
Citation: Ma, S.-P.; Hsu, M.-J.; Chen,

H.-J.; Lin, C.-J. RESTful API Analysis,

Recommendation, and Client Code

Retrieval. Electronics 2023, 12, 1252.

https://doi.org/10.3390/

electronics12051252

Academic Editor: Ricardo Santos

Received: 10 January 2023

Revised: 24 February 2023

Accepted: 2 March 2023

Published: 5 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

RESTful API Analysis, Recommendation, and Client
Code Retrieval
Shang-Pin Ma * , Ming-Jen Hsu, Hsiao-Jung Chen and Chuan-Jie Lin

Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
* Correspondence: albert@ntou.edu.tw

Abstract: Numerous companies create innovative software systems using Web APIs (Application
Programming Interfaces). API search engines and API directory services, such as ProgrammableWeb,
Rapid API Hub, APIs.guru, and API Harmony, have been developed to facilitate the utilization of
various APIs. Unfortunately, most API systems provide only superficial support, with no assistance
in obtaining relevant APIs or examples of code usage. To better realize the “FAIR” (Findability,
Accessibility, Interoperability, and Reusability) features for the usage of Web APIs, in this study, we
developed an API inspection system (referred to as API Prober) to provide a new API directory
service with multiple supplemental functionalities. To facilitate the findability and accessibility of
APIs, API Prober transforms OAS (OpenAPI Specifications) into a graph structure and automatically
annotates the semantic concepts using LDA (Latent Dirichlet Allocation) and WordNet. To enhance
interoperability, API Prober also classifies APIs by clustering OAS documents and recommends
alternative services to be substituted or merged with the target service. Finally, to support reusability,
API Prober makes it possible to retrieve examples of API utilization code in Java by parsing source
code in GitHub. The experimental results demonstrate the effectiveness of the API Prober in rec-
ommending relevant services and providing usage examples based on real-world client code. This
research contributes to providing viable methods to appropriately analyze and cluster Web APIs, and
recommend APIs and client code examples.

Keywords: OpenAPI Specification; Latent Dirichlet Allocation; cluster analysis; service recommendation;
code example; GitHub

1. Introduction

An increasing number of companies, such as Google, Facebook, Microsoft, and Netflix,
are promoting the creation of innovative software systems using APIs (Application Pro-
gramming Interfaces). The most common approach to creating APIs is the representational
state transfer (REST) architecture [1] and corresponding RESTful services [2]. Meanwhile,
applications of electronics, such as consumer electronics, robotics, medical applications,
and automobiles, have become a significant part of our lives. Most electronic applications
also need to integrate Web APIs to build their software. Hence, effectively utilizing APIs
is becoming an essential factor in building modern electronic applications. At present,
more than 20,000 REST-style services have been published in the ProgrammableWeb API
directory system [3]; however, dealing with the high complexity and sheer number of APIs
can be overwhelming for most users. Several API directory services and API search engines,
such as Rapid API Hub [4], APIs.guru [5], and API Harmony [6], have been established to
deal with this issue; however, they provide only the basic API information, popular APIs,
and basic categories, without sufficient information for relevant services or appropriate
usage examples.

This paper presents a novel API inspection system based on OpenAPI specifications
(OAS) [7], the most widely used API description language. The proposed scheme, referred
to as API Prober, allows users to assess the characteristics of RESTful services, find relevant

Electronics 2023, 12, 1252. https://doi.org/10.3390/electronics12051252 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051252
https://doi.org/10.3390/electronics12051252
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3317-5750
https://doi.org/10.3390/electronics12051252
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051252?type=check_update&version=1

Electronics 2023, 12, 1252 2 of 17

services, and view representative examples of code. Since the “FAIR” principles (principles
of Findability, Accessibility, Interoperability, and Reusability) are widely accepted for the
management of scientific data [8], the API Prober is also designed to realize findability,
accessibility, interoperability, and reusability for Web APIs (note that the terms “Web API”,
“Web service”, “RESTful service”, and “REST-style service” have the same meaning in this
paper). The operational concepts are shown in Figure 1. For findability and accessibility,
API Prober structurally analyzes OAS documents for Web APIs, and semantically annotates
the elements of each API (described in Section 3.1) to facilitate the retrieval and filtering of
services that meet the user requirement, based on common Web service design practices [9].
For interoperability, it classifies APIs into multiple clusters based on the annotated informa-
tion (described in Section 3.2) and recommends services based on specific input/output
parameters (described in Section 3.3). For reusability, it finds Java examples of service client
code on GitHub using an AST (abstract syntax tree) and following a set of matching rules
(described in Section 3.4). In addition, the OAS documents in API Prober are collected from
APIs.guru, an API directory system with a large number of REST-style services.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 18

This paper presents a novel API inspection system based on OpenAPI specifications
(OAS) [7], the most widely used API description language. The proposed scheme, referred
to as API Prober, allows users to assess the characteristics of RESTful services, find rele-
vant services, and view representative examples of code. Since the “FAIR” principles
(principles of Findability, Accessibility, Interoperability, and Reusability) are widely ac-
cepted for the management of scientific data [8], the API Prober is also designed to realize
findability, accessibility, interoperability, and reusability for Web APIs (note that the
terms “Web API”, “Web service”, “RESTful service”, and “REST-style service” have the
same meaning in this paper). The operational concepts are shown in Figure 1. For finda-
bility and accessibility, API Prober structurally analyzes OAS documents for Web APIs,
and semantically annotates the elements of each API (described in Section 3.1) to facilitate
the retrieval and filtering of services that meet the user requirement, based on common
Web service design practices [9]. For interoperability, it classifies APIs into multiple clus-
ters based on the annotated information (described in Section 3.2) and recommends ser-
vices based on specific input/output parameters (described in Section 3.3). For reusability,
it finds Java examples of service client code on GitHub using an AST (abstract syntax tree)
and following a set of matching rules (described in Section 3.4). In addition, the OAS doc-
uments in API Prober are collected from APIs.guru, an API directory system with a large
number of REST-style services.

Figure 1. API Prober: operational concepts.

The organization of this paper is as follows. Section 2 provides background infor-
mation on the existing API directory systems. Section 3 outlines the design of the API
Prober and its core methods. The results of experiments conducted to assess the proposed
approach are presented in Section 4. Section 5 offers a brief overview of the paper and
indicates future research.

2. Background and Related Work
OpenAPI specifications (OAS, originally called Swagger) are guidelines that help us-

ers discover RESTful Web services and understand their capabilities. It has prompted the
emergence of extended open-source projects aimed at automating the generation of back-
end services, test programs, and front-end graphical interfaces. The API Prober is based
on OAS.

Graph databases are a type of NoSQL database used for the management of vast sets
of structured, semi-structured, or unstructured data. Neo4j [10] is an open-source graph

Figure 1. API Prober: operational concepts.

The organization of this paper is as follows. Section 2 provides background infor-
mation on the existing API directory systems. Section 3 outlines the design of the API
Prober and its core methods. The results of experiments conducted to assess the proposed
approach are presented in Section 4. Section 5 offers a brief overview of the paper and
indicates future research.

2. Background and Related Work

OpenAPI specifications (OAS, originally called Swagger) are guidelines that help
users discover RESTful Web services and understand their capabilities. It has prompted
the emergence of extended open-source projects aimed at automating the generation of
back-end services, test programs, and front-end graphical interfaces. The API Prober is
based on OAS.

Graph databases are a type of NoSQL database used for the management of vast sets
of structured, semi-structured, or unstructured data. Neo4j [10] is an open-source graph
database written in Java. It enables the development of graph-powered systems to leverage
the rich interconnectivity of data using graphs. Because we need to collect and analyze
many linkages between APIs and between the elements of an API, API Prober uses Neo4J
to store data for the structure of OAS documents for Web APIs.

Electronics 2023, 12, 1252 3 of 17

Java Parser [11] is a lightweight tool for analyzing, converting, and generating java
source code. It allows users to create an abstract syntax tree (AST) for the source code
of interest to facilitate analysis of the internal architecture at each code level. API Prober
retrieves ASTs to find code fragments representative of each service, which are then returned
to the user.

Cluster analysis [12,13] is a common approach to grouping objects to facilitate statisti-
cal analysis. Clustering is used in various fields, such as information retrieval, machine
learning, image analysis, and biometric analysis. Note that search engines also use clus-
tering to classify documents to streamline the retrieval of documents. There are several
clustering methods proposed to be applied in the field of Web services. Rahman et al. [14]
designed a two-level topic model for clustering Mashup services and recommending
APIs based on matrix factorization. Fletcher [15] proposed a method that considers user-
personalized preferences to make personalized web API recommendations by regularizing
matrix factorization. Zou et al. [16] devised a service clustering framework by integrat-
ing a deep neural network and considering service composability relationships. All the
above methods effectively cluster and recommend services; however, they require data of
mashups or service invocations, which are difficult to acquire in typical situations. Hence,
we plan to design a clustering scheme for Web APIs without the data of mashups or service
utilizations, to facilitate the identification of relevant services further.

There are a lot of API directory services to allow users to search for and understand
Web services. APIs.io [17] is an experimental API website using APIs.json to describe
API operations and find APIs on the internet via query results. APIs.guru [3] lists APIs
based on OAS with basic and detailed information. Mashape [18] collects and displays
APIs using a market-oriented approach similar to that seen on Google Play and the App
store. Mashape also provides a fixed code example for each API and allows online testing.
Mashape has been integrated with RapidAPI [4] to provide advanced functionality, such as
API category, popular APIs, and API recommendations based on QoS (quality of service).
ProgrammableWeb [3] lists more than 20,000 RESTful APIs with basic API information
and links to external web pages with more detailed information. Client code examples are
presented in code templates or related articles. Note that new or non-mainstream APIs
seldom include the resources users require, and ProgrammableWeb requires that users
manually indicate the type of service they seek. API Harmony [6] provides detailed API
content, analyzes the features of RESTful services, and retrieves code examples (on GitHub)
and articles (on Stack Overflow) for Web APIs.

We compared and analyzed the above-mentioned related service matching approaches
along with four dimensions: REST features, service clustering, client code discovery, and
service recommendation. The results are shown in Table 1 (× indicates “not supported”,
expresses “fully supported”, and N means “partially supported”). Unlike other systems,
API Prober can extract essential features related to REST and common service design
practices, find examples of client code, cluster APIs according to type, and recommend
relevant services to facilitate the implementation of Web APIs.

Table 1. Comparison of similar systems.

REST Features Service Clustering Client Code Discovery Service
Recommendation

APIs.io N × × ×
APIs.guru × × × ×

Mashape/Rapid API × N N # (QoS-based)

ProgrammableWeb × × N ×
API Harmony N × N ×

API Prober # # # # (interface-based)

Electronics 2023, 12, 1252 4 of 17

3. Approach Descriptions

As shown in Figure 2, the proposed API Prober system’s architecture is divided into
Runtime and Analyzer. The Analyzer block deals with the collection and analysis of data.
A Service Feature Analyzer module first analyzes the features of OAS documents retrieved
from APIs.guru. As recommended in [9], the proposed scheme identifies nine service
features common to RESTful service design to assist in identifying well-designed services
and figuring out how to use them. Descriptions of the services and the analyzed features are
then converted into a set of nodes and a set of relationships in the graph database. The OAS
Clusterer module performs clustering based on OAS. The Service Recommender module
collects services that are relevant to the target service. The API Usage Explorer module
crawls GitHub to find code examples as a reference for the assembly of new applications or
services. The API Prober Runtime block deals with the front-end user interface (UI). Upon
accessing the service content page, the Service Web Controller module translates the user’s
requests into instructions for the Service Manager. These commands encompass a variety
of tasks, such as service searches, service filtering via annotated tags, the presentation of
service information and clusters, service recommendations, and the provision of sample
client code for services.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 18

API Harmony ▲ ✕ ▲ ✕
API Prober ◯ ◯ ◯ ◯ (interface-based)

3. Approach Descriptions
As shown in Figure 2, the proposed API Prober system’s architecture is divided into

Runtime and Analyzer. The Analyzer block deals with the collection and analysis of data.
A Service Feature Analyzer module first analyzes the features of OAS documents re-
trieved from APIs.guru. As recommended in [9], the proposed scheme identifies nine ser-
vice features common to RESTful service design to assist in identifying well-designed ser-
vices and figuring out how to use them. Descriptions of the services and the analyzed
features are then converted into a set of nodes and a set of relationships in the graph da-
tabase. The OAS Clusterer module performs clustering based on OAS. The Service Rec-
ommender module collects services that are relevant to the target service. The API Usage
Explorer module crawls GitHub to find code examples as a reference for the assembly of
new applications or services. The API Prober Runtime block deals with the front-end user
interface (UI). Upon accessing the service content page, the Service Web Controller mod-
ule translates the user’s requests into instructions for the Service Manager. These com-
mands encompass a variety of tasks, such as service searches, service filtering via anno-
tated tags, the presentation of service information and clusters, service recommendations,
and the provision of sample client code for services.

Figure 2. API Prober: system architecture.

3.1. Transforming OAS into Nodes
Based on our previous research results [19,20], we divided the OAS into six parts to

ease the processing of service analyzing, clustering, recommendation, and client code re-
trieval. The following nodes are listed in the Neo4J graph database, including resource
nodes, path nodes, operation nodes, parameter nodes, status codes, and response nodes.
We then established relationships among the nodes; for example, resource nodes link to
one or more path nodes representing multiple service paths, and path nodes link to one
or more operation nodes indicating the operations associated with that service path. The
information is retrieved in accordance with the methods described in [20], including (1)
performing tokenization and stemming, (2) extracting topic words from OAS documents
using the LDA (Latent Dirichlet Allocation), and (3) conducting term expansion based on

Figure 2. API Prober: system architecture.

3.1. Transforming OAS into Nodes

Based on our previous research results [19,20], we divided the OAS into six parts
to ease the processing of service analyzing, clustering, recommendation, and client code
retrieval. The following nodes are listed in the Neo4J graph database, including resource
nodes, path nodes, operation nodes, parameter nodes, status codes, and response nodes.
We then established relationships among the nodes; for example, resource nodes link to one
or more path nodes representing multiple service paths, and path nodes link to one or more
operation nodes indicating the operations associated with that service path. The informa-
tion is retrieved in accordance with the methods described in [20], including (1) performing
tokenization and stemming, (2) extracting topic words from OAS documents using the
LDA (Latent Dirichlet Allocation), and (3) conducting term expansion based on WordNet

Electronics 2023, 12, 1252 5 of 17

to add expanded terms whose similarity (based on the Edge Counting Method [21]) to
an original term is larger than 0.9. Finally, the original words analyzed in Step (2) and
the expanded words analyzed in Step (3) are assigned to their corresponding nodes. All
the above information is stored in the graph database and used by the functionality of
API Prober.

Based on the stored nodes for an API, API Prober can integrate all related information
into an API page (an example is shown in Figure 3) to allow users to check the features of
an API. We believe the page can facilitate the accessibility of Web APIs.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 18

WordNet to add expanded terms whose similarity (based on the Edge Counting Method
[21]) to an original term is larger than 0.9. Finally, the original words analyzed in Step (2)
and the expanded words analyzed in Step (3) are assigned to their corresponding nodes.
All the above information is stored in the graph database and used by the functionality of
API Prober.

Based on the stored nodes for an API, API Prober can integrate all related information
into an API page (an example is shown in Figure 3) to allow users to check the features of
an API. We believe the page can facilitate the accessibility of Web APIs.

Figure 3. API page in API Prober: an example of a “Language Tool” API.

In addition, as mentioned, the REST resource-based design style has become the de
facto way for most Web services [9,22]. REST uses a resource identifier to determine the
specific resources involved in a service interaction. In API Prober, we sought to identify
multiple RESTful service features and practices commonly used in Web service design.
This makes it more likely that the users will be able to retrieve services with the desired
features and helps to avoid the inappropriate use of services. Thus, we identified the nine
REST Web service designs commonly used by developers to help users detect and filter
services: HTTPS support, User authentication, Maximum of 20 operations, REST-style
URIs, HTTP status code use, Explain error messages, Example API conversations, Output
JSON (JavaScript Object Notation), and Input format JSON. Please refer to [20] to check
the details.

3.2. Web API Clustering
As mentioned in [23], grouping the services effectively improve web service discov-

ery. Obtaining usable service recommendations requires that services undergo pre-classi-
fication to facilitate filtering out unrelated services and ease of browsing. There are three
main tracks for service clustering: vector space representation methods, model-based clus-
tering, and extraction of semantically relevant words [23]. We devised a hybrid way that
integrates the above three methods to divide OAS documents into multiple clusters. OAS
clustering in API Prober involves the following tasks: (1) calculating similarity scores to
compare OAS documents; (2) determining parameters for clustering; and (3) evaluating
clustering performance to facilitate optimization.

3.2.1. Document Concept Score (DCS)

Figure 3. API page in API Prober: an example of a “Language Tool” API.

In addition, as mentioned, the REST resource-based design style has become the de
facto way for most Web services [9,22]. REST uses a resource identifier to determine the
specific resources involved in a service interaction. In API Prober, we sought to identify
multiple RESTful service features and practices commonly used in Web service design.
This makes it more likely that the users will be able to retrieve services with the desired
features and helps to avoid the inappropriate use of services. Thus, we identified the nine
REST Web service designs commonly used by developers to help users detect and filter
services: HTTPS support, User authentication, Maximum of 20 operations, REST-style
URIs, HTTP status code use, Explain error messages, Example API conversations, Output
JSON (JavaScript Object Notation), and Input format JSON. Please refer to [20] to check
the details.

3.2. Web API Clustering

As mentioned in [23], grouping the services effectively improve web service discovery.
Obtaining usable service recommendations requires that services undergo pre-classification
to facilitate filtering out unrelated services and ease of browsing. There are three main
tracks for service clustering: vector space representation methods, model-based clustering,
and extraction of semantically relevant words [23]. We devised a hybrid way that integrates
the above three methods to divide OAS documents into multiple clusters. OAS clustering
in API Prober involves the following tasks: (1) calculating similarity scores to compare
OAS documents; (2) determining parameters for clustering; and (3) evaluating clustering
performance to facilitate optimization.

Electronics 2023, 12, 1252 6 of 17

3.2.1. Document Concept Score (DCS)

The Document Concept Score (DCS) is used to calculate the degree of similarity
between the target OAS file and a candidate OAS file, based on the resource node and
operation node of the target OAS. DCS calculation is based on the vector space model
(VSM). API Prober converts the original text pertaining to resources and operations into
Vow, and the set of WordNet-extended words into Vww, and aggregates the above sets
as Resource = { Vow, Vww } and Operation = { Vow, Vww }. Note that only the original
text is considered for the target OAS, whereas both the original and the extended text are
considered for the candidate OAS. The VSM’s term count model is employed to compute
the resource and operation scores, as follows:

simRS(T, C) = sim
(

VT
ow, VC

ow

)
+ WWN ∗ sim

(
VT

ow, VC
ww

)
(1)

where T and C, respectively, refer to the target and candidate OAS files; simRS(T, C) indi-
cates the VSM score for resources; and WWN indicates the weight of WordNet. The settings
for WWN are discussed later. Note that simOP(T, C) is also calculated using Equation (1).

The VSM scores for resources and operations are then used to obtain the final DCS, as
follows (Equation (2)):

DCS = WRS ∗ simRS(T, C) + WOP ∗ simOP(T, C) (2)

where WRS is the weight of simRS(T, C) in DCS and WOP is the weight of simOP(T, C) in
DCS. WRS and Wop range from 0 to 1, and their sum is 1.

Notably, the primary query mechanism of API prober is also realized based on the
DCS score. The query string can be treated as the resource’s name for a target API without
specifying other details. Matched APIs are retrieved and sorted according to the calculated
scores between the target API and all candidate APIs. The query functionality could better
realize the findability for Web APIs.

3.2.2. Parameter Settings for Clustering

We sought to determine the optimal combination of the four parameters with an
overriding effect on the clustering results:

• The number of LDA topics: API Prober uses the words of the retrieved LDA topics for
the annotation of OAS documents;

• Weights of resources and operations for DCS: API Prober uses the resource and
operations portions of OAS files to calculate the DCS score (Equation (2)). In general,
the resource part describes the overall purpose of the service, and the operations part
specifies the functionality of a service endpoint;

• Weight of WordNetScore: Using WordNet, API Prober generates additional terms
similar to the topic words produced by LDA. Word expansion can significantly increase
the probability of matching services and enhance matching precision. In API Prober,
WWN in Equation (1) ranges from 0 to 1;

• Clustering method applied: Finally, it is necessary to select a clustering method from
among complete linkage, average linkage, centroid linkage, and weighted linkage.
Note that single linkage [24] is not included due to the fact that it produces unreason-
ably large clusters rather than size-balanced clusters.

Clustering results are used to assess the clustering performance of various parameter
combinations. The evaluation methods and results are discussed in the following subsection.

3.2.3. Evaluation Methods and Parameter Settings for Service Clustering

Clustering evaluation usually calculates the similarities between clusters or the simi-
larities within clusters. In this research, we adopted the Adjusted Rand Index (ARI) [25],
a widely used external evaluation method, to assess the degree of similarity between

Electronics 2023, 12, 1252 7 of 17

two clustering results. A higher RI value (ranging from 0 to 1) indicates a high degree of
similarity between the expected and obtained clustering results.

To determine appropriate parameters, we assessed four clustering methods in terms
of ARI scores: complete linkage, average linkage, weighted linkage, and centroid linkage.
Average linkage yielded the highest ARI results and was thus selected for parameter
optimization: Clustering Threshold, 0.8; LDA Topic, 4; Resource Weight, 0.6; Operation
Weight, 0.4; and WordNet Weight, 0.9. Please check [20] for the evaluation details.

3.3. API Recommendations Based on Identified Clusters

API Prober can also recommend APIs for a target service based on matching input
and output parameters. Note that the recommendations are based on the results of service
clustering, i.e., recommended services belong to the cluster to which the target service
belongs. API recommendations in API Prober can be divided into recommendations for
substitutable services and mergeable services:

• Substitutable services have input and output parameters similar to those of the target
service. Substitutable services can be used as an alternative in situations where the
target service fails to satisfy user requirements pertaining to quality or functionality.
For example, a user could build a flight reservation system integrating multiple ticket
ordering services from various airlines;

• Mergeable services provide “horizontal” service compositions integrating multiple
services with similar inputs or outputs. Input-oriented mergeable services can be used
to integrate output data from different services, based on a given input. For example,
a user could build a housing recommendation system integrating information related
to the proximity of restaurants, convenience stores, and schools. Output-oriented
mergeable services can help users to collect multiple data items for multiple queries.
For example, a user could build a music discovery system that searches for songs
based on singer names, song names, composers, lyricists, and movie names.

In the following, we outline the three scoring methods used to generate service
recommendations:

1. Calculation of Parameter Concept Scores (PCS):

PCS indicates the degree of similarity between two parameters, PCt (matching target)
and PCs (matching source), based on VSM. The formal representation of the vectors of
PCt and PCs are PCt = { Vtoc }, which includes only the vector of the original concepts,
and PCs = { Vsoc, Vswc }, which includes vectors of the original concepts and expanded
WordNet concepts. The calculation is performed as follows (Equation (3)),

PCS(PCt, PCs) =
Vtoc·Vsoc + Vtoc·Vswc

‖ Voc1 ‖ · ‖ Voc2 ‖
(3)

2. Calculation of Hungarian Mapping Scores (HMS):

HMS indicate the degree of interface compatibility between two services, based on the
concept of input–output covering (IOC) proposed in our previous work [26]:

• HMSinput(TS, CS) : API Prober calculates the degree to which the input parameters
of the target service (TS) match the input parameters of a candidate service (CS);

• HMSoutput(TS, CS): API Prober calculates the degree to which the output parameters
of a CS match the expected output parameters of the TS.

For the input, API Prober calculates PCS from each parameter of the TS to each input
parameter of the CS. For the output, API Prober calculates PCS from each parameter of the
CS to each output parameter of the TS.

Subsequently, API Prober utilizes the Hungarian algorithm to determine the optimal
pairing by employing PCS to rate matching pairs. For inputs, API Prober divides the
total rating of the best combination by the number of service input parameters to obtain

Electronics 2023, 12, 1252 8 of 17

HMSinput(TS, CS). For outputs, API Prober divides the total rating of the best combination
by the number of output parameters to obtain HMSoutput(TS, CS).

3. Service Recommendation:

HMS and SRS (Equation (4)) are used to sort through candidate services and discard
those deemed inappropriate. We calculated three types of scores for the recommendation of
input-oriented mergeable services, output-oriented mergeable services, and substitutable
services based on HMSinput(TS, CS), HMSoutput(TS, CS), and SRS(TS, CS).

SRS(TS, CS) =
HMSinput(TS, CS) + HMSoutput(TS, CS)

2
(4)

Figure 4 illustrates the process used to determine whether a candidate service is a
substitutable or mergeable service. Briefly, services with input parameters similar to those
of the target service are recommended as input-oriented mergeable services and sorted
based on the HMSinput scores. Services with output parameters similar to those of the target
service are recommended as output-oriented mergeable services and sorted based on the
HMSoutput scores. Services with input and output parameters similar to those of the target
service are recommended as substitutable services and sorted based on the SRS scores.
Threshold t1 is used to filter out non-mergeable services for input, and t2 is used to filter
out non-mergeable services for output. In general, the service recommendation scheme in
Web API can effectively facilitate the interoperability of Web APIs by suggesting possible
replacements and composition for Web APIs.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 18

𝐻𝑀𝑆 (𝑇𝑆,𝐶𝑆). For outputs, API Prober divides the total rating of the best combination
by the number of output parameters to obtain 𝐻𝑀𝑆 (𝑇𝑆,𝐶𝑆).
3. Service Recommendation:

HMS and SRS (Equation (4)) are used to sort through candidate services and discard
those deemed inappropriate. We calculated three types of scores for the recommendation
of input-oriented mergeable services, output-oriented mergeable services, and substitut-
able services based on 𝐻𝑀𝑆 (𝑇𝑆,𝐶𝑆), 𝐻𝑀𝑆 (𝑇𝑆,𝐶𝑆), and 𝑆𝑅𝑆(𝑇𝑆,𝐶𝑆). 𝑆𝑅𝑆(𝑇𝑆,𝐶𝑆) = 𝐻𝑀𝑆 (𝑇𝑆,𝐶𝑆) + 𝐻𝑀𝑆 (𝑇𝑆,𝐶𝑆) 2 (4)

Figure 4 illustrates the process used to determine whether a candidate service is a
substitutable or mergeable service. Briefly, services with input parameters similar to those
of the target service are recommended as input-oriented mergeable services and sorted
based on the HMSinput scores. Services with output parameters similar to those of the target
service are recommended as output-oriented mergeable services and sorted based on the
HMSoutput scores. Services with input and output parameters similar to those of the target
service are recommended as substitutable services and sorted based on the SRS scores.
Threshold t1 is used to filter out non-mergeable services for input, and t2 is used to filter
out non-mergeable services for output. In general, the service recommendation scheme in
Web API can effectively facilitate the interoperability of Web APIs by suggesting possible
replacements and composition for Web APIs.

Figure 4. The process used to differentiate substitutable services from mergeable services. Figure 4. The process used to differentiate substitutable services from mergeable services.

Electronics 2023, 12, 1252 9 of 17

3.4. Discovering Service Client Code Examples

REST API client developers may face productivity problems when lacking usage
examples [27]. To address this issue, API Prober supports the discovery of API code
examples to assist in the implementation of APIs. GitHub provides hosting services for
software source code, which allows individuals and organizations to create and access code.
It is currently the world’s largest open-source code community. AUE (API Usage Explorer)
in API Prober is responsible for finding relevant code through GitHub for a given RESTful
service. According to [28], there are three ways to collect code from GitHub repositories:
GitHub Archive, GHTorrent, and the GitHub Search API. The first two provide only
archived data; therefore, we selected the GitHub Search API to collect code in this research.

At the start of the extraction process, AUE obtains the scheme, host, and basePath
from a resource node as well as the path name from a path node within the graph database.
These elements are then merged to produce a target service path (e.g., https://api.github.
com/emojis, accessed on 10 January 2023), as illustrated in Table 2. AUE then uses the
combined service path as a query parameter and calls the GitHub Search API to locate
potentially usable service codes.

Table 2. Example of service path combination.

Node Information

Resource
$.info.scheme: https

$.info.host: api.github.com
$.info.basePath:/

Path $.paths.{path_name}:/emojis

The extraction of code is a five-step process. The first 100 search results returned by the
GitHub Search API are initially retrieved. AUE uses GitHub scores to arrange the search
results in descending order. Next, the target service path is tokenized to facilitate matching
with the retrieved code files. Subsequently, text_matches (i.e., matching fragments of each
retrieved code file) are tokenized. The service path is then compared to text_matches to
identify if all of the tokens in the service path are included in the fragment, thereby filtering
out unsuitable results and preventing the retrieval of erroneous examples. In the final step,
qualified results are gathered and saved in the Neo4J database.

The examples collected by AUE are then re-processed using the proposed Java Method
Parser (JMP) module. This involves extracting the code fragments that use the target
service path.

In terms of filtering, the JMP first performs structural analysis of the code files collected
using AUE by inspecting the abstract syntax tree (AST) generated by the Java Parser. JMP
retrieves seven parts of the AST:

(1) Import: libraries used in the Java file, indicating the relevant functions that may be
used in the Java file;

(2) Class: class of the Java file;
(3) Class/instance variable: variables declared in the Java file at the class level;
(4) Inner class: one or more internal classes are contained in Java files, and these are

retrieved via a recursive search;
(5) Method name: name of a method declared in the class;
(6) Method body: internal representation of the method body;
(7) Statement: a statement line in the method, which is the smallest unit in Java Parser.

JMP uses the seven parts to compare code and the target service path. Here, it is crucial
to understand the service path’s design and the characteristics of the Java file to ensure
precision in the search for code fragments. We developed a novel approach to service path
matching, which includes four sub-methods to improve search precision:

https://api.github.com/emojis
https://api.github.com/emojis

Electronics 2023, 12, 1252 10 of 17

1. The service path may have a valid superset. When designing an API, the handling of
resources by the service provider tends to vary according to service operations, which
commonly results in service paths with a superset/subset design. For example, we
may have the following similar but different operations: http://mysearch.com/search,
http://mysearch.com/search/group. To reduce the probability of false searches when
searching for code fragments, JMP determines whether the retrieved path is part of a
longer path (i.e., a subset of the retrieved path) and keeps only the longer path;

2. APIs based on the REST style may contain resources that can be manipulated. A
service based on the REST style may contain resource-based operations such as
http://mysearch.com/search/group/{groupid};

3. The fact that there is no way to identify the arguments used in a resource-style
operation makes it difficult to match codes. In this case, we use a substitution symbol
(such as <<token>>) instead. JMP analyzes the URI according to its syntax (shown in
Figure 5) and uses an optional query component (question mark) as a separator during
tokenization. It keeps only the first token due to the fact that the second token may
contain the query string or the content to be transmitted. For example, for the service
path http://mysearch.com/search?q=wiki, JMP keeps only http://mysearch.com/search for
subsequent matching;

Electronics 2023, 12, x FOR PEER REVIEW 10 of 18

precision in the search for code fragments. We developed a novel approach to service path
matching, which includes four sub-methods to improve search precision:
1. The service path may have a valid superset. When designing an API, the handling of

resources by the service provider tends to vary according to service operations,
which commonly results in service paths with a superset/subset design. For example,
we may have the following similar but different operations:
http://mysearch.com/search, http://mysearch.com/search/group. To reduce the probability
of false searches when searching for code fragments, JMP determines whether the
retrieved path is part of a longer path (i.e., a subset of the retrieved path) and keeps
only the longer path;

2. APIs based on the REST style may contain resources that can be manipulated. A ser-
vice based on the REST style may contain resource-based operations such as
http://mysearch.com/search/group/{groupid};

3. The fact that there is no way to identify the arguments used in a resource-style oper-
ation makes it difficult to match codes. In this case, we use a substitution symbol
(such as <<token>>) instead. JMP analyzes the URI according to its syntax (shown in
Figure 5) and uses an optional query component (question mark) as a separator dur-
ing tokenization. It keeps only the first token due to the fact that the second token
may contain the query string or the content to be transmitted. For example, for the
service path http://mysearch.com/search?q=wiki, JMP keeps only
http://mysearch.com/search for subsequent matching;

Figure 5. URL syntax diagram for extraction of code examples.

4. Java language features: JMP uses semicolons and commas as terminal symbols when
matching service paths. Note that the semicolon indicates that the statement ends,
whereas the comma indicates the insertion of an argument in Java.
JMP uses the above service path matching method to extract appropriate client codes,

as follows.
1. Performing service path matching for different cases: there are two common situa-

tions involving using Web APIs in Java.
 Used after a class variable or an instance variable is declared: JMP searches for

class/instance variables using AST and compares them using the service path
matching method to determine whether the service path is included in the var-
iable. If the use of the service path is confirmed, then the variable’s name is rec-
orded, and the methods that use the variable are also retrieved and saved;

 Declared directly in the method and used in the method: JMP searches for all
methods using AST and compares them using service path matching to deter-
mine whether the service path is used in the method. If the use of the service
path is confirmed, then the method is saved;

 Used in the return statement: JMP also uses the service path matching method
to determine whether the service path is contained in the return statement. If

Figure 5. URL syntax diagram for extraction of code examples.

4. Java language features: JMP uses semicolons and commas as terminal symbols when
matching service paths. Note that the semicolon indicates that the statement ends,
whereas the comma indicates the insertion of an argument in Java.

JMP uses the above service path matching method to extract appropriate client codes,
as follows.

1. Performing service path matching for different cases: there are two common situations
involving using Web APIs in Java.

n Used after a class variable or an instance variable is declared: JMP searches for
class/instance variables using AST and compares them using the service path
matching method to determine whether the service path is included in the
variable. If the use of the service path is confirmed, then the variable’s name is
recorded, and the methods that use the variable are also retrieved and saved;

n Declared directly in the method and used in the method: JMP searches for
all methods using AST and compares them using service path matching to
determine whether the service path is used in the method. If the use of the
service path is confirmed, then the method is saved;

n Used in the return statement: JMP also uses the service path matching method
to determine whether the service path is contained in the return statement.
If the use of the service path is confirmed, then the method with the return
statement is also saved.

Electronics 2023, 12, 1252 11 of 17

2. Scores are assigned to extracted codes using the following scoring rules. (1) If the
example does not pass the previous step, then it is assigned a score of s1, (2) the scores
of s2 to s5 in Table 3 are based on the following guidelines:

n s2: Service paths are used only in the return statement and are not used in the
method. This kind of example is not very helpful for users;

n s3: service paths are used in instance/class variables or methods;
n s4 and s5: From the Maven website, we collected widely used HTTP libraries

commonly used to invoke Web APIs. If one or more libraries are used in
the source code, then it is likely that it is a service client invoking Web APIs.
Using the Import information in AST, JMP determines whether a code example
imports the HTTP library to determine whether it is a possible service code
example. The HTTP libraries supported by API Prober include Apache Com-
mons Httpclient, Apache Httpclient, Apache Httpcore, Google Volley, Loopj
Android Http, Mashape Unirest, okhttp3, and RestTemplate.

Table 3. Score evaluation mechanism.

Score Description

s1 Original results of GitHub search API

s2 Service path used in a return statement

s3 Service paths used in class/instance variables or methods

s4 Service path used in return statement and HTTP library applied

s5 Service paths used in class variables or class methods and HTTP library applied

Finally, we establish the relationship between the top three examples and the Path
node and store them in the Neo4J database. Notably, the support of retrieving service client
codes can considerably facilitate the reusability of Web APIs.

4. Experimental Evaluations

This section outlines the experiments used to evaluate the efficacy of the proposed
schemes for service clustering, service recommendation, and discovering examples of
service code. The codebase of API Prober is available at https://github.com/a11057002/
api-prober2-front (accessed on 10 January 2023) and https://github.com/a11057002/api-
prober2-back (accessed on 10 January 2023).

4.1. Analysis for Service Clustering
4.1.1. Experimental Setup

As mentioned in Section 3.2.2, based on the internal experiment by applying the objec-
tive indicator, Adjusted Rand Index (ARI), the experimental results showed that average
linkage yielded the highest ARI and was thus selected for parameter optimization (cluster-
ing threshold, 0.8; LDA topic, 4; resource weight, 0.6; and WordNet Weight, 0.9). Based on
the identified settings, we conducted the clustering for 1439 Web APIs including 24,819 end-
points on APIs.guru. To evaluate the clustering results, we raised the first research question
(RQ1): Does the proposed API clustering approach yield reasonable API clusters?

Accordingly, the relevance and cohesion in each large cluster (with more than ten services)
were evaluated and voted on by three evaluators (they are young software engineers familiar
with API integration). In other words, if two or more evaluators regarded an API cluster as
appropriate (from the perspective of API usage), then the cluster was regarded as valid.

4.1.2. Experimental Results

Figure 6 presents the number of services in all of the clusters. There was a total of
441 service clusters, which included 378 small clusters with less than 5 services, 46 medium
clusters with 5 to 9 services, and 17 large clusters with 10 to 90 services.

https://github.com/a11057002/api-prober2-front
https://github.com/a11057002/api-prober2-front
https://github.com/a11057002/api-prober2-back
https://github.com/a11057002/api-prober2-back

Electronics 2023, 12, 1252 12 of 17

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18

an API cluster as appropriate (from the perspective of API usage), then the cluster was
regarded as valid.

4.1.2. Experimental Results
Figure 6 presents the number of services in all of the clusters. There was a total of 441

service clusters, which included 378 small clusters with less than 5 services, 46 medium
clusters with 5 to 9 services, and 17 large clusters with 10 to 90 services.

Figure 6. Number of services in all service clusters.

The evaluation results and details for the top-five clusters are shown in Table 4. Over-
all, the results show that the produced clusters were semantically reasonable and the APIs
in the same cluster were semantically similar or relevant. In the clustering results, for ex-
ample, the topic identified in the largest cluster (with 90 services) was application perfor-
mance management, based on the fact that the associated services are meant to provide
insight into applications, infrastructure, and big data. For RQ1, we could conclude that
the proposed clustering approach can yield reasonable API clusters without relying on
any linkage records for services (e.g., mashups or service invocations).

Table 4. Details for top-5 clusters.

Topic
(Named

Manually)

Number
of

Services
Representative Services Evaluation

Results

Application
performance
management

90
• ApplicationInsightsManagementClient
• HDInsightManagementClient
• InfrastructureInsightsManagementClient

Valid

Database
management

87
• Azure SQL Database
• SqlManagementClient
• MariaDBManagementClient

Valid

Security 51
• Security Center
• AttestationManagementClient
• Cloud Identity

Valid

Network
management 37

• NetworkManagementClient
• NetworkAdminManagementClient
• Service Networking

Valid

Figure 6. Number of services in all service clusters.

The evaluation results and details for the top-five clusters are shown in Table 4. Overall,
the results show that the produced clusters were semantically reasonable and the APIs in
the same cluster were semantically similar or relevant. In the clustering results, for example,
the topic identified in the largest cluster (with 90 services) was application performance
management, based on the fact that the associated services are meant to provide insight into
applications, infrastructure, and big data. For RQ1, we could conclude that the proposed
clustering approach can yield reasonable API clusters without relying on any linkage
records for services (e.g., mashups or service invocations).

Table 4. Details for top-5 clusters.

Topic
(Named Manually) Number of Services Representative Services Evaluation Results

Application performance
management 90

• ApplicationInsightsManagementClient
• HDInsightManagementClient
• InfrastructureInsightsManagementClient

Valid

Database management 87

• Azure SQL Database
• SqlManagementClient
• MariaDBManagementClient

Valid

Security 51

• Security Center
• AttestationManagementClient
• Cloud Identity

Valid

Network management 37

• NetworkManagementClient
• NetworkAdminManagementClient
• Service Networking

Valid

Authorization management 28

• AuthorizationManagementClient
• PolicyClient
• Cloud User Accounts

Valid

Electronics 2023, 12, 1252 13 of 17

Although the clusters identified in this study could make it easier for users to find
similar or relevant services, there are two limitations:

• API Prober cannot directly produce an appropriate name for each cluster. The cluster
names could be given manually to improve the readability of the cluster graph;

• When new Web APIs are added, the proposed clustering process needs to be re-
conducted; it needs a considerable processing time.

4.2. Evaluation of Recommended Mergeable and Substitutable Services
4.2.1. Experimental Setup

To evaluate the efficacy of the proposed service recommendation method, we raised
the second research question (RQ2): Does the proposed API recommendation approach locate
appropriate services?

Accordingly, we collected the recommended services and verified if the recommen-
dation was suitable. In this experiment, the Top-K Precision indicator is commonly used
to evaluate the accuracy of data search systems. We, therefore, used Top-K Precision to
evaluate the efficacy of the proposed service recommendation system. The calculation
method of Top-K Precision SRPk(TS) was as follows (Equation (5)):

SRPk(TS) =

∣∣∣RSk
relevant

∣∣∣
k

(5)

where RSk
relevant indicates the number of satisfactory services among the Top-K recom-

mended services. Note that the designation “satisfactory” was based on voting by the three
evaluators (as in the previous experiment). Similarly, if two or more evaluators regarded a
recommended service as useful (from the perspective of application development), then
the service was deemed satisfactory. The evaluation criteria were as follows:

• Substitutable services: both input and output parameters of the recommended service
were sufficiently similar to those of the target service;

• Input-oriented mergeable services: input parameters of the recommended service
were sufficiently similar to those of the target service;

• Output-oriented mergeable services: output parameters of the recommended service
were sufficiently similar to those of the target service.

Note that we analyzed only the Top-1, Top-2, and Top-3 Precisions due to the difficul-
ties in discovering substitutable and mergeable services among public APIs. In many cases,
no services can be recommended or only a few are recommended for a small proportion
of target services. The three OAS files selected for each type of recommendation were
evaluated in terms of average SRP for the selected target services.

In addition, to the best of our knowledge, no existing service recommendation scheme
considers the similarity and relevancy of input and output of Web APIs; thus, there are no
comparable targets with the proposed system. Accordingly, we focused exclusively on the
SRP indicator in assessing the services recommended by API Prober.

4.2.2. Experimental Results

The experiment results are shown in Figure 7. It indicates that API Prober was able to
find suitable services for all three types of recommendations. The fact that all SPR indicators
exceeded 0.77 means that at least two of the three recommended services were deemed
useful. Note that all initially recommended services were deemed satisfactory for building
service applications. For RQ2, we could conclude that the proposed recommendation
approach can locate useful services for substitution or composition.

Electronics 2023, 12, 1252 14 of 17

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

Although the API prober could effectively recommend services, there are still erro-
neous recommendations uncovered. The problem is due to the descriptions of some of the
APIs being too short and vague to extract terms capable of representing the meaning of
the input/output parameters. For example, the term “resource” was too general to express
input/output parameters. If no other terms were extracted, subsequent recommendations
were compromised. In short, the quality of OAS for APIs can profoundly impact the pre-
cision of the proposed service recommendation scheme.

Figure 7. Top-K SRP for three types of service recommendation.

4.3. Evaluations of Discovery of API Client Code Examples
4.3.1. Experimental Setup

Finally, to evaluate the efficacy of the proposed method in discovering API client
codes, we raised the third research question (RQ3): Does the proposed retrieval approach for
service client code discover the correct code?

For the evaluation indicator, we adjusted the Top-K method to fit the characteristics
of the discovered Java code. This was necessary to account for the fact that multiple meth-
ods in the same Java file may use a given service, thereby precluding classification as en-
tirely correct or incorrect. In this research, Code search precision (CSP) was calculated as
follows (Equation (6)): 𝐶𝑆𝑃 (𝐸) = |𝐶𝑆𝑃 ||𝐶𝑆𝑃 | (6)

where k represents the Top-K Java files; 𝐸 represents a service path of the OAS file; 𝐶𝑆𝑃
represents all of the Java methods found in the first k Java files; and 𝐶𝑆𝑃 refers to
Java methods using the target service path. Note that if a retrieved code is “relevant” to
an API this was also based on voting by the three evaluators (as in the previous two ex-
periments).

We randomly selected 100 service paths, calculated their CSP values, and then calcu-
lated the overall accuracy, example precision (EP), as follows (Equation (7)): 𝐸𝑃 (𝑛) = ∑ 𝐶𝑆𝑃 (𝐸)𝑛 (7)

where EP refers to example precision, and n indicates the total number of OAS service
paths.

1

0.833
0.778

1 1

0.889

1

0.833
0.778

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top-1 Top-2 Top-3

Substitutable Services Service Input-Oriented Mergeable Services Output-Oriented Mergeable Services

Figure 7. Top-K SRP for three types of service recommendation.

Although the API prober could effectively recommend services, there are still erro-
neous recommendations uncovered. The problem is due to the descriptions of some of the
APIs being too short and vague to extract terms capable of representing the meaning of
the input/output parameters. For example, the term “resource” was too general to express
input/output parameters. If no other terms were extracted, subsequent recommendations
were compromised. In short, the quality of OAS for APIs can profoundly impact the
precision of the proposed service recommendation scheme.

4.3. Evaluations of Discovery of API Client Code Examples
4.3.1. Experimental Setup

Finally, to evaluate the efficacy of the proposed method in discovering API client
codes, we raised the third research question (RQ3): Does the proposed retrieval approach for
service client code discover the correct code?

For the evaluation indicator, we adjusted the Top-K method to fit the characteristics of
the discovered Java code. This was necessary to account for the fact that multiple methods
in the same Java file may use a given service, thereby precluding classification as entirely
correct or incorrect. In this research, Code search precision (CSP) was calculated as follows
(Equation (6)):

CSPk(Ei) =

∣∣∣CSPk
relevant

∣∣∣∣∣CSPk
∣∣ (6)

where k represents the Top-K Java files; Ei represents a service path of the OAS file; CSPk

represents all of the Java methods found in the first k Java files; and CSPk
relevant refers to Java

methods using the target service path. Note that if a retrieved code is “relevant” to an API
this was also based on voting by the three evaluators (as in the previous two experiments).

We randomly selected 100 service paths, calculated their CSP values, and then calcu-
lated the overall accuracy, example precision (EP), as follows (Equation (7)):

EPk(n) =
∑n

i=1 CSPk(Ei)

n
(7)

where EP refers to example precision, and n indicates the total number of OAS service paths.
In addition, to establish a benchmark to be compared, we also evaluated the search

results on the first page of the GitHub Search API (that is, the results without subsequent
analysis) and calculated EP for the same 100 service paths that serve as the search keywords.

Electronics 2023, 12, 1252 15 of 17

4.3.2. Experimental Results

The evaluation results are shown in Figure 8. The average precision of the Top-
1~Top-3 for API Prober was observed to exceed 0.87. In addition, API Prober outperforms
the original GitHub Search API obviously. In general, API Prober proved highly effective
in finding suitable code examples invoking Web APIs. For RQ3, we could conclude that
the proposed code retrieval approach could precisely discover the correct Java code in
most situations.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18

In addition, to establish a benchmark to be compared, we also evaluated the search
results on the first page of the GitHub Search API (that is, the results without subsequent
analysis) and calculated EP for the same 100 service paths that serve as the search key-
words.

4.3.2. Experimental Results
The evaluation results are shown in Figure 8. The average precision of the Top-

1~Top-3 for API Prober was observed to exceed 0.87. In addition, API Prober outperforms
the original GitHub Search API obviously. In general, API Prober proved highly effective
in finding suitable code examples invoking Web APIs. For RQ3, we could conclude that
the proposed code retrieval approach could precisely discover the correct Java code in
most situations.

Figure 8. EP Top-3 evaluation results.

Although the experiment results were relatively good, there were a number of cases
in which API Prober was unable to extract suitable fragments, as discussed in the follow-
ing and will be improved in future work:
1. Service path was not used: In some Java files, the service path is used as a string for

a specific output or description, rather than for service invocation. A real-world ex-
ample is presented in Table 5;

2. Variable names of excessive simplicity: Some class variables do not have specialized
and meaningful names, such that the Java Method Parser misidentified the class var-
iable name. In the real-world example in Table 6, the service path was declared in the
class variable (url), such that API Prober misidentified a code example;

3. Special use behavior: In some Java coding, the service path is split into different
pieces to operate different service paths under the same OAS service. In the real-
world example in Table 7, API Prober found the service path in the class variable and
its method; however, the user added other resource operations to the class variable,
resulting in an error of code discovery.

Table 5. Example 1: service path is not used.

Score 3

0.872 0.883 0.895

0.319
0.266 0.263

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Example Precision

API Prober GitHub Search API

Figure 8. EP Top-3 evaluation results.

Although the experiment results were relatively good, there were a number of cases in
which API Prober was unable to extract suitable fragments, as discussed in the following
and will be improved in future work:

1. Service path was not used: In some Java files, the service path is used as a string
for a specific output or description, rather than for service invocation. A real-world
example is presented in Table 5;

2. Variable names of excessive simplicity: Some class variables do not have specialized
and meaningful names, such that the Java Method Parser misidentified the class
variable name. In the real-world example in Table 6, the service path was declared in
the class variable (url), such that API Prober misidentified a code example;

3. Special use behavior: In some Java coding, the service path is split into different pieces
to operate different service paths under the same OAS service. In the real-world
example in Table 7, API Prober found the service path in the class variable and its
method; however, the user added other resource operations to the class variable,
resulting in an error of code discovery.

Table 5. Example 1: service path is not used.

Score 3

Service path https://www.googleapis.com/gmail/v1/users/{userId}/messages/send (accessed on 10
January 2023)

Error fragment endpoint.setDescription (“Give the API method endpoint to send email” + “ (E.g: -for gmail:
https://www.googleapis.com/gmail/v1/users/[userId]/messages/send)”);

https://www.googleapis.com/gmail/v1/users/{userId}/messages/send

Electronics 2023, 12, 1252 16 of 17

Table 6. Example 2: variable of excessive simplicity.

Score 5

Service path https://www.googleapis.com/blogger/v3/blogs/byurl (accessed on 10 January 2023)

Class variable static String url =
“https://www.googleapis.com/blogger/v3/blogs/byurl?url=http://strandedhhj.blogspot.com/”;

Error fragment String blogURL = mResponseObject.getString(“url”);

Table 7. Example 3: special use behavior.

Score 5

Service path https://api.ebay.com/sell/fulfillment/v1/order (accessed on 10 January 2023)

Class variable public static final String getOrderUrl = “https://api.ebay.com/sell/fulfillment/v1/order”;

Error fragment

public static void getOrder(String accessToken, String orderId) {
String value = httpClient.doGet(getOrderUrl+”/orderId”, headers, null);
System.out.println(value);
}

5. Conclusions

To realize the “FAIR” (Findability, Accessibility, Interoperability, and Reusability)
features for the usage of Web APIs, this paper introduces a novel system, API Prober, for
the analysis of OAS (OpenAPI Specification) documents, the extraction of service code
examples, the clustering of results to clarify the use of target RESTful services, and the dis-
covery of additional relevant services. Overall, the experimental results are relatively stable
and reach the research objectives: producing appropriate clusters for APIs, recommending
suitable APIs, and retrieving correct examples of service client code for most situations.

The limitations of API Prober are twofold: (1) API Prober is based on OAS documents,
which mainly support the descriptions for REST-style APIs. Event-driven services are not
supported by API Prober now; and (2) currently, API Prober can only discover service
client code in Java. In general, besides the above limitations, API Prober can inspect and
recommend REST-style APIs and retrieve Java code for utilizing a target API.

Our future plans include the following: (1) addressing the issues of incorrect code
discovery; (2) extraction of examples in various programming languages; (3) extraction of
security features in RESTful services (e.g., authentication, authorization, and data encryp-
tion); and (4) inviting software developers to use API Prober in their real-world projects to
provide heuristic evaluations on API Prober’s core functionality.

Author Contributions: Conceptualization, S.-P.M. and C.-J.L.; methodology, S.-P.M. and M.-J.H.; soft-
ware, M.-J.H.; validation, M.-J.H. and H.-J.C.; writing—original draft preparation, M.-J.H.; writing—
review and editing, S.-P.M.; supervision, S.-P.M.; project administration, S.-P.M.; funding acquisition,
S.-P.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science and Technology Council (NSTC) in
Taiwan, grant number 110-2221-E-019-039-MY3.

Data Availability Statement: The data are not publicly available due to the stored data contains
privacy data such as access tokens or API keys.

Acknowledgments: Thanks for Hsueh-Cheng Lu’s effort to maintain the codebase of API Prober.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fielding, R.T.; Taylor, R.N. Principled design of the modern web architecture. ACM Trans. Internet Technol. 2002, 2, 115–150.

[CrossRef]
2. Gat, I.; Remencius, T.; Sillitti, A.; Succi, G.; Vlasenko, J. The API economy: Playing the devil’s advocate. Cutter IT Journal 2013, 26, 6–11.

https://www.googleapis.com/blogger/v3/blogs/byurl
https://api.ebay.com/sell/fulfillment/v1/order
http://doi.org/10.1145/514183.514185

Electronics 2023, 12, 1252 17 of 17

3. ProgrammableWeb. Available online: http://www.programmableweb.com (accessed on 10 January 2023).
4. RapidAPI Hub. Available online: https://rapidapi.com/hub (accessed on 10 January 2023).
5. APIs.guru. Available online: https://apis.guru/ (accessed on 10 January 2023).
6. Wittern, E.; Muthusamy, V.; Laredo, J.A.; Vukovic, M.; Slominski, A.; Rajagopalan, S.; Jamjoom, H.; Natarajan, A. API Harmony:

Graph-based search and selection of APIs in the cloud. IBM J. Res. Dev. 2016, 60, 12:1–12:11. [CrossRef]
7. OpenAPI Specification (OAS). Available online: https://swagger.io/docs/specification/ (accessed on 10 January 2023).
8. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.;

Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 1–9. [CrossRef]
[PubMed]

9. Neumann, A.; Laranjeiro, N.; Bernardino, J. An Analysis of Public REST Web Service APIs. IEEE Trans. Serv. Comput. 2018, 14,
957–970. [CrossRef]

10. Webber, J. A programmatic introduction to neo4j. In Proceedings of the the 3rd Annual Conference on Systems, Programming,
and Applications: Software for Humanity, Tucson, AZ, USA, 19–26 October 2012; pp. 217–218.

11. JavaParser. Available online: http://javaparser.org/ (accessed on 10 January 2023).
12. Agrawal, R.; Phatak, M. A novel algorithm for automatic document clustering. In Proceedings of the 3rd IEEE International

Advance Computing Conference (IACC), Ghaziabad, India, 22–23 February 2013; pp. 877–882.
13. Reddy, V.S.; Kinnicutt, P.; Lee, R. Text Document Clustering: The Application of Cluster Analysis to Textual Document. In

Proceedings of the International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV,
USA, 15–17 December 2016; pp. 1174–1179.

14. Rahman, M.M.; Liu, X.; Cao, B. Web API Recommendation for Mashup Development Using Matrix Factorization on Integrated
Content and Network-Based Service Clustering. In Proceedings of the IEEE International Conference on Services Computing
(SCC), Honolulu, HI, USA, 25–30 June 2017; pp. 225–232.

15. Fletcher, K. Regularizing Matrix Factorization with Implicit User Preference Embeddings for Web API Recommendation. In
Proceedings of the IEEE International Conference on Services Computing (SCC), Milan, Italy, 8–13 July 2019; pp. 1–8.

16. Zou, G.; Qin, Z.; He, Q.; Wang, P.; Zhang, B.; Gan, Y. DeepWSC: Clustering Web Services via Integrating Service Composability
into Deep Semantic Features. IEEE Trans. Serv. Comput. 2022, 15, 1940–1953. [CrossRef]

17. APIs.io. Available online: http://apis.io/ (accessed on 10 January 2023).
18. Mashape. Available online: https://www.mashape.com/ (accessed on 10 January 2023).
19. Ma, S.-P.; Lin, H.-J.; Hsu, M.-J. Semantic Restful Service Composition Using Task Specification. Int. J. Softw. Eng. Knowl. Eng.

2020, 30, 835–857. [CrossRef]
20. Ma, S.-P.; Hsu, M.-J.; Chen, H.-J.; Su, Y.-S. API Prober—A Tool for Analyzing Web API Features and Clustering Web APIs; Springer

International Publishing: Cham, Switzerland, 2020; pp. 81–96.
21. Li, Y.; Bandar, Z.A.; McLean, D. An approach for measuring semantic similarity between words using multiple information

sources. IEEE Trans. Knowl. Data Eng. 2003, 15, 871–882. [CrossRef]
22. Haupt, F.; Leymann, F.; Scherer, A.; Vukojevic-Haupt, K. A Framework for the Structural Analysis of REST APIs. In Proceedings

of the IEEE International Conference on Software Architecture (ICSA), Gothenburg, Sweden, 3–7 April 2017; pp. 55–58.
23. Agarwal, N.; Sikka, G.; Awasthi, L.K. Web service clustering approaches to enhance service discovery: A review. In Recent

Innovations in Computing; Springer: Singapore, 2021.
24. Aggarwal, C.; Zhai, C. A Survey of Text Clustering Algorithms. In Mining Text Data; Springer: Berlin/Heidelberg, Germany, 2012.
25. Vinh, N.X.; Epps, J.; Bailey, J. Information theoretic measures for clusterings comparison: Variants, properties, normalization and

correction for chance. J. Mach. Learn. Res. 2010, 11, 2837–2854.
26. Ma, S.-P.; Chen, Y.-J.; Syu, Y.; Lin, H.-J.; Fanjiang, Y.-Y. Test-Oriented RESTful Service Discovery with Semantic Interface

Compatibility. IEEE Trans. Serv. Comput. 2021, 14, 1571–1584. [CrossRef]
27. Sohan, S.M.; Maurer, F.; Anslow, C.; Robillard, M.P. A study of the effectiveness of usage examples in REST API documentation.

In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Raleigh, NC, USA,
11–14 October 2017; pp. 53–61.

28. Cosentino, V.; Izquierdo, J.L.C.; Cabot, J. Findings from GitHub: Methods, datasets and limitations. In Proceedings of the
IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), Austin, TX, USA, 14–15 May 2016; pp. 137–141.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.programmableweb.com
https://rapidapi.com/hub
https://apis.guru/
http://doi.org/10.1147/JRD.2016.2518818
https://swagger.io/docs/specification/
http://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
http://doi.org/10.1109/TSC.2018.2847344
http://javaparser.org/
http://doi.org/10.1109/TSC.2020.3026188
http://apis.io/
https://www.mashape.com/
http://doi.org/10.1142/S0218194020400094
http://doi.org/10.1109/tkde.2003.1209005
http://doi.org/10.1109/TSC.2018.2871133

	Introduction
	Background and Related Work
	Approach Descriptions
	Transforming OAS into Nodes
	Web API Clustering
	Document Concept Score (DCS)
	Parameter Settings for Clustering
	Evaluation Methods and Parameter Settings for Service Clustering

	API Recommendations Based on Identified Clusters
	Discovering Service Client Code Examples

	Experimental Evaluations
	Analysis for Service Clustering
	Experimental Setup
	Experimental Results

	Evaluation of Recommended Mergeable and Substitutable Services
	Experimental Setup
	Experimental Results

	Evaluations of Discovery of API Client Code Examples
	Experimental Setup
	Experimental Results

	Conclusions
	References

