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Abstract: Edge computing is a promising technology to enable user equipment to share computing
resources for task offloading. Due to the characteristics of the computing resource, how to design
an efficient computation incentive mechanism with the appropriate task offloading and resource
allocation strategies is an essential issue. In this manuscript, we proposed an intelligent computation
offloading mechanism with content cache in mobile edge computing. First, we provide the network
framework for computation offloading with content cache in mobile edge computing. Then, by
deriving necessary and sufficient conditions, an optimal contract is designed to obtain the joint task
offloading, resource allocation, and a computation strategy with an intelligent mechanism. Simulation
results demonstrate the efficiency of our proposed approach.

Keywords: edge computing; resource allocation; computing offloading

1. Introduction

Recently, with the explosive increase in traditional mobile cellular networks, the trans-
mission capacities of traditional wireless networks are facing unprecedented challenges,
including that the mobile data traffic is increasing with a high growth rate. Furthermore,
novel business scenarios in next-generation networks [1–3] continue to increase, placing
higher requirements on latency, efficiency, etc. Facing the severe challenges mentioned
above, the ultra-dense network (UDN) [4] endows huge access capabilities by providing
closer service nodes to users. This network architecture includes macro base stations (MBS)
and small cell base stations (SBS). To be specific, relying on the intensive deployment of
SBSs, tremendous access capability can be provided for end devices.

Mobile edge computing (MEC) [5,6] is recognized as an effective requirement provider
which transfers the computation ability to edge in ultra-dense networks. In multi-user
scenario of ultra-dense networks [7,8], it is a major challenge of how to efficiently offload
multiple tasks with the constraint of computation, communication, and cache resources,
which satisfies the quality of service for users. This offloading problem, established as a
mix integer programming (MIP) problem [9], is ubiquitous and complicated in edge cloud
system for the following reasons: On the one hand, the tasks offloaded to edge computing
system have different characteristics, delay requirement, computation requirement, and
energy consumption, etc.; therefore, it is impossible to model this problem accurately. On
the other hand, the online tasks are changing dynamically, which requires edge cloud
system to make appropriate online decision. Many approaches are proposed to tackle this
problem, e.g., convex optimization method, game theory, and heuristic algorithm.

In this paper, we address the computation offloading problem with content cache in
ultra-dense networking scenario, i.e., ultra-dense networks. To be specific, a deep reinforce-
ment learning approach [10,11] is employed to help manage task offloading considering the
framework of communication, computation, and cache (3C). Numerical results prove that
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this novel framework can enhance the profit of MEC efficiently. The main contributions of
our paper can be summarized as follows.

• We focus on the computation offloading problem with content cache in mobile edge
computing. Specifically, edge clouds are denoted as service providers and user equip-
ment (UEs) are requestors. With the assistance of multiple edge clouds, this network
architecture tends to improve the effectiveness of computation offloading service.

• Considering the framework of communication, computation, and cache, we establish
the computation offloading problem model aided by deep Q-learning algorithm. Of-
floading decisions are modeled as actions in this approach, which in efficient decision
action space. Furthermore, we applied deep Q-learning to choose the reasonable
approach in solving resource management problem.

• Extensive simulation validates the effectiveness of the proposed approach in ultra-
dense networks. Numerical results demonstrate its well performance with the in-
creasing iterations. Additionally, the impact of different parameters in this approach
is analyzed.

This paper has the following organization: Section 2 describes related work. The
system model is presented in Section 3. Intelligent computation offloading mechanism with
content cache is described in Section 4. Section 5 contains the analysis of the experimental
results. Section 6 provides the conclusion.

2. Related Work

There are many related works that jointly model the computation offloading prob-
lem and resource allocation problem in MEC networks as the MIP problems. Ref. [12]
considered the task computation offloading problem in 5G cellular networks as an energy
consumption model, which satisfied the constraints of computing capacity and service
delay. Ref. [13] utilized dynamic voltage adjustment to optimize the computation speed
and transmission power of UEs. Aiming at two main objectives, i.e., energy consumption
and time delay, the authors transformed this non-convex problem into a convex problem by
variable substitution method. Ref. [14] focused on the multiuser computation offloading
problem in the presence of multiple channel interference. Coefficients were proposed to
weigh the energy consumption and execution delay of the offloading problem. The authors
proposed a distributed computation offloading algorithm to achieve Nash equilibrium.
Ref. [15] analyzed energy consumption and time delay in the multiple terminal devices sce-
nario. In this scenario, the authors considered optimizing communication and computing
resources between edge clouds and terminal devices. Ref. [16] focused on computation
offloading decision and computational resource allocation. The edge cloud made decisions
relying on not only the computation requirement of the whole terminal devices but also
the computation resources of servers. Ref. [17] proposed a novel online decision making
approach to determining the pre-processing level for either higher result accuracy or better
energy efficiency in a mobile environment. Ref. [18] proposed a Lyapunov based on-line
approach designation mechanism that dynamically chooses an appropriate data communi-
cation approach based on data transmission queue, estimated network conditions, and the
device moving speed. The aforementioned works employ traditional methods to solve the
computation offloading problem, which is difficult to adapt to the dynamic change in the
novel wireless network scenario.

Motivated by the success of artificial intelligence (AI) in a wide spectrum of fields, it is
envisaged that AI powered edge computing could overcome the emerging challenges by
fully unleashing the potential of the edge big data. Ref. [19] developed a deep reinforcement
learning approach to tackle the edge caching and computing problem in vehicle networks.
In addition, the authors proposed the mobility-aware reward to improve the efficiency
of vehicular networks. Ref. [20] leveraged a deep reinforcement learning algorithm to
learn the optimal computation offloading and packet scheduling policies to solve the multi-
tenant cross-slice radio resource orchestration problem. In mobile social networks [21], the
authors applied a novel deep reinforcement learning approach to automatically make a
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decision for optimally allocating the network resources under the framework of computing,
caching, and communication (3C). Ref. [22] proposed a Deep Reinforcement learning-
based Online Offloading (DROO) framework from the past offloading experiences under
various wireless fading conditions and automatically improved its action generating policy.
This framework was verified in order to greatly reduce the computational complexity,
especially in large-size networks. The above references proposed DRL in computation
offloading problem; however, they do not focus on the ultra-dense network scenario, which
consists of multiple edge clouds and multiple UEs. Therefore, in this paper, we focus
on the computation offloading problem in a novel scenario, i.e., an ultra-dense network.
Furthermore, we propose a DRL-aided computation offloading scheme to achieve resource
allocation automatically.

3. System Model
3.1. Architecture of Mobile Edge Computing

From Figure 1, the architecture of mobile edge computing is formed by a macro base
station (MBS), a small base station (SBS), and user equipment (UE). Specifically, MBS and
SBS are able to provide computing service using their edge clouds. The MBS edge cloud
owns a powerful calculation capability while the SBS edge cloud has a low computation
delay. UEs are capable of choosing different offloading computation schemes according to
its requirement.

Macro Base Station, 

MBS 

Small-cell Base Station, 

SBS  
MEC server with content 

caching 

User Equipment, 

UE 

Figure 1. Architecture of mobile edge computing.

From Figure 2, the computation offloading service between UEs and edge cloud
includes three steps. First, the task in the UE is chosen to be offloaded to either SBS edge
cloud or MBS edge cloud. Second, the edge cloud chooses a decision on the execution of
the offloaded task. If the task has not been cached in the edge cloud, it will be computed.
Otherwise, the cached result will be returned directly. Third, the edge cloud returns the
executed result back to UEs.
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MBS Edge Cloud 

SBS Edge Cloud 

UEs 

Step1  

Computation offloading 

Step3:  

Result downloading 

Step2 Execution 

Cache 

Compute 

Cache 

Compute 

Figure 2. Computation offloading with caching in ultra-dense networks.

In this paper, we focus on the offloading decision and resource management problem in
computation offloading. Offloading decision is trying to find an optimal decision strategy
when considering the framework of communication model, computation model, and
caching model in MEC. In addition, resource management addresses the minimal queue
delay in the servers of edge cloud. To conclude, deep reinforcement learning algorithm is
utilized to solve this problem.

3.2. Communication Model

In this scenario, N = {1, 2, · · · , N} is set as SBSs. UEs are denoted by M = {1, 2, · · · , M}.
Jm = {Am, A′m, Bm, Tmax

m } represented the task from UE m. To be specific, Am and A′m
denote the volume of the task Jm before and after calculation. Bm means CPU number
required by task Jm. For task Jm, Tmax

m stands for the maximum delay. Task Jm chooses the
following two schemes base on its requirement.

(1) Task offloading scheme by MBS. In this scheme, wm0 is represented as the channel
bandwidth between UE m (m ∈ M) and MBS . Moreover, σ2 is the constant addictive noise
power and pm0 means the transmission power. Additionally, hm,0 represents the channel
gain and km0 ∈ {0, 1} is the interference factor. Therefore, the data transmission rate rm0
can be formulated as

rm0 = wm0 log2

(
1 +

pm0|hm0|2

σ2 + ΣM
m=1km0 p0|hm0|2

)
. (1)

In this model, we assume that αm0 represents the access fee from UE m, charged by the
MBS edge cloud. βm0 is defined as the usage cost of spectrum, paid by the MBS edge cloud.
Therefore, the communication revenue can be formulated as Rcomm

m0 = αm0rm0 − βm0wm0.
To be specific, αm0rm0 is the income of the MBS edge cloud from user m, and βm0wm0 is cost
of the MBS edge cloud to pay for the usage of bandwidth.

(2) Task offloading scheme by SBS. Similar to the task offloading scheme by MBS, the
channel bandwidth is shown by wmn and pmn is the transmission power. Furthermore, σ2

means the constant addictive noise power and hm,n represents the channel gain. Therefore,
the data transmission rate rmn is formulated as

rmn = wmn log2

(
1 +

pmn|hmn|2

σ2 + ΣM
m=1kmn pn|hmn|2

)
, (2)

where kmn ∈ [0, 1] represents the interference between UE m and the SBS edge cloud n.
Suppose αmn represents the access fee paid by UE m. The usage cost of spectrum is

denoted as βmn, which is paid by the SBS edge cloud n. Similarly, the communication
revenue can be formulated as Rcomm

mn = αmnrmn − βmnwmn. Specifically, αmnrmn indicates
the income of the SBS edge cloud n from user m, and βmnwmn is cost of the SBS edge cloud
n to pay for the usage of bandwidth.
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3.3. Computation Model

(1) Computation model for MBS. The computation delay for MBS is calculated as Tc
m0 =

Bm
Cm0

. Specifically, Cm0 stands for the calculation capacity of MBS.
The calculation rate of task m by MBS is deemed as

qm0 =
Am

Bm/Cm0
=

AmCm0

Bm
, (3)

The computation energy consumption is represented as em0 = vm0Tc
m0, where vm0 is

denoted as the energy consumption per second for the MBS edge cloud.
Assume φm0 represents the computation fee from user m, charged by MBS. Moreover,

MBS pays for the computation cost to calculate the task in the MBS edge cloud is denoted
as ϕm0. The computation revenue model can be established as Rcomp

m0 = φm0qm0 − ϕm0em0.
Specifically, φm0qm0 denotes the income of the MBS edge cloud from user m, and ϕm0em0 is
the cost of the MBS edge cloud to pay for the usage of servers.

(2) Computation model for SBS. Similarly, the computation delay executed by SBS n for
task Jm is represented as Tc

mn = Bm
Cmn

, where Cmn is the calculation capacity of SBS n.
The calculation rate of task m by SBS n is expressed as

qmn =
Am

Bm/Cmn
=

AmCmn

Bm
, (4)

To be specific, the computation energy consumption by SBS n is represented as: emn =
vmnTc

mn, where vmn is the energy consumption per second for SBS n.
Suppose the computation fee charged by SBS n is denoted as φmn. The computation

cost ϕmn is defined to calculate the task in the SBS n, which is paid by SBS n. Eventually, the
computation revenue model can be established as Rcomp

mn = φmnqmn − ϕmnemn. Meanwhile,
φmnqmn indicates the income of SBS n from user m, as well as ϕmnemn is cost of SBS n to pay
for the usage of servers.

3.4. Caching Model

In this scenario, we consider D contents are requested in both edge clouds. The caching
strategy is determined by the binary parameter x′, x′ = 1 means the content is cached in
the edge cloud, while x′ = 0 represents not.

Furthermore, the content popularity distribution is denoted with G = {g1, g2, · · · , gD},
where D is the maximal type number of content. Additionally, each UE requests the con-
tent d with the probability gd. In general, G submits to Zipf distribution [23], and can be
formulated as

gd =
1/dε

ΣD
d=11/dε

, (5)

where the content popularity is characterized by ε, and its range is [0.5,1.5] [24]. Then, the
gain is formulated as

lA′m =
gA′m A′m

TA′m
, (6)

where TA′m is the time for downloading cached contents. In this paper, the price for caching
the contents was already known in advance. The backhaul cost is defined as γm0, which
is paid by MBS. Furthermore, ψm0 means the storage fee to cache the content A′m by MBS,
which is charged by MBS. To conclude, the caching revenue of the MBS edge cloud can be
established as Rcache

m0 = ψm0lA′m − γm0 A′m. Specifically, ψm0lA′m means the income of MBS
from UE m, and γm0 A′m deems the cost of MBS to pay for the usage of backhaul bandwidth.
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Similarly, let γmn denote the backhaul cost of SBS n. Moreover, the storage fee at SBS
n is represented as ψmn. Therefore, the caching revenue of the SBS edge cloud n can be
calculated as Rcache

mn = ψmnlA′m − γmn A′m. To be specific, ψmnlA′m is the income of SBS n from
UE m, and γmn A′m represents the cost for SBS n to pay to the usage of backhaul bandwidth.

4. Deep Reinforcement Learning
4.1. Reinforcement Learning Algorithm

The reinforcement learning algorithm simulates the interaction between an agent and
the environment. An agent can obtain observation from the environment and adopt action.
Afterwards, the environment will return a reward to the agent. To be specific, reinforcement
learning focuses on a multi-step decision-making problem, which tries to achieve a goal
through the multi-step appropriate decision in a changing situation. Different from other
machine learning algorithms, reinforcement learning does not need to learn from the
experienced samples. Instead, it is capable of obtaining feedback from its attempt action.
Reinforcement learning includes four parts: experiment states, actions, rewards, and the
probability of state transitions. In conclusion, the reinforcement learning algorithm is a
powerful method to solve real-world problems without prior knowledge.

According to interactions with the environment, the Q-learning algorithm attempts to
find the optimal behavior through continuous attempts. The optimal behavior concerns
not only immediately reward, but also the reward of any following steps in the future. The
decision process of Q-learning algorithm is based on the Markov decision process, and
it can be expressed by a quintuple: {si, ai, P(si, ai, si+1), R(si, ai), Q(si, ai)}. Meanwhile, si
denotes the state space, and ai is termed as the action space. In addition, the probability
P(si, ai, si+1) helps to choose action ai to transmit state si to the next state si+1. R(si, ai)
represents the immediate reward when the system in state si chooses the action ai. Q(si, ai)
is the cumulative reward value at the condition of when action ai is chosen for state si.

Supposed that the state in step i is denoted as si, the reward of each state is presented
as Vπ(si), and its function is formulated as

Vπ(si) = Ri + λRi+1 + λ2Ri+2 + · · · , (7)

where Ri is the reward in step i, λ (0 < λ < 1) represents the influence for the training
agent to the future reward. In this algorithm, Q value is the estimate of state and action,
and its formulation is

Q(si, ai) = Ri + λVπ(si+1). (8)

Relying on the formulations above, Qi+1(si, ai) is updated by (9). Specifically, the learning
rate η(η ∈ (0, 1)) controls the learning speed.

Qi+1(si, ai) = (1− η)Qi(si, ai) + η[Ri + λmaxQi(si+1, ai+1)]. (9)

4.2. Deep Q-Network

From Algorithm 1, the idea of deep Q-network [25] is utilizing a feedforward artificial
neural network to approximate the Q-value function Q(s, a; θ). The input layer of this
Q-network is the state s. The output layer is Q-values corresponds to action a taken at state
s. The parameter θ via small steps that minimize a loss function:

L(θ) = E[(y(s, a, s′; θ̂)−Q(s, a; θ))2] (10)

where the target function y(s, a, s′; θ̂)=R + λmax Q(s′, a′; θ̂) changes when the parameter θ̂
are updated.
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Algorithm 1 Deep Q-learning Algorithm

Input: state s, action a;
Output: Q(s, a);
Initialization:
Initialize the main deep Q-network with weight θ;
for i < T do

if random probability P < δ then
select an action ai;
otherwise
ai = argmax Q(s, a; θ);

end if
Execute action ai in the system, then obtain the reward Ri and the next observation
si+1;
Calculate the target Q-value
y(s, a, s′; θ̂) = R + λmax Q(s′, a′; θ̂);
Update the main deep Q-network by minimizing the loss L(θ) with (10);

end for

5. Deep Q-Learning Aided Computation Offloading with Content Cache

In the ultra-dense network scenario, the uplink channel conditions and computation
capabilities are changing dynamically. It is difficult to employ traditional methods to
find an optimal solution. In contrast, DRL does not require a well-captured model or
prior information. It is capable of adaptively refining the strategy from the environment.
Therefore, we introduce deep Q-learning to find the optimal action effectively, as shown
in Figure 3. To be specific, we propose different strategies according to whether or not
the offloaded task is cached in the edge cloud. On the one hand, if the offloaded task is
cached, the edge cloud should consider the caching model to save the computation delay.
On the other hand, if the offloading task is not cached, the edge cloud will calculate this
task directly.

Replay Memory 

N Steps 

Loss Function 

( , ; )Q a s q 'max ( ', '; )
a
Q a s q

q

Update 

( , )s a 's

( , , , ')s a r s

s

arg max ( , ; )
a
Q s a q

…
 
…

 

…
 
…

 

…
 
…

 

…
 
…

 

Main Net 

…
 
…

 

…
 
…

 

…
 
…

 

…
 
…

 

Target Net Environment 

Computation 

Offloading 
UEs 

  MBS Edge 

Cloud 

SBS Edge 

Cloud 

Figure 3. Deep reinforcement learning for computation offloading with content cache.

State Space. The state of the edge cloud n ∈ N and the available cache d ∈ D for UE
m ∈ M in timeslot t is determined by the random variables acomm

m and the random variables
acache

m . In addition, the input data also embraces the contact number and contact time per
timeslot for each of the UEs and edge clouds, respectively.

Action Space. In this edge cloud system, the agent should determine where this task
is offloaded according to the limited communication resource, whether or not the offloaded
task has been cached in the server.
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Accordingly, the current action am(t) at timeslot t is defined as

am(t) = {acomm
m (t), acache

m (t)}, (11)

where acomm
m (t) and acache

m (t) are represented as follows.
First, we define row vector acomm

m (t) = [acomm
m,1 (t), acomm

m,2 (t), · · · , acomm
m,N (t)], where

acomm
m,i (t), i ∈ {1, 2, · · · , N} denotes whether UE m are connected to edge cloud. To be

specific, the value of acomm
m,i (t) is {0, 1}, where acomm

m,i (t) = 0 means that at timeslot t the task
in UE m choose to be offloaded to MBS, otherwise acomm

m,i (t) = 1 means that at timeslot t the
task in UE m choose to be offloaded to SBS.

Then, we define row vector acache
m (t) = [acache

m,1 (t), acache
m,2 (t), · · · , acache

m,N (t)], where
acache

m,j (t), j ∈ {1, 2, · · · , N} denotes whether the content of UE m has been cached. To

be specific, the value of acache
m,j (t) is {0, 1}, where acache

m,j (t) = 0 means that at timeslot t the

content is not cached, otherwise acache
m,j (t) = 1 means that at timeslot t the content is cached.

Reward function. The reward of this edge cloud system is to maximize the revenue of
communication model, computation model, and caching model. The reward function for
UE m is defined

Rm(t) = Rcomm
m (t) + Rcache

m (t), (12)

Rcomm
m (t) represents the reward from the communication model for UE m, which includes

the communication revenues of both edge clouds. Moreover, it can be formulated as

Rcomm
m (t)=(1− acomm

m (t))Rcomm
m0 +acomm

m (t)Rcomm
mn

=(1− acomm
m (t))(αm0rm0 − βm0wm0)+

acomm
m (t)(αmnrmn − βmnwmn).

(13)

Rcache
m (t) represents the reward from whether or not the content is cached, which includes

the computation revenues and cache revenues of both edge clouds. Moreover, it is formu-
lated as

Rcache
m (t)=(1−acomm

m (t))acache
m (t)Rcache

m0 +(1−acomm
m (t))

(1−acache
m (t))Rcomp

m0 +acomm
m (t)acache

m (t)Rcache
mn

+ acomm
m (t)(1− acache

m (t))Rcomp
mn .

=(1− acomm
m (t))acache

m (t)(ψm0lA′m − γm0 A′m)+

(1−acomm
m (t))(1−acache

m (t))(φm0qm0−ϕm0em0)

+ acomm
m (t)acache

m (t)(ψmnlA′m − γmn A′m)+

acomm
m (t)(1− acache

m (t))(φmnqmn − ϕmnemn).

(14)

Meanwhile, if the content is cached, the strategy chooses the revenue of the caching
model, otherwise, the content has to be calculated in the edge cloud.

6. Deep Q-Learning Aided Resource Management in Edge Cloud

In this section, we will focus on the intelligent resource management for computation
service in edge clouds. In the multi-user scenario, edge clouds which are deployed on
the mobile access network will provide computation service for all users within its range
simultaneously. In the user intensive area, when there are many user devices using the
computing service, edge cloud may not be able to process the migrated tasks and return
the results in time due to resource constraints and other reasons, resulting in large task
processing delay. In such an environment, if user equipment (UE) runs virtual reality,
ultra-high definition video, or other applications that are very sensitive to time delay, it will
greatly affect QoS, which requires edge cloud to comprehensively consider the sensitivity
of computing tasks to time delay and the demand of tasks for system resources to allocate
computing resources and provide computing services according to priority.
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In this section, aiming at the task offloading problem in the above multi-user MEC
scenarios, considering the limitation of edge cloud computing resources when UE com-
puting power is low and all tasks need to be migrated to edge cloud for execution, the
system model and task model are constructed, and the optimization objectives of mini-
mizing the average delay and average overtime of tasks are formulated. On this basis,
this paper proposes a task transfer strategy based on deep reinforcement learning. By
constructing MECs’s computing resource allocation process into Markov decision-making
process, the task transfer problem of multi-user MEC is transformed into a strategy learning
problem. After a period of strategy learning using deep reinforcement learning algorithm,
this strategy can improve the overall effectiveness of MEC system rate and service quality
of users.

6.1. System Model and Task Model

Edge cloud in MEC is a multiple computer cluster. In this subsection, the cluster
is modeled as a super server with many types of resources (CPU, memory, input and
output devices, etc.), in which task scheduler has a complete view of the list of all computer
computing resources in the cluster and their usage, and ignores the impact of fragmentation
effects such as the underlying machine communication in the cluster. Although this
modeling ignores the impact of many underlying machine communication in the actual
scheduling of computer clusters, it retains the basic elements in the multi task and multi
resource scheduling process of server clusters, greatly reducing the complexity of the model
and simplifying the algorithm design.

Figure 4 shows the modeled MECs system structure diagram, which includes a data
transmission unit, a task cache queue, a task scheduler with all the resource usage views
of MECs ,and a logic execution unit. The data transmission unit is mainly responsible for
receiving the time delay sensitivity calculation task and returning the task calculation result
in UE; the task cache queue is mainly used to cache the received tasks to be processed
and wait to be scheduled by the task scheduler; the task scheduler is the brain of the
whole system, which is responsible for the resource management (allocation, recovery,
etc.) of the server cluster system and the task scheduling in the task cache queue; and the
logical execution unit is the resource pool of the system, which contains all the computing
resources related to task processing in the cluster. This section assumes that the resource
requirements of a task have been determined when the task arrives. Therefore, the complete
process of processing a calculation task in a multi-user MEC system is as follows: UE sends
task data to MECs through a wireless channel. When MECs transmission unit receives
the calculation task, it first stores the task in the MECs task cache queue (at this time,
the resource requirements of the task have been determined). It must wait for the task
scheduler to allocate resources for the system according to the occupancy of resources and
schedule the task into the logical execution unit for execution. After the task is executed,
the calculation result is obtained and the result is returned to the corresponding UE through
the transmission unit.

Transmission 

Unit

Jobs

Scheduler

CPU Memory

Results

Logical 

Execution Unit

1

2

3

4

5

Figure 4. Architecture of servers in MEC.
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In this section, we denote J as the jobs which queue in MEC servers. Assume that the
number of jobs in MEC servers is N, then jobs can be expressed as J = {J1, J2, · · · , Ji, · · · , JN},
where Ji indicates the ith job in the MEC servers. The resources which should be occupied
by Ji have been determined in advance, and the resources will be recycle allocated after
execution. To be specific, Ji is denoted as Ji = {tenter

i , tstart
i , tend

i , Ri, tproc
i , ttotal

i }. Meanwhile,
tenter
i represents the time when Ji enters the queue in MEC servers. tstart

i indicates the time
when Ji is scheduled, and tend

i means the time when Ji is executed. Moreover, Ri represents
the required resources by job Ji, which can be denoted as Ri = {Ci, Mi}. In detail, Ci
means the required number of CPU units, and Mi indicates the number of memory units
required by job Ji. In addition, tproc

i means the processing time in MEC servers by job
Ji. ttotal

i indicates the total time in MEC servers by job Ji, which includes queue time and
processing time. The concrete description is shown in Figure 5.

enter

it
start

it
end

it

total

it

proc

it

Figure 5. Description of different times.

The global view of task scheduler in MECs contains different amounts of CPU re-
sources and memory resources, which can process multiple computing tasks in parallel. In
the case of sufficient resources, in order to ensure the timeliness of tasks, the task scheduler
will schedule all tasks into the execution unit for execution; at this time, there are no tasks
waiting to be executed in the task cache queue. When the number of tasks migrated to
MECs increases, and its resources can not meet the needs of all tasks, MECs will cache
them first. According to the waiting time, timeout time and resource demand table of tasks,
MECs will select the task scheduling order that makes the overall performance of MEC
system optimal to allocate computing resources.

In this section, in order to optimize MECs task scheduling and processing as a whole,
the optimization objectives will be modeled relying on two aspects: task average time delay
and task average over time.

(1) Task average time delay. For job Ji, in order to ensure the fairness of scheduling
tasks in MECs task scheduler and take into account the performance of the system, we use
the ratio of task completion delay to task processing delay as the optimization goal of the
task. The expression is established as

ki =
tend
i − tenter

i

tproc
i

, (15)

where tend
i − tenter

i means the minus value between the task completion time and the time
when the task enters the queue, indicating the completion delay from the task entering
MECs to the execution completion. Thus, the definition of average time delay ratio can be
modeled as

K =
1
I

ΣI
i=1ki. (16)

When using the average time to delay ratio as the optimization goal, for the tasks
to be executed in the task cache queue, if the current system resources meet the running
requirements of the task, the task scheduler is more inclined to schedule the tasks with
short running time, and can also take into account the tasks with long running time to
ensure that there is no starvation effect.
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(2) Task average over time. For job Ji, the average over time is established as

oi = max{0, tend
i − tenter

i − ttotal
i }. (17)

From (17), oi = 0 indicates that the current job is not currently timed out, and the
over time is set as 0. Otherwise, oi > 0 represents that when the current job is timeout, the
overtime is the value of oi. Similarly, to minimize the overtime of jobs generally, we set the
average overtime as the final optimization objective, and its formulation is established as

O =
1
I

ΣI
i=1oi. (18)

Therefore, the whole optimization objective of this section is to minimize the weighted
sum of the average time delay ratio and the average overtime, and the formulation is

min µ1K + µ2O, (19)

where µ1 and µ2 are weight factors, which submit to the following conditions.

µ1 + µ2 = 1,

0 ≤ µ1 ≤ 1,

0 ≤ µ2 ≤ 1.

(20)

6.2. Design of Task Schedule Strategy in Mobile Edge Cloud

In this section, according to Markov decision-making process, task transfer strategy
based on deep reinforcement learning is designed from state space, action space, immediate
return, and function approximator. The figure of state space is presented in Figure 6.

Resource

Occupation

Time slot 

Resource

Requirement

Time slot 

(a) State of Resource Occupation (b) State of Resource Requirement

Figure 6. Description of State Space.

(1) State Space. The state space is defined as the time distribution of the usage state of
each computing resource and the resource demand state of the task in the task cache queue.
The resources in MECs system include CPU resources and memory resources. As shown
in Figure 6a, the system resource usage status is a state matrix composed of the current
time step and the resource usage status of the future time step system. Different lines in
the figure represent different tasks. Assuming that the resources represented in the current
figure are CPU resources, then the left line represents tasks in the current and future time
step. It needs to occupy two units of CPU and execute three time slots. The right line means
that it needs to occupy two units of CPU and execute three time steps. Figure 6b shows
the estimated resource requirements of tasks in the task cache queue in the current and
future time steps, in which left line tasks are expected to occupy two units of resources and
maintain two time steps.

In order to solve the problem of fixed input dimension in deep reinforcement learning,
only the state of the first D tasks in the task cache queue and MECs resource usage state
are taken as the state space during algorithm training. Because the tasks in the task
cache queue are arranged in the order of their arrival, a reasonable strategy will give
priority to the tasks with long waiting time, which is also consistent with this section. The
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optimization objectives are consistent. In addition, the MECs state space is modeled as a
matrix so that the deep reinforcement learning algorithm can make full use of its spatial
correlation for feature extraction when training and using, which makes the extracted
features more representative.

(2) Action Space. According to the system resource state and task resource demand
state, the task scheduling unit is defined to allocate the required resources for the task and
schedule it as an action, so the action space can be expressed as:

A = {φ, 1, 2, · · · , i, · · · , D} (21)

where φ represents the action in current time slot is empty, i.e., task scheduling does not
schedule the tasks in the task cache queue due to insufficient system resources. Choosing
action i means the ith task in the task queue is allocated computation resource, and D is
depth of action space.

Considering that MECs can provide auxiliary computing services for all tasks in its
radiation range at the same time, and it can process tasks in parallel according to the
occupancy of resources, so in each time step, reasonable actions should be able to allocate
resources and schedule multiple tasks at the same time according to the occupancy of
resources, but this will greatly increase the complexity of action space It increases the
difficulty of convergence. In order to solve this problem, this section adopts the strategy
of action and time decoupling in the process of algorithm implementation: when the task
scheduler schedules a task correctly, it freezes the current time step and schedules the next
task. Only when the task scheduler selects the empty action or the invalid action (MECs
available computing resources can not meet the resource requirements of the task) will
the time step to move forward. In this way, it can not only meet the needs of scheduling
multiple tasks at the same time, but also reduce the complexity of action space and the
difficulty of algorithm training.

(3) Immediate reward. The optimization goal of this section is to reduce the average
time delay ratio of MECs task queue and the average time-out length of tasks through
reasonable calculation resource allocation, so as to improve the efficiency of MEC system
and enhance the user experience. To guide the strategy toward this goal, the immediate
reward is modeled as

R = µ1 × Rt + µ2 × Rr (22)

From the above equation, µ1 and µ2 are the discounting factors in the reward, and Rt
indicates the immediate reward relying on processing delay, and it can be formulated as

Rt = ΣI
i=1

1
ki

. (23)

Rr represents the immediate reward from overtime, and it can be modeled as

Rr =

{
0, oi = 0;
1
oi

, oi > 0. (24)

In the case of oi = 0, at this time the task does not over time, and the immediate return
reaches the maximum. In this way, the algorithm can be guided to learn a computing
resource allocation strategy to reduce the time-out of the task in the way of reinforcement
learning. In the case of oi > 0, the task timeout, the longer the timeout, the larger the
immediate reward.

The values of discounting factors place an important role in learning algorithm, if
µ1 = 1, µ2 = 0, maximizing the cumulative discounted return is equivalent to minimizing
the average time delay ratio. If µ1 = 0, µ2 = 1, maximizing the cumulative discounted
return is equivalent to minimizing the average over time. Therefore, the immediate reward
designed in this section is to optimize and minimize the tradeoff between the average time
delay ratio and the average overtime, and µ1 and µ2 are set as 0.5, respectively.



Electronics 2023, 12, 1254 13 of 18

(4) Function approximator. In this section, convolution neural network is used as a
function approximator. Compared with full connection artificial neural network, convo-
lution neural network increases the consideration of spatial correlation, and can extract
high-level semantic information more efficiently, making the extracted features more rep-
resentative. Figure 7shows the structure of convolutional neural network. The input of
the network is the state space model; the hidden layer is convolutional neural network
and full connection layer. Softmax function is used to output the probability distribution
of action space. In order to increase the nonlinearity of the network, relu is used as the
activation function.

State  Space 
Convolution layer

Convolution kernel: 

2*2

Activation function: 

ReLU

Full connection 

layer

Number of output 

units: D

Softmax

Figure 7. Convolution Neural Network.

7. Numerical Results

In this section, the computing offloading with content cache mechanism based on
deep reinforcement learning will be simulated and evaluated on Spyder. Subsection A
describes the simulation experiment parameters and the experimental results are shown in
subsection B. Furthermore, the influence of the parameters of the algorithm is discussed.

7.1. Parameter Setting

The simulation scenario is shown in Figure 8 and the parameters in this experiment
are presented in Table 1.
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Figure 8. Simulation scenario.
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Table 1. Parameter settings.

System Parameters Value Setting

The access fee charged by MBS edge cloud [3, 6] units/bps

The access fee charged by SBS edge cloud [1, 3] units/bps

The usage cost of spectrum paid by MBS edge cloud [3× 10−4, 6× 10−4] units/Hz

The usage cost of spectrum paid by SBS edge cloud [1× 10−4, 3× 10−4] units/Hz

The computation fee charged by MBS edge cloud 0.8 units/J

The computation fee charged by SBS edge cloud 0.4 units/J

The computation cost paid by MBS edge cloud 0.2 units/J

The computation cost paid by SBS edge cloud 0.1 units/J

The storage fee charged by MBS edge cloud 20 units/byte

The storage fee charged by SBS edge cloud 10 units/byte

The backhaul cost paid by MBS edge cloud 0.2 units/bps

The backhaul cost paid by SBS edge cloud 0.1 units/bps

Deep neural network(DNN) is the important part of the deep Q-learning algorithm,
and in the following we will provide the parameters for the composition of DNN. The
DNN is composed of a input layer, two hidden layers, and a output layer. Meanwhile,
the first hidden layer is set as 120 hidden neurons, and the second has 80. The training
interval is set as 10, and training batch size is 128. In addition, the learning rate is 0.005,
and memory size is 1024.

7.2. Simulation Result

The influence in simulation result by parameters will be investigated in the following
experiment. Figures 9 and 10 presents the changing reward value and learning rate by
our scheme with UE = 20. From Figure 9, we can obtain that with the iteration increases,
the reward value increases gradually at the first 400 iteration, and then retain stable after
convergence. As shown in Figure 10, the training loss decreases rapidly for the first
100 iterations and then remains unchanged. In conclusion, our proposed scheme is capable
of achieving the near optimal solution relying on its exploration.

Figure 9. Reward value changes versus iterations.
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Figure 10. Learning rate changes versus iterations.

In this subsection, we have provided the impact on simulation result by three vital
overhead parameters in DRL, i.e., learning rate, batch size, and training interval. Learning
rate controls the learning process of the model. To be specific, a large learning rate may
result in a rapid convergence, while a small learning rate is likely to bring over-fitting.
Batch size affects the optimization degree and speed of the model. If the value of batch
size is too small, the algorithm does not converge in epochs. Otherwise, it is easy to fall
into local convergence. Similarly, training interval is also an important parameter in deep
neural networks.

In Figure 11, the learning rate is set as 0.005, 0.01, 0.05, or 0.1. Specifically, when
learning rate equals 0.01, the reward value required by DRL algorithm performs better
than others during the whole iterations. Learning rate = 0.1 can not achieve an effect such
as learning rate = 0.01, but has a better performance than other two cases. In addition,
learning rate = 0.05 has the worst performance.
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Figure 11. Reward value changes with different learning rate.

As shown in Figure 12, the batch rate is set as 32, 64, 128, or 256. Specifically, when
batch size equals 32, the reward value required by DRL algorithm does not perform well
in the at the first stage. However, it increases rapidly and achieves a best performance
in the latter stage. Batch size = 64 has a slightly worse performance than the case of
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batch size = 32. Additionally, batch size = 128 and batch size = 256 are not capable of
performing well.

Figure 13 plots the reward value changes against iterations with different training
intervals. To be specific, training interval is set as 5, 10, 15, or 20. Obviously, we can see
that when training interval is 32, the reward value required by DRL algorithm performs
well during the whole stage. When training interval = 5, 15, 20, the reward values do not
have a well performance. Furthermore, training interval = 5 performs worst among these.
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Figure 12. Reward value changes with different batch size.
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Figure 13. Reward value changes with different interval.

In order to verify the effectiveness of the calculation offloading strategy proposed in
this paper, the genetic algorithm (GA), particle swarm algorithm (PSO), and bat algorithm
(BA) are used for testing and comparison. The algorithms above are classical bionic
optimization algorithms with fast convergence abilities. The genetic algorithm [26] is a
method to search the optimal solution by simulating the natural evolution process. Particle
swarm optimization [27] is a random search algorithm based on group cooperation, which
is developed by simulating the foraging behavior of birds. The bat algorithm [28] is a
method that simulates the movement process of individual bats and searches for prey to
solve problems. The number of particles in each algorithm is set to 20, and the number of
iterations is set to 50.
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Figure 14 shows the change of UE randomly distributed in the network area. Specifi-
cally, the number of UAV equipment is set to [5, 10, 15, 20, 25, 30, 35, 40, 45, or 50] to test
the influence of the number of equipment on the experimental results. Compared with
the other three algorithms, DRL is able to obtain the best optimal value under different
number of UEs. In contrast, the performance of the particle swarm optimization algorithm
is slightly inferior to that of the bat algorithm. In addition, the genetic algorithm has the
worst performance in all figures. Relatively speaking, more UE numbers require greater
computational complexity.
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Figure 14. Comparison with other algorithms.

8. Conclusions

Aiming at the application of novel technologies in mobile edge computing, this
manuscript proposed an intelligent computing offload and resource allocation edge com-
puting technology. In the network architecture of the system environment, the proposed
algorithm can adaptively provide effective edge computing strategies according to the
communication resources, computing resources, and cache resources in edge computing.
The simulation results show that the scheme can quickly converge to a satisfactory solution
and verify the influence of different parameters of the scheme on the experimental results.
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