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Abstract: The Norton equivalent model based on the transfer function and the frequency domain
analysis method for inverter resonance analysis lacks a comprehensive analysis of the resonant char-
acteristics, and more information about the resonant key components and the degree of participation
cannot be obtained. In this paper, a decomposed conductance model is proposed to characterize the
resonance characteristics of the multi-inverter grid-connected system and the effect of the equivalent
control link of the inverter on the resonance in more detail by combining the modal analysis method
and the sensitivity analysis method. Firstly, based on αβ coordinates, the conductance division is
carried out for the dual-loop inverter control link with the voltage external loop and current internal
loop using capacitor-current feedback damping, and the inverter model based on the decomposition
conductance is derived. The mathematical model of the multi-inverter grid-connected system is then
established. Secondly, the resonance characteristics of the system are analyzed by combining the
modal and frequency domain analysis methods when the number of inverters, inverter parameters,
and grid-side impedance are changed. Thirdly, the degree of involvement of the system components,
especially the equivalent control link of the inverter in resonance conditions, is determined in combi-
nation with the proposed model and the sensitivity analysis method, which is the basis for proposing
an effective suppression strategy. Finally, a simulation model is built to verify the proposed method
and the analysis results.

Keywords: multi-inverter; decomposed conductance model; modal analysis; sensitivity; harmonic resonance

1. Introduction

With the increasing proportion of new energy sources, the high proportion of electronic
devices in power systems will be realized in the near future [1,2]. As an important interface
between new energy and the power grid, the inverter has also caused much concern [3].

Nowadays, it is more and more common for multi-inverters to be connected to the
power grid together [4]. As the number of grid-connected inverters increases, the inter-
active coupling between the grid-connected inverters and the power grid becomes more
sophisticated [5,6], while the operating characteristics of the inverters have a greater impact
on the stability of the power grid [7]. In [8,9], the dynamic and power losses of the converter
were decreased by using the switched capacitor structure. In [10], an inverter topology
is proposed to decrease the leakage current, which can increase efficiencies. In [11], the
impedance analysis method was introduced to the grid-connected inverter system, where
the power grid is equated as a series of an ideal voltage source and impedance and the
grid-connected inverter is modeled as a series of a current source and impedance, which
is used for correlation analysis of the system’s harmonic stability. In [12], the method is
extended to a multi-inverter grid-connected system by considering the output conduc-
tance of other inverters and the conductance of the grid passive components as a whole
for stability analysis; however, this method requires detailed transfer function models of
the components, which can be quite computationally complicated with higher inverter
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dimensions [13,14]. In [15], the resonant stability domain criterion considering the influence
of grid impedance and grid background harmonics and its optimal design scheme were
established, and in [16], the relationship among the number of inverters connected to the
power grid, filter parameters, and grid impedance was studied, and the larger the grid
equivalent impedance and the more inverters connected in parallel, the more the resonant
frequency of the system decreased.

In [17], a multi-inverter homodyne equivalence model was developed to quantify the
degree of interaction between the original system and the added inverters, and this model
was used to evaluate the effect of the interaction on the damping characteristics. In [18],
a mechanical conductance model of a multi-virtual synchronous motor grid-connected
system is constructed based on the active-frequency control loop to study the power-
frequency oscillation characteristics under different parameters. In [19], a harmonic model
of a large PV field station was established with the underground cables, field station
transformers, and other equipment taken into account, and it was concluded that the LCL
filter and the cables would each produce two resonant bands. However, the above literature
still analyzes the system using the traditional Norton equivalent model, which is difficult
to comprehensively reflect the response characteristics of the inverter and the grid.

In [20], modal analysis was applied to the resonance characteristics analysis of power
systems, which can determine important information such as the resonance center and
the participation of components in the resonance, effectively solving the problems of
complex calculation processes and the low amount of response information of traditional
spectrum analysis. In [21–23], resonant modal analysis was carried out for multi-inverter
grid-connected systems, and the impedance model of the system was established to study
the resonant interaction between the inverter and the power grid. However, there are few
studies on the effective suppression of resonance by analyzing the degree of involvement
of the key components of the system in resonance.

In this paper, based on the αβ coordinates, the conductance division of the double-
loop inverter control link with capacitor-current feedback damping is carried out, and the
inverter impedance model based on the decomposition conductance method is proposed.
The mathematical model of the multi-inverter grid-connected system is established based
on the decomposition conductance model. Also, the resonance characteristics of the system
are analyzed by combining the modal and frequency domain analysis methods when the
number of inverters, inverter parameters, and grid-side impedance are changed, and then
the degree of participation of each component of the system in resonance is determined by
sensitivity analysis and an effective suppression strategy is proposed. Finally, a simulation
model was built to verify the resonance characteristics of the system.

2. Modal Analysis Method

The modal analysis method is a method introduced by dynamics and extended to the
resonance analysis of electrical power systems. Assuming that the system occurs in parallel
resonance and the resonant frequency is f, then the nodal voltage equation of the system is
given in (1).

U f = Y−1
f I f (1)

where Uf is the node voltage vector, Y f is the node derivative matrix with resonant frequency
f, and If is the node current vector.

The decomposition of the nodal derivative matrix is given in Equation (2).

Y f = LΛT (2)

where L is the left eigenvector matrix, T is the right eigenvector matrix, and Λ is the
diagonal matrix of eigenvalues. Equation (3) can be obtained from (1) and (2).

U f = LΛ−1TI = LΛ−1V (3)
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TU f = Λ−1TI = J (4)

where V is the modal voltage vector and J is the modal current vector, which are related as
in Equation (5): 

U f 1
U f 2

...
U f n

 =


λ−1

f 1 0 · · · 0
0 λ−1

f 2 · · · 0
...

...
. . .

...
0 0 · · · λ−1

f n




J f 1
J f 2
...

J f n

 (5)


U f 1
U f 2

...
U f n

 = λ−1
m


L1mTm1 L1mTm2 · · · L1mTmn
L2mTm1 L2mTm2 · · · L2mTmn

...
...

. . .
...

LnmTm1 LnmTm2 · · · LnmTmn




I f 1
I f 2
...

I f n

 (6)

The reciprocal of the eigenvalue is defined as the modal impedance of the system,
and the smallest eigenvalue corresponds to the critical mode of the system. The resonance
position can be judged based on the modal impedance because a very small modal cur-
rent can also produce a large modal voltage. It can be seen that the modal impedance
in this mode is much larger than the other modal impedances with a critical mode m
from Equation (6).

The modal resonance can be characterized by the diagonal elements of the matrix
of the above equation for its observability and excitability, which can also be called the
participation factor, and the center of resonance can be determined by the calculation of the
participation factor.

3. Single Inverter Modeling Based on Decomposed Conductance Model
3.1. Norton Equivalent Modeling

The grid-connected structure of the three-phase inverter is shown in Figure 1. The
inverter is connected to the power grid through the point of common coupling (PCC).
The parameters in Figure 1 are explained as follows: iL is the inverter-side output current,
iC is the filter capacitor current, ig is the grid-connected current, and ug is the grid voltage.
L1 is the filter inverter-side inductance, L2 is the filter grid-side inductance, C is the filter
capacitor, and ZL1(s), ZL2(s), and ZC(s) are their corresponding transfer functions. Lg is the
power grid-side reactance in Equation (7).

ZL1(s) = sL1, ZC(s) = 1/(sC), ZL1(s) = sL2 (7)
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The control mathematical model of the inverter is shown in Figure 2. From the
Bode diagram of the open-loop transfer function using damping control and undamped
control in Figure 3, it can be seen that the damping control has a higher stability margin.
To avoid the analysis error caused by the phase-locked loop [21], the control with αβ

coordinate system is used, and the active damping control with capacitor current feedback
is used to increase the system damping [24]. Where KPWM is the inverter equivalent link,
Hi1 is the capacitor current feedback coefficient, and Hi2 is the grid-connected current
feedback coefficient.

GQPR(s) = kp +
krωis

s2 + 2ωis + ω2
0

(8)
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The quasi-proportional resonance controller GQPR(s) is used as the current loop
modulator in Equation (8), in order to have a better tracking effect of the AC current in αβ

coordinate system.
The establishment of the Norton Equivalence Model is shown in Figure 4. To better

analyze the system, the control mathematical model of the inverter is equivalently trans-
formed based on Mason’s formula. Gx1(s) and Gx2(s) are the transformed equivalent links
in Figure 4a.

Gx1(s) =
KPWMGQPR(s)ZC(s)

ZL1(s) + ZC(s) + Hi1KPWM
(9)

Gx2(s) =
ZL1(s) + ZC(s) + Hi1KPWM

{ZL1(s)ZL2(s) + Hi1KPWMZL2(s) + [ZL1(s) + ZL2(s)]ZC(s)}
(10)
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The inverter Norton two-port equivalent model is derived as shown in Figure 4b,
where the controlled excitation current source Gi(s)iref(s) is connected in parallel with the
conductance Yi(s) to the PCC and then to the power grid, and there are:

ig(s) = Gi(s)ire f (s)−Yi(s)uPCC(s) (11)

Gi(s) =
KPWMGQPR(s)

A(s)
(12)

Yi(s) =
s2L1C + sCHi1KPWM + 1

A(s)
(13)

A(s) = s3L1L2C + s2L2CHi1KPWM + s(L1 + L2) + Hi2KPWMGQPR(s) (14)

3.2. Decomposition Conductance Modeling

The excitation source iref is equated to the input quantity in the control in order to
facilitate the analysis of the effect of iref on the inverter’s grid-connected output current [25].
The control structure of Figure 3 is adjusted by dividing the conductance [18] to separate
the antecedent coefficients of iref in the preliminary Norton circuit in Figure 5a, and the
two-port equivalent model under double-decomposition conductance is derived based
on the divided control structure with Yr1 and Yr2 in Equation (15) as the first and second
decomposition conductance, respectively, in Figure 5b.

Yr1 = 1
Gx1(s)

= s2L1C+sCHi1KPWM+1
KPWMGQPR(s)

Yr2 = Gx2(s)
1+Gx1(s)Gx2(s)(Hi2−1) =

s2L1C+sCHi1KPWM+1
[s3L1L2C+s2L2CHi1KPWM+s(L1+L2)+(Hi2−1)KPWMGQPR(s)]

(15)
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Although the above adjustment can achieve the desired analytical effect, the first and
second decomposed derivatives are only equivalent transformations of the control and



Electronics 2023, 12, 1251 6 of 19

have no practical physical meaning. Yr2 can be further decomposed into YL2 and Yr2′ in
Equation (16), where Zr2, ZL2, and Zr2′ are the reciprocals of Yr2, YL2, and Yr2′ , respectively.

Zr2 = 1
Yr2

=
[s3L1L2C+s2L2CHi1KPWM+s(L1+L2)+(Hi2−1)KPWMGQPR(s)]

s2L1C+sCHi1KPWM+1

= sL2 +
sL1+(Hi2−1)KPWMGQPR(s)

s2L1C+sCHi1KPWM+1 = ZL2 + Zr2′ =
1

YL2
+ 1

Yr2′

(16)

The further divided control structure and the two-port equivalent model are shown
in Figure 6a,b. Yr1, Yr2′ , and YL2 are the first, second, and third decomposed conductors,
respectively, and the middle node of conductors Yr2′ and YL2 is the midpoint of the LCL filter.
The midpoint voltage corresponds to the voltage uC of the filter capacitor, so that the model
has a clear physical meaning, and the multi-inverter system model will be established based
on this proposed decomposed conductance model for subsequent analysis and verification.
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tion conductance small signal model; (b) The two-port equivalent model under triple decomposition
conductance.

4. Multi-Inverter System Modeling Based on a Decomposed Conductance Model

An equivalent model of the multi-inverter grid-connected system is established, as
shown in Figure 7, based on the above two-port equivalent model under the triple decompo-
sition conductance of the single inverter with the power grid side impedance consideration.
Clusters of inverters with the number of n are connected to the power grid through PCC,
and the grid impedance is expressed by the pure inductive conductance Yg.
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The nodes are set in sequence for n inverters, which are numbered, and PCC is
numbered n + 1 in Figure 7. The node derivative matrix of the system satisfies the following
node voltage equation, as shown in Equation (17).

Y11 0 · · · 0 Y1(n+1)
0 Y22 · · · 0 Y2(n+1)
...

...
. . .

...
...

0 0 · · · Ynn Yn(n+1)
Y(n+1)1 Y(n+1)2 · · · Y(n+1)n Y(n+1)(n+1)




U1
U2
...

Un
UPCC

 =


M1ire f ,1
M2ire f ,2

...
M3ire f ,2
UgYg

 (17)

where the matrix elements of the mth inverter satisfy Equation (18).
Ymm = Yr1,m

∣∣∣∣Yr2′ ,m + YL2,m
Ym(n+1) = Y(n+1)m = −YL2,m

Y(n+1)(n+1) = Yg +
n
∑

i=1
YL2,i

Mm = Yr1,m
∣∣∣∣Yr2′ ,m/Yr1,m

(18)

Combining the nodal voltage matrix equation and Kirchhoff’s law, the mth inverter
grid-connected current command is derived as shown in Equation (19).

ig,m = YL2,m(Um −UPCC) (19)

The mth node voltage equation is obtained from the node voltage matrix in Equation (20).

YmmUm + Ym(n+1)UPCC = Mm Ire f ,m (20)

Combining with Equation (11), the expression for the grid-connected current of the
mth inverter is derived as shown in Equations (21)–(24).

ig,m = Rm(s)ire f ,m(s)−
n

∑
k=1,k 6=m

Pm,k(s)ire f ,k(s)− Sgm(s)ug(s) (21)



Rm(s) =
Ytemp,m
Yr1,m

·
Yg+

n
∑

i=1,i 6=m
YL2,i||Yeq,i

Yg+
n
∑

i=1
YL2,i||Yeq,i

Pm,k(s) = Ytemp,m
YL2,k||Yeq,k/Yr1,k

Yg+
n
∑

i=1
YL2,i||Yeq,i

,

k ∈ [1, n], k ∈ Z, k 6= m

Sgm(s) = Ytemp,m
Yg(s)

Yg+
n
∑

i=1
YL2,i||Yeq,i

(22)

Ytemp,m = Yeq,m||YL2,m =
YL2,m·Yr1,m

∣∣∣∣Yr2′ ,m

Yr1,m
∣∣∣∣Yr2′ ,m + YL2,m

(23)

Yeq,m = Yr1,m
∣∣∣∣Yr2′ ,m (24)

Yeq.m is characterized by the equivalent conductance of node m, (m = 1,..., n) on the left
side, and Ytemp,m is characterized by the sum conductance of the impedances (equivalent
impedance on the left side and impedance of the grid-side filter inductor to the PCC on
the right side) on both sides of node m, which is the midpoint of the filter. It can be seen
that in a multi-inverter grid-connected system, the grid-connected current of the inverter
is affected by its own current command Rm(s), the coupling command Pm,k(s) with other
inverters, and the power grid voltage disturbance command Sgm(s). It can be seen that all
three command effects are present if grid impedance exists. The resonance of the system is
analyzed by the amplitude and frequency response characteristics of each command.
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5. Resonant Modal Analysis of a Multi-Inverter Grid-Connected System

The modal analysis method is more convenient than the traditional resonance analysis,
and resonance information such as resonance distribution, resonance participation factor,
and component sensitivity can be analyzed more comprehensively through the node
derivative matrix.

According to the inverter parameters in Table 1, the grid-connected current transfer
function derived above and the resonant mode analysis method are used to further compare
and analyze the resonance characteristics of the system, as well as the interaction effects
of the system. The detailed steps of the resonant modal analysis of a multi-inverter grid-
connected system are shown in Figure 8.

Table 1. The parameters of the grid-connected inverter.

Parameters Symbol Value

Power grid voltage Ug/V 220
Power grid impedance Lg/mH 0.5
Inverter-side inductor L1/mH 1.2
Grid-side inductance L2/mH 0.3

Filter Capacitor C/µF 28

Quasi-proportional resonance controller parameters
kp 3
ki 100

ωi/rad·s−1 5
Capacitive current feedback coefficient Hi1 3

Grid-connected current feedback coefficient Hi2 1
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5.1. Variation in the Number of Inverters n

The parameters of the grid-connected inverter are selected in Table 1. Only the
number of grid-connected inverters n is changed in the following analysis. The mag-
nitude and frequency response characteristic curves of the three commands—the grid-
connected current inverter’s own current command Rm(s), the coupling command Pm,k(s)
with other inverters, and the grid voltage disturbance command Sgm(s)—are plotted when
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n is changed, and the resonant modal analysis of the system is carried out to plot the modal
impedance curve.

From Figures 9 and 10, it can be obtained that there is only one resonant dominant
mode with one resonant frequency if n = 1; when n ≥ 2, two resonant dominant modes
are generated due to the interaction excitation between inverters and between inverters
and the power grid, which excite low-frequency resonance and high-frequency resonance,
respectively. When the number of inverters n (n ≥ 2) increases, the resonant frequency
and peak of the high-frequency resonance generated by the system do not change with
the increase in n. The resonant frequency of the low-frequency resonance generated by
the system gradually shifts to the lower part with the increase of n, and its amplitude also
decreases.
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Meanwhile, it can be seen that the characteristics of the inverter’s own current com-
mand Rm(s) and the coupling command Pm,k(s) of other inverters contain low-frequency
and high-frequency characteristics. While the grid voltage disturbance command Sgm(s)
can only reflect the low-frequency characteristics because the interaction between the in-
verters and the power grid cannot yet excite the high-frequency resonance. The resonance
characteristics of both low frequency and high frequency can only be generated by multi-
source excitation between inverters. The participation factor in the resonant modal analysis
method can well reflect the degree of excitation and contribution of each node to various
resonant parts. The participation factor of each node with a different number of inverters is
calculated, as shown in Table 2. In the low-frequency resonance part, both the inverter and
the grid have excitation to it, and the participation factor shows that the inverter is more
excitable than the grid; in the high-frequency resonance part, the inverter mainly excites the
high frequency, while the participation factor of PCC to the high-frequency part is always
0, so there is no excitability; as the number of inverters increases, the participation factor of
the inverter to the low-frequency part decreases, and the excitability to the low-frequency
part decreases, while its participation to the high-frequency part increases, so the inverter
is more excitable to the high-frequency part.

Table 2. The participation factor of each node when the number of grid-connected inverters is changed.

n Frequency/pu
Node

1 2 3 4 5

2
23.1 0.3865 0.3865 0.2270 — —
38.1 0.5000 0.5000 0 — —

3
21.5 0.2711 0.2711 0.2711 0.1867 —
38.1 0.6667 0.6667 0.6667 0 —

4
20.6 0.2106 0.2106 0.2106 0.2106 0.1578
38.1 0.7480 0.7497 0.7414 0.7414 0

In Figure 10, it can be seen that Rm(s) can reflect the other two command characteristics.
Therefore, the subsequent section only quantitatively analyzes Rm(s).

In this paper, the multi-inverter system at the same connection point is considered,
and the inverters of the same manufacturer with the same model parameters are used to
ensure cost. Using the inverter models in Table 1, the frequency domain analysis of the
inverter’s own coupling command Rm(s) and the resonant mode analysis of the system
node conduction matrix are used to further analyze the degree of influence on the resonance
characteristics of the system when the grid impedance, the inverter controller parameters,
and the inverter filter parameters are varied.

5.2. Impact of Grid Impedance Fluctuations

The system with the number of inverters n = 2 is selected, and the parameters other
than the grid impedance are fixed. In Figure 11, the grid impedance Lg is increased from
0.1 mH to 1 mH by ignoring the influence of grid resistance, and it is known from Figure 11
(left) that in the low-frequency resonance part, the modal resonance frequency moves to a
lower value with the increase of grid impedance, and the modal impedance, that is, the
resonance peak, decreases; in the excitation of high-frequency resonance, the resonance
frequency as well as the peak do not change because the grid-side impedance does not
participate in the excitation of high-frequency resonance, the frequency domain also verifies
the above-mentioned analysis in Figure 11 (right).
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Figure 11. The resonance characteristic curve changes when Lg is changed.

5.3. Impact of Changes in Inverter Control Parameters

The parameters of the quasi-proportional resonance controller are changed to observe
its effect on the resonance characteristics of the system. Let kp increase from 3 to 3.8, and it
can be found that the resonant frequency of the low-frequency part, as well as the high-
frequency part of the mode, does not change, while the resonant mode impedance of the
low-frequency part increases with the increase of kp, and the high-frequency part increases
in the interval of 3–3.6 and decreases in the interval of 3.6–3.8, and the high-frequency
resonance risk is exacerbated, which is also a consistent conclusion in the frequency domain
analysis in Figure 12a. From Figure 12b, let kr increase from 100 to 300; at this time, the
low-frequency and the high-frequency resonant parts are affected. In the low-frequency
resonant part, the mode resonant frequency and mode impedance both move to the low
frequency with the increase of kr; in the high-frequency resonant part, the mode resonant
frequency decreases and the resonant mode impedance increases with the increase of kr. In
addition, the frequency domain analysis also verifies the accuracy of the modal analysis
regulation.
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5.4. Impact of LCL Filter Parameter Changes

The LCL filter parameters are varied to further observe the effect on the resonant
characteristics of the system. By increasing the inverter-side inductor L1 from 0.8 mH to



Electronics 2023, 12, 1251 12 of 19

1.6 mH, it can be seen in Figure 13a that when L1 is increased, the resonant frequency of the
low-frequency resonant part shifts to the low frequency, but its corresponding resonant
mode impedance increases; the resonant frequency of the high-frequency resonant part
decreases; the modal impedance, however, increases. As shown in Figure 13b, when L2
increases, the resonant frequency and resonant mode impedance of the low-frequency
part and high-frequency resonant part decrease; when the filter capacitor C increases in
Figure 13c, the mode regulation of low-frequency and high-frequency resonance is the
same, and its resonant frequency and resonant mode impedance decrease; meanwhile, the
frequency domain analysis also verifies the mode analysis regulation when L1 and L2 are
changed. When C is changed, although the resonance peak corresponding to the frequency
domain analysis has a tendency to increase slightly, its spike state tends to smooth out, and
the risk of resonance decreases. The modal impedance reflects the degree of resonance
intensity and does not have a practical meaning, so it is consistent with the results of the
modal analysis.
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5.5. Sensitivity Analysis

The participation factor of the modal analysis method can calculate the excitability and
observability of the system nodes for the resonance, while the modal sensitivity calculation
can further clarify the influence of the critical components on the resonance characteristics,
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which can also provide guidance for the suppression of resonance. Define the sensitivity
matrix in Equation (25):

Sλ = lktk (25)

For a component connected only in parallel at node i, it takes the form of the conduc-
tance expression Yp = G + jB and has a relationship in Equation (26):

∂λk
∂Yp

= liktki = Sλ,ii (26)

The expression of the sensitivity of the eigenvalue and the electron-energy part of the
conductance is as shown in Equations (27) and (28).

∂|λk|
∂G

=
d|λk|

dF
∂F
∂G

=
Sr,ijλr + Si,ijλi√

λ2
r + λ2

i

(27)

∂|λk|
∂B

=
d|λk|

dF
∂F
∂B

=
Sr,ijλi − Si,ijλr√

λ2
r + λ2

i

(28)

For the component connected in parallel between loops i and j, its impedance expres-
sion form is used as Zp = R + jX, and its corresponding sensitivity is solved by converting the
form of the conductance to the impedance form, then Equations (29)–(33) can be obtained.

∂λk
∂Yp

= Sλ,ii − Sλ,ji − Sλ,ij + Sλ,jj (29)

∂λk
∂G

= µ,
∂λk
∂B

= ν (30){
∂G
∂R = X2−R2

R2+X2 , ∂G
∂X = −2RX

R2+X2

∂B
∂R = 2RX

R2+X2 , ∂B
∂X = R2−X2

R2+X2

(31)

∂|λk|
∂R

=
∂|λk|
∂G

∂G
∂R

+
∂|λk|

∂B
∂B
∂R

=
µ(X2 − R2) + 2νRX

(R2 + X2)2 (32)

∂|λk|
∂X

=
∂|λk|
∂G

∂G
∂X

+
∂|λk|

∂B
∂B
∂X

=
µ(X2 − R2)− 2µRX

(R2 + X2)2 (33)

In addition, the sensitivity values reflect the relationship between the components
and the eigenvalues in the critical resonant modes. However, the sensitivity values are
not comparable to each other, so normalization is done. For the system components
α normalized sensitivity is shown in Equation (34).

∂|λk|
∂α

=
∂|λk|/λk

∂α/α
=

∂λk
∂α
· α

λk
(34)

The sensitivity of the inverter-grid-connected system with n = 2 is calculated as an
example. At this time, the resonant frequencies of the system are 23.1 pu and 38.1 pu. The
calculation is performed in two cases, one without the decomposed conductance model and
one with the decomposed conductance model, and the normalized sensitivity of the system
components at each resonant frequency is calculated. As shown in Figure 14a, the sequence
numbers 1 to 9 represent the real and imaginary parts of Yg, impedance ZL21~ZL22, and
the real and imaginary parts of the left side equivalent conductors of inverter node 1 and
inverter node 2, respectively, and the sequence numbers 1 to 13 in Figure 14b represent
the real and imaginary parts of Yg, impedance ZL21~ZL22, the real and imaginary parts
of conductors Yr1,1~Yr1,2, impedance Zr2′ ,1~Zr2′ ,2 real and imaginary parts. A positive
normalized value indicates that increasing its value increases the eigenvalue and reduces
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the modal impedance. A negative normalized value indicates that decreasing its value
increases the eigenvalue and decreases the modal impedance. It is obvious that Yg has a
negative sensitivity value only at low frequencies, and increasing Lg decreases the modal
impedance, which is consistent with the previous analysis, while the high-frequency part,
which is mainly influenced by the interaction between inverters, has a greater impact
on the high-frequency resonance of its components. The sensitivity analysis without the
decomposition method only roughly indicates the global excitability of the inverter, and
the low-frequency part is mainly excited by the grid impedance Yg and the equivalent
conductance of the inverter, and the high-frequency part is mainly caused by the excitation
of ZL2 and the equivalent conductance of the inverter; while the sensitivity analysis of
the decomposition of the components using the decomposition conductance model plays
a role in refining the analysis, it can be seen that the low-frequency part, except for the
excitation effect of Yg, Yr1, Zr2′ all produce a certain excitation effect; in the high-frequency
part, all the components except Yg have a certain excitation, among which the component
Yr1 and Zr2′ play a major role in the resonance of the high-frequency part, and according
to the participation factor, it is also known that the inverter itself is more likely to excite a
resonant band with h = 38.1 pu. Therefore, the suppression of Yr1 as well as Yr2′ is more
effective for suppressing high-frequency resonance. If Yr1 is suppressed, it is feasible to
take corresponding resonance suppression measures between iref(s) and uPCC(s), as the
control structure of Yr1 in the inverter can be known; if Yr2′ is suppressed, it is effective
to take suppression measures between uPCC(s) and ug(s), as its structure can be known.
This gives guidance on resonance suppression, which in turn allows adjustment of critical
components that are more involved in reducing the effect of harmonic resonance.
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Figure 14. The results of the sensitivity analysis comparison are: (a) the sensitivity without the
decomposed conductance model; (b) the sensitivity using the decomposed conductance model.

6. Simulation Verification

Based on the simulation platform, two inverter-grid-connected systems are built, and
their parameters are referred to in Table 1.

The test currents containing the 23rd and 38th harmonics are injected at the inverter
node and the PCC node, and the voltage spectra of UPCC at the PCC node and U1 at the
inverter 1 node are observed as shown in Figure 15. It can be seen in Figure 15a that the
PCC node cannot yet excite the high-frequency resonance when the 38th harmonic current
is injected, and its corresponding participation factor is 0, while the inverter node can well
observe that the high-frequency resonance is excited in Figure 15b, which is also consistent
with changing the participation factor of the node. When the 23rd harmonic current is
injected, both the PCC and the inverter node can excite the low-frequency resonance,
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and the corresponding participation factors are 0.2270 and 0.3865, respectively, which are
consistent with the excitation degree of the low-frequency part in Figure 15.
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Figure 15. The node voltage spectrum at n = 2: (a) UPCC; (b) U1.

To verify the correctness of the above modal analysis and spectral analysis results, a
typical scenario is selected for simulation to verify the effects on the resonance characteris-
tics of the system when the grid impedance Lg, the inverter-side inductance L1, and the
control parameter kr are changed, respectively.

The relationship between the fluctuation of the grid impedance Lg and the resonance
characteristics of the system is verified. Fixing other parameters of the system and keeping
the number of inverters connected to the grid at two, test currents of the 20th, 32nd, and
38th harmonics are injected into the system at Lg = 0.1 mH and 1 mH, and the corresponding
node voltage spectrum changes are shown in Figure 16.
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From the spectrum analysis results, it can be seen that when the grid impedance
increases, the resonant frequency and harmonic content of the high-frequency part remain
unchanged, the resonant frequency of the low-frequency part shifts to the lower part, and
the harmonic content at resonance decreases, which is consistent with the results of the
modal analysis as well as the frequency domain analysis.

Then, the relationship between the variation of the inverter-side inductor L1 and the
resonant characteristics of the system is further verified. In the simulation scenario with
two inverters grid-connected, the 22nd, 26th, 38th, and 40th harmonic test currents are
injected into the system at L1 = 0.8 mH and 1.6 mH, and the corresponding inverter node
voltage spectrum changes are shown in Figure 17a,b.
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Figure 18. The node voltage spectrum when L1 is changed: (a) kp = 3; (b) kp = 3.8. 
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Figure 17. The node voltage spectrum when L1 is changed: (a) L1 = 0.8 mH; (b) L1 = 1.6 mH.

It can be seen from the spectrum change patterns that when the inductance L1 of the
inverter side increases, the resonant frequency of the low-frequency resonant part shifts
from the 26th to the 22nd; the resonant frequency of the high-frequency part shifts from the
40th to the 38th; and the resonant frequencies all shift to the low, which is consistent with
the results of the modal analysis as well as the frequency domain analysis.

In the previous analysis of the effect of controller parameters, the influence of kp fluc-
tuation on the resonance characteristics of the system was more obvious, so the variation of
kp was taken for verification. In the simulation scenario with two inverters grid-connected,
test currents of the 23rd and 38th harmonics are injected into the system at kp = 3 and 3.8,
respectively, and the corresponding inverter node voltage spectrum changes are shown
in Figure 18a,b.
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Figure 18. The node voltage spectrum when L1 is changed: (a) kp = 3; (b) kp = 3.8.

It can be seen from the spectrum change patterns that when the inverter current con-
troller parameter kp is increased, the resonant frequencies of the low-frequency resonance
and high-frequency parts do not change, and the resonant amplitude of the high-frequency
part increases significantly, and the harmonic content increases, which exacerbates the
resonance risk, in accordance with the results of the modal analysis as well as the frequency
domain analysis.

The reasonableness of the sensitivity analysis is verified in a scenario where two
inverters are grid-connected. Taking the high-frequency resonance part as an example,
the analytical structure in the previous section shows that taking resonance suppression
measures between iref(s) and uPCC(s) is effective; therefore, this part uses PCC voltage
feedforward as shown in Figure 19 to suppress the system resonance. It should be noted
in particular that resonance suppression by means of PCC voltage feedforward has been
used in [26], but the innovative focus of this paper is not to propose a new suppression
method but to quantify the degree of contribution of the system components to resonance
by means of sensitivity analysis so that the key components of resonance can be identified
for effective resonance suppression. After calculation and testing, Gf = 0.2 is used in the
simulation, and the detailed procedure is not repeated.
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Figure 19. The resonance suppression strategy with PCC voltage feedforward.

In Figure 20, the simulation result shows that when the 23rd and 38th harmonic
currents are injected at the grid side, the comparison of harmonic voltage amplitudes before
and after the inverter adopts the suppression strategy shows that the 23rd harmonic voltage
decreases from 1.66 V to 1.41 V and the 38th harmonic voltage decreases from 7.04 V to
5.04 V. The harmonic voltage amplitude is reduced after adopting the suppression strategy,
and the effect on high-frequency resonance is more obvious, which verifies the effect from
the perspective of the feasibility of suppression from the perspective of sensitivity analysis.
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7. Conclusions

The multi-inverter grid-connected system has the characteristics of high order and
strong coupling, and the resonance problem generated by it has been widely discussed.
In this paper, for the multi-inverter grid-connected system, first the traditional Norton’s
equivalent model is improved, and then a multi-inverter grid-connected equivalent model
based on the decomposition conductivity model is proposed. Secondly, the resonance
characteristics of the system are studied by combining the frequency domain analysis
method, the modal analysis method, and sensitivity analysis. Finally, the accuracy of the
analysis is verified by simulation, and the following conclusions are drawn.

1. The modal analysis method is easier to calculate than the frequency domain analysis
method, which can reflect the resonance information of the multi-inverter system well
and can better reflect the observability and excitable degree of resonance of each node
of the system.

2. The harmonic resonance of the multi-inverter grid-connected system is affected by
the interaction between the inverter and the grid. When the grid impedance is taken
into account, two kinds of resonance bands, low-frequency and high-frequency, are
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generated with the increase of the inverter, and the fluctuation of the grid impedance
Lg only affects the low-frequency resonance, while the high-frequency resonance is
not affected by it, so the interaction between the grid and the inverter only affects the
low-frequency resonance.

3. The inverter LCL filter parameters and controller parameter fluctuations will have
an impact on the low-frequency and high-frequency resonance, where the LCL filter
parameter fluctuations have a more significant impact on the resonance. In addition,
kp has a more pronounced effect on the high-frequency resonant part.

4. The multi-inverter grid-connected equivalent model based on the decomposition
conductance model can refine the influence of each equivalent control link of the
inverter on the resonance characteristics of the system through sensitivity analysis
and quantify the contribution of the decomposition conductance, in which the first
decomposition conductor Yr1 and the second decomposition conductor Yr2′ contribute
to the high-frequency resonance to a greater extent.

In this paper, the proposed decomposed conductance model can further quantify the
contribution degree of each equivalent control link of the inverter to each resonance band
through the conductance division of the control links of the inverter and provide guidance
on the direction of resonance suppression; subsequently, it is necessary to add nonlinear
factors to be considered together to further carry out relevant research on global resonance
suppression measures. In addition, studies on dynamic losses, power losses, and the energy
efficiency of converters are also required for further work.
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