1,s1,p0,c512

SPPF

SPPCSPC

ConvBN
SiLU

Maxpool

Maxpool

Maxpool

ConvBN
SiLU

ConvBN
SiLU

ConvBN
SiLU

Concat
ConvBN
SiLU

ConvBN
SiLU

Concat

(a) (b)

Figure 7. (a) Illustration of the architecture of the SPPF module. (b) Illustration of the architecture of
the SPPCSPC module.
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Pi+3

Ni+3
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FPN Backbone Botton-up

*
concatenation

Each building block

(c)

Figure 8. Illustration of Path aggregation network. (a) FPN Backbone. (b) Bottom-up path augmenta-
tion. (c) Each building block.

In order to enable the network to better learn the semantic information in the vehicle
images, focusing on important information and suppressing useless information, we also
introduced the attention mechanism into the neck structure of YOLOv5. The overall
network structure we proposed is shown in Figure 9.

Foucs

Conv

C3

Conv

Conv

Conv

Attention
Module

SPPCSPC

C3

C3

C3

Upsample

Concat

ConvConv

C3

Attention
Module
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Concat C3

Attention
Module

Concat

C3

Attention
Module

Conv

Concat

C3

Conv

Conv

Conv

Conv

Data
Augmentation

Input

80×80×(5+ncls)×3

40×40×(5+ncls)×3

20×20×(5+ncls)×3

Figure 9. Illustration of the architecture of the designed vehicle detection model.
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2.4. Loss Function

The loss function of YOLOv5 consists of three components: the confidence loss lobj,
the classes loss lcls and the position loss of the bounding box lbox. The network divides
the feature map into several cells, and each cell corresponds to a vector y = (tx, ty, tw, th,
po, c1, c2, c3, c4), where tx, ty is used to calculate the offset between the prediction box and
the corresponding anchor box, and tw, th are used to calculate the width and height of the
prediction box. po is the probability that the cell contains the object to be detected, and
c1, c2, c3, c4 are the prediction values of the four classes corresponding to the hazardous
material vehicles dataset. The loss function is calculated as follows:

Lv5(tp, tgt) =
K

∑
k=0

[αbalance
k αbox

S2

∑
i=0

B

∑
j=0

Πobj
kij LCIoU

+αobj

S2

∑
i=0

B

∑
j=0

Πobj
kij Lobj + αcls

S2

∑
i=0

B

∑
j=0

Πobj
kij Lcls]

(3)

The confidence loss lobj is formulated according to positive sample matching, including
the object confidence score po in the prediction box and the intersection over union of the
prediction box and the ground truth box. Both calculate the binary cross-entropy to obtain
the final object confidence loss. The confidence loss lobj is defined as follows:

lobj =
S2

∑
i=0

B

∑
j=0

Iobj
ij (Ĉilog(Ci) + (1− Ĉi)log(1− Ci))−

λnobj

S2

∑
i=0

B

∑
j=0

Inobj
ij (Ĉilog(Ci) + (1− Ĉi)log(1− Ci))

(4)

Classes loss is similar to confidence loss in that classes loss is calculated from the
classes score of the prediction box and the one-hot value of the ground truth box classes.
The classes loss lcls is defined as follows:

lcls =
S2

∑
i=0

lobj
ij ∑

c∈classes
(P̂i(c)log(Pi(c)) + (1− P̂i(c))log(1− Pi(c))) (5)

The CIoU loss is used in the position loss of the prediction box. That takes into account
three geometric factors of the bounding box regression function: overlap area, centroid
distance and aspect ratio. The position loss lbox is defined as follows:

lbox = lCIoU = 1− CIoU = 1− (IoU − d2
o

d2
c
− v2

1− IoU + v
),

v =
4

π2 (arctan
wgt

hgt − arctan
bw

hw
)2

(6)

where do is the centroid Euclidean distance between the bounding box and ground truth
box, dc is the diagonal distance between the bounding box, v is a parameter measuring the
consistency of the aspect ratio, wgt and hgt are the width and height of the ground truth box,
respectively, and wp and hp are the width and height of the prediction box, respectively.

Considering the possible directional mismatch between the prediction box and the
ground truth box, we introduce a new bounding box position loss, replacing the original
CIoU loss with the SIoU loss. This loss takes into account the vector angle between
regressions and redefines the penalty metric, effectively reducing the total degrees of
freedom of the loss. The SIoU loss consists of four costs: angle, distance, shape and IoU,
which is calculated as follows:
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The angle cost is defined as follows:

Λ = 1− 2 ∗ sin2(arcsin(x)− π

4
), x =

ch
σ

= sin(α),

σ =
√
(bgt

cx − bcx )
2 + (bgt

cy − bcy)
2,

ch = max(bgt
cy , bcy)−min(bgt

cy , bcy)

(7)

Distance cost has been redefined based on the definition of angle cost:

∆ = ∑
t=x,y

(1− e−γρt), ρx = (bgt
cx − bcx )

2, ρy = (
bgt

cy − bcy

ch
)2, γ = 2−Λ (8)

Shape cost:

Ω = ∑
t=w,h

(1− e−vt)θ , vw =

∣∣w− wgt
∣∣

max(w, wgt)
, vh =

∣∣h− hgt
∣∣

max(h, hgt)
(9)

Finally, the regression loss function for the position loss of bounding box is written
as follows:

lbox = 1− IoU +
∆ + Ω

2
(10)

3. Results and Discussions
3.1. Dataset

In order to evaluate the accuracy of the algorithm, 4363 vehicle image samples were
collected and the vehicles were classified into four categories, namely car, bus, truck and
hazardous material vehicles, which included 2200 samples of hazardous material vehicles.
The images were annotated using labelme, and then the label in json format was converted
into text format in YOLO to generate id, x, y, w and h. The training set, validation set and
test set are divided according to the ratio of 6:2:2. Figure 10a shows a sample image of
some of the hazardous chemical vehicles and Figure 10b illustrates the ground truths using
bounding boxes.

(a)

(b)

Figure 10. The hazardous material vehicle object detection dataset. (a) Hazardous material vehicle
images samples. (b) Ground-truth with bounding boxes.

3.2. Network Configuration

The model was trained using the stochastic gradient descent (SGD) algorithm to
update and optimize the weights of the network model. The specific parameters were set
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as follows: the images were pre-processed and input into the network with a standard
size of 640 × 640 × 3, a batch size of 16, a learning rate of 0.01, a momentum parameter of
0.937, a weight decay factor of 0.0005 and a total of 150 training rounds for the hazardous
material vehicles dataset.

3.3. Hazardous Material Vehicles Detection

We divided 20% of the dataset into test sets. To quantitatively assess the model’s
performance in detecting hazardous material vehicles, we used the following five evalua-
tion metrics as measures of hazardous material vehicles detection: Precision, Recall, F-score,
mAP@0.5 and mAP@0.5:0.95. The Precision is defined as the ratio of the number of target
vehicles correctly predicted to the number of vehicles predicted by the model as targets.
The specific formula is formulated as follows:

Precision =
TP

TP + FP
(11)

The Recall is defined as the ratio of the number of all target vehicles to the number of
target vehicles correctly predicted. The specific formula is formulated as follows:

Recall =
TP

TP + FN
(12)

where TP represents the number of target vehicles correctly predicted, FP represents the
number of non-target vehicles wrongly predicted. FN represents the target vehicles that
are not detected.

F-score provides an overall evaluation by comprehensively taking into consideration
the precision and the recall metrics. The specific formula is formulated as follows:

F-score = 2× precision× recall
precision + recall

(13)

The specific formulas of mAP@0.5 and mAP@0.5:0.95 are formulated as follows:

AP =
∫ 1

0
p(R)dR (14)

mAP =
∑N

i=1 APi

N
(15)

where mAP@0.5 denotes the mean AP of all vehicle categories when the value of the
cross-merge ratio is 0.5, and mAP@0.5:0.95 denotes the mean map for different cross-merge
ratio cases.

In order to verify the effectiveness of the improved model, we compared it with some
mainstream two-stage and one-stage models. The experimental results are shown in Table 1.
It can be seen that the improved model has a significant advantage in terms of accuracy
when compared with most of the network models, especially the precision metric, which is
improved by 3.0 percent compared with the other best model.

Table 1. Performance of hazardous material vehicles detection between different algorithms. (The
optional value of each index is bold).

Methods Precision Recall F-Score mAP@0.5 mAP@0.5:0.95

YOLOv5s 0.877 0.779 0.825 0.854 0.631
Faster R-CNN 0.603 0.876 0.711 0.846 0.579

SSD 0.757 0.788 0.772 0.815 0.613
YOLOv3 0.899 0.718 0.798 0.829 0.650

Ours 0.929 0.757 0.834 0.867 0.661
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The proposed method obtained a very competitive hazardous material vehicle de-
tection accuracy on the test set with a precision of 0.929, an mAP@0.5 of 0.867 and an
mAP@0.5:0.95 of 0.661. Although there is a reduction in the recall metric, the overall perfor-
mance is satisfactory. This illustrates that the inclusion of an attention mechanism allows
for the network to better capture important features and weaken non-critical features.
Secondly, the SPPCSPC has better feature fusion capability than the SPPF. The introduction
of SIoU takes into account the vector angle between bounding box regression, achieving
faster convergence and better performance in inference.

Specifically, due to the integration of an attention mechanism and a new spatial pyrami-
dal pooling layer, the proposed model can achieve higher detection accuracy compared to
the original model for relatively small vehicles. In addition, the method still performs well
in the case of multiple vehicles in a single image. Overall, the method can effectively handle
images of hazardous material vehicles at different scales and containing multiple vehicles.

In order to more concretely represent the performance of the improved model, we list
the precision, recall and F-score values of each class of the improved model and compare
them with the initial model. The experimental results are shown in Table 2, where HM
vehicle denotes the hazardous material vehicle. The experiments show that the improved
model has evident advantages.

Table 2. Performance of per class detection between the original and the improved model.

Original Model Improved Model

Classes Precision Recall F-Score Precision Recall F-Score

Bus 0.863 0.734 0.793 0.933 0.714 0.809
Truck 0.898 0.773 0.831 0.938 0.747 0.832

HM vheicle 0.881 0.822 0.850 0.943 0.814 0.874
Car 0.866 0.787 0.825 0.902 0.753 0.821

3.3.1. Single Hazardous Material Vehicle Detection Results

For visual inspection, Figures 11–13 show three subsets of hazardous material vehicle
detection results taken from the test set and the content marked in the red boxes are the
detected target vehicles. As shown in the images containing single hazardous material
vehicles in Figure 11, vehicles of different sizes, especially the smaller ones, were correctly
detected. This demonstrates the power of the SPPCSPC structure for the fusion of features
of different sizes for the detection of differences in object size in images.

Figure 11. A subset of single hazardous material vehicle detection results.
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3.3.2. Multi-Object Detection Results

In addition, in the case of multiple hazardous material vehicles, the combination of
clustering and feature pyramid pooling allows for the model to assign vehicles of different
sizes under multiple objects to different feature layers, achieving the deep recognition for
large sizes and the shallow recognition for small sizes, and finally completing the detection
of multiple objects and correctly identifying the location of bounding boxes. The detection
results of multiple hazardous chemical vehicles in the test set are shown in Figure 12.

Figure 12. A subset of multi-hazardous material vehicle detection results.

3.3.3. Multi-Category Vehicle Detection Results

Moreover, considering the complexity of road transport, where a road may contain
several different categories of vehicles at the same moment, we designed the detection of
different categories of vehicles to accommodate the diversity of vehicle changes on the
road. Due to the inclusion of the attention mechanism, the model can focus on deeper
semantic information about the vehicles and extract more accurate feature information of
each category of vehicles, which makes the trained model have a better classification effect.
As shown in Figure 13, the proposed method can effectively handle this situation in the
process of hazardous chemical vehicle detection.

Figure 13. A subset of multiple categories vehicle detection results.
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3.3.4. Comparison of Vehicle Detection Results

In order to compare the effect of the models between the original one and the one
we proposed, we also used four sets of images of the scenes to qualitatively evaluate the
detection effect of the model. The experimental image size is 640 × 640 × 3 for all images,
with a confidence threshold of 0.25 and an NMS threshold of 0.45. The experimental results
are shown in Figure 14.

In the first set of experimental images, the features of the hazardous material vehicles
were blurred and small compared to the whole image, which made it difficult for the
original model to detect them, but the model we proposed demonstrated remarkable results.
In the second set of experimental images, the scene was more complex, with multiple
vehicles, dense objects and serious occlusion. The original model missed and misidentified
them, and the model we proposed accurately identified and located hazardous material
vehicles, proving that the improved model is able to extract richer features. In the third
set of experimental images, the original had serious false detections, while the model we
proposed not only avoided false detections but also identified the hazardous material
vehicles more accurately. In the fourth set of experimental images, although the original
model can correctly detect the vehicle, it is not accurate enough in the bounding box
regression. The method we proposed makes up for the deficiency of the original model
by using the SIoU loss, which takes into account the angling aspect of the regressions and
makes the detection more accurate.

(a)

(b)

Figure 14. Comparison of the improved model with the original. (a) Original YOLOv5 experimental
result. (b) Improved YOLOv5 experimental results.

Overall, our method performs well in the detection of hazardous material vehicles
under different conditions. The accuracy of detection and localization is generally higher
than that of the original YOLOv5 model, both in complex scenarios and for the detection of
small and multiple vehicles. This proves that the attention mechanism can indeed extract
richer semantic information about hazardous material vehicles, and the SPPCSPC layer can
improve the network feature fusion capability, while the introduction of SIoU can better
improve the accuracy of vehicle localization.

3.4. Ablation Study

In order to further validate the detection performance of the algorithm proposed in
this paper and to explore the effectiveness of each improved method, we evaluate the
improved results step by step by adding new components to the original YOLOv5 model.
The experimental results are shown in Table 3.
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Table 3. Impact of individual components in the development of model.

Group Attention SPPCSPC SIoU Precision Recall F-Score mAP@0.5 mAP@0.5:0.95

1 0.877 0.779 0.825 0.854 0.631
2 Y 0.882 0.779 0.827 0.864 0.647
3 Y Y 0.884 0.781 0.829 0.867 0.659
4 Y Y Y 0.929 0.757 0.834 0.867 0.661

In this table, Attention represents the attention mechanism added to YOLOv5 in this
paper, and SPPCSPC is the module that replaces SPPF (Spatial Pyramid Pooling Fast),
while SIoU represents the modification of the intersection over union in the loss function.
“Y” represents the introduction of the module. From Table 3, we can see that mAP0.5 is
improved by 1 percent and mAP@0.5:0.95 is improved by 1.6 percent after adding attention
mechanism, and the overall performance is improved, although the recall value does
not change. The overall performance is improved with the introduction of the SPPCSPC
module, which indicates that the module has evident results when compared with SPPF
when addressing features of different sizes. After the introduction of SIoU in the loss
function, although the recall value decreases, the precision is improved substantially. This
indicates that the SIoU loss has a significant effect on the regression of the bounding box.
Compared with the original YOLOv5 model, the precision value is improved by 5.2 percent,
the F-score improved by 0.9 percent, mAP@0.5 improved by 1.3 percent and mAP@0.5:0.95
improved by 3 percent.

4. Conclusions

Hazardous chemical vehicles are highly dangerous during road transport, and the
real-time and accurate detection of these vehicles during the driving process can effectively
recognize traffic accidents and respond to them in time to avoid casualties and unnecessary
property damage. In this paper, we propose an improved algorithm for detecting hazardous
chemical vehicles based on YOLOv5. An attention mechanism is added to the network
structure to suppress non-critical information by giving different weights to the feature
layers for the purpose of selecting better features. The SPPCSPC layer is used for better
feature fusion, and the SIoU loss is introduced to consider the vector angle between
bounding box regressions, which effectively reduces the total degrees of freedom of loss.
The experimental results show that the method not only exhibits better results for the
detection of smaller hazardous chemical vehicles in images, but also achieves the correct
recognition and accurate localization of hazardous chemical vehicles in complex scenes.
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Abbreviations

The following abbreviations are used in this manuscript:

YOLO You Only Look Once
SPP Spatial Pyramid Pooling
SPPF Spatial Pyramid Pooling Fast
SPPCSPC Spatial Pyramid Pooling Cross-Stage Partial Conv
CFLP China Federation of Logistics and Purchasing
CSPDarknent Cross-Stage Partial Darknet
PAN Path Aggregation Network
ROI Region of Interest
CNNs Convolutional Neural Networks
SSD Single-Shot Mutlibox Detector
DA Domain Adaptive
FPN Feature Pyramid Network
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