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Abstract: As a relatively advanced method, the subspace clustering algorithm by block diagonal
representation (BDR) will be competent in performing subspace clustering on a dataset if the dataset is
assumed to be noise-free and drawn from the union of independent linear subspaces. Unfortunately,
this assumption is far from reality, since the real data are usually corrupted by various noises and the
subspaces of data overlap with each other, the performance of linear subspace clustering algorithms,
including BDR, degrades on the real complex data. To solve this problem, we design a new objective
function based on BDR, in which l2,1 norm of the reconstruction error is introduced to model the
noises and improve the robustness of the algorithm. After optimizing the objective function, we
present the corresponding subspace clustering algorithm to pursue a self-expressive coefficient matrix
with a block diagonal structure for a noisy dataset. An affinity matrix is constructed based on the
coefficient matrix, and then fed to the spectral clustering algorithm to obtain the final clustering
results. Experiments on several artificial noisy image datasets show that the proposed algorithm has
robustness and better clustering performance than the compared algorithms.

Keywords: subspace clustering; block diagonal representation; noisy image; outlier; l2,1 norm

1. Introduction

Clustering [1] is an important analysis tool in the fields of data mining and machine
learning, and is widely used in motion segmentation [2–4], text clustering [5], image
segmentation [6,7], face recognition [8], and other practical applications [9]. In brief,
clustering divides unlabeled data into several clusters according to the similarity of data
points. Traditional clustering methods, such as K-means, hierarchical clustering [10],
and density clustering [11,12], cannot perform well on high-dimensional data. Therefore,
subspace clustering algorithms for high-dimensional data get more attention in many
applications. For example, in spatiotemporal data analysis, huge volumes of image and
video data are high-dimensional and noisy, subspace clustering can be employed as an
effective method of data preprocessing, and the clustering results help to uncover the
structure of the dataset.

In the view of spectral graph theory, the key to the success of subspace clustering
is to construct a coefficient matrix that can correctly reflect the spatial distribution of the
data. Ideally, the coefficient matrix has a block diagonal structure, and each block is a
self-representative coefficient sub-matrix for a cluster of data. Sparse subspace clustering
(SSC) [13,14] and low rank subspace clustering (LRR) [15] are two representative subspace
clustering algorithms used in the last decade. SSC and LRR construct coefficient matrices C
by sparse representation and low rank representation of data, respectively, and then obtain
the affinity matrix W from the coefficient matrix, i.e., W = (|C| + |CT|)/2, and finally W
is fed into spectral clustering to obtain clustering results. In recent years, block diagonal
representation (BDR) for subspace clustering algorithms [16,17] attracted attention due
to its good clustering performance. BDR introduces Laplacian rank constraint into the
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objective function, and obtains a more accurate block diagonal coefficient matrix than SSC
and LRR. However, SSC, LRR, and BDR algorithms all belong to linear subspace clustering,
the basic assumption of which is the self-expressiveness property. The self-expressiveness
property assumes that each data point can be expressed as a linear combination of all the
other points in the union of subspaces. Meanwhile, subspace-preserving is also a common
assumption for linear subspace clustering, where each data point in a subspace can be
linearly expressed by other points in the same subspace [18]. Finally, the data should be
noise-free and subspaces should be independent of each other. However, these assumptions
are usually far from reality, since in the process of data generation, transmission, storage,
and even applications, data may be damaged, resulting in data containing noises, outliers,
and even corruptions [19–25]. The corruptions make data deviate from the original data
model. The subspaces corrupted by complex noises are beyond the self-expressiveness
of independent linear subspaces, consequently, subspace clustering results will deviate
from expectations. Thus, the linear subspace clustering algorithms degrade when facing
corrupted datasets in reality.

Aiming at above problems, some efforts impose norm regularizations to handle
various noises. Studies show that the Frobenius norm (F norm for short), l1 norm, and l2,1
norm can efficiently handle Gaussian noises, sparse noises, and outliers, respectively [19,26].
SSC used F norm and l1 norm to deal with noise [13]. Favaro et al. [27] learned a new
data dictionary by handling data errors through the F norm. LRR used l2,1 norm to reduce
the influence of data errors [19]. It is easy to find that these efforts achieve good results
by assuming the type of errors as a prior and removing errors in the original input space
by modeling them in their objective functions [28]. Unfortunately, the data in reality may
be corrupted by complex noises [29], and modeling of errors should combine with more
robust methods to handle the noises and uncover the subspace structure of the data set.

To solve this problem, Chen et al. [30] proposed a robust low-rank subspace clustering
algorithm (RLRR), which adopts a probability density function to fit noise distribution. Liu
et al. [31] proposed the latent low-rank representation subspace clustering (LatLRR) by
reconstructing the representation dictionary to avoid the influence of noise and correctly
represent the distribution of data subspaces. Zhang et al. [32] proposed Robust LatLRR
on the basis of LatLRR to impose sparse constraints on the matrix. Similar to LatLRR,
references [33,34] also learned a clean dictionary to find the data distribution structure and
reduce the influence of data noise. Nie et al. [35] proposed a novel low-rank structural
model for segmenting high-dimensional data. A new rank constraint is defined to learn
a subspace indicator, which can capture different clusters directly from the data. These
methods based on low-rank representation show good performance in dealing with the
linear structure of data. Unfortunately, in practice, many datasets have nonlinear subspaces
that overlap with each other. To solve this problem, the multiple kernel learning (MKL) is
applied to solve nonlinear structural data modeling [36]. Moreover, low-rank kernel space
clustering methods are studied to deal with the nonlinear structure of high-dimensional
data [37]. These methods adaptively select or combine kernels suitable for the datasets
from a set of kernels. However, if the dataset is corrupted by complex noises, maybe the
selected kernel is not optimal.

Furthermore, there are efforts dealing with noises in various ways for subspace cluster-
ing. Qin et al. [28] proposed a method from an energy perspective to eliminate errors in the
projected space rather than the input space. They defined an energy function to measure a
block in the projected space, and found the correct block with the maximal energy to lead
clustering. He et al. [38] proposed the subspace clustering algorithm via half-quadratic
(SCHQ) to handle noisy data. SCHQ consisted of two parts, the first one adopted l1 norm
to obtain a sparse representation of data, and the second one maximized the correlation of
low-dimensional representations among a given data point and other data points to reduce
the damage of noisy data to coefficient representation. Wang et al. [39] proposed a robust
block diagonal representation (RBDR) method, which used a penalty matrix to adaptively
weigh the reconstruction error to handle noises without prior knowledge, and thus had
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good clustering performance under noise conditions. The principles of these efforts are
different from our study, and the performance of subspace clustering of some work (e.g.,
RBDR) will be compared in the following experiments.

In this study, we focus on the robust subspace clustering algorithms based on the
Laplacian rank constraint, i.e., the block diagonal property. BDR assumes that the data
contain Gaussian noises and fits the reconstruction errors with F norm. In fact, other
types of noises, such as occlusions and outliers, may exist in the data. In this paper, l2,1
norm is used to fit the possible outliers in the data, and is combined with the Laplacian
rank constraint to improve the performance of the subspace clustering on more complex
noisy datasets.

The main contributions of this paper are as follows:

(1) The robust subspace clustering algorithm with block diagonal representation (OBDR)
is proposed to handle noises, in which the noises are modeled using l2,1 norm, and
the Laplacian rank constraint is adopted to pursue a block diagonal structure of the
subspace representation;

(2) The objective function of the proposed algorithm is designed and a corresponding
optimization process based on ADMM is given. The algorithm is presented and the
time complexity is analyzed;

(3) Experiments on artificial noisy digital dataset MNIST and face datasets (ORL and
YaleB) show that OBDR is insensitive to noises.

Notation. We summarize the symbols and norms used in this paper, as shown in
Table 1. We define the vector as italic lowercase letters, e.g., c, and the matrix as italic capital
letters, e.g., C.

Table 1. The notations used in each algorithm.

Notations Descriptions

Ci,: the i-th row of C

C:,j the j-th column of C

Cij the (i,j)-th element of C

CT the transposed matrix of C

Tr(C) the trace of the matrix C

diag(C) a vector with its i-th element being the i-th diagonal element of C

Diag(c) a diagonal matrix with its i-th diagonal element being i-th
element of vector c∣∣∣∣∣∣C∣∣∣∣∣∣F =

√
∑ij C2

ij
the Frobenius norm(or l2 norm) of C∣∣∣∣C∣∣∣∣2,1 = ∑i

∣∣∣∣Ci,:
∣∣∣∣

F the l2,1 norm of C∣∣∣∣∣∣C∣∣∣∣∣∣1 = ∑ij

∣∣∣Cij

∣∣∣ the l1 norm of C∣∣∣∣∣∣C∣∣∣∣∣∣∞ = max
∣∣∣Cij

∣∣∣ the l∞ norm of C

The rest of this paper is organized as follows: In Section 2, we propose the objective
function of the robust subspace clustering with block diagonal representation (OBDR)
and illustrate the framework of the OBDR. In Section 3, we solve the optimization of the
objective function by ADMM and present the algorithm in details. The experimental results
are introduced in Section 4, and finally Section 5 summarizes the paper.

2. The Proposed Method

BDR adds Laplacian rank constraint, namely K-block diagonal regularizer, to its
objective function to control the number of connected branches of the graph, which is
constructed by using the matrix W as the affinity matrix. It is proved theoretically and
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experimentally that a K-block diagonal regularizer can correctly represent the similarity of
data and the coefficient matrix shows a block diagonal structure, which makes the BDR
algorithm have good clustering performance [17].

For any matrix B, the K-block diagonal regularizer is defined as the sum of the k
smallest eigenvalues of the corresponding Laplacian matrix of B (i.e., LB = Diag(B1) − B),

‖B‖K =
n

∑
i=n−k+1

λi(LB). (1)

Lu [17] defined the BDR model as following:

min
Z,B

1
2‖X− XZ‖2

F +
λ
2 ‖Z− B‖2

F + γ‖B‖K,

s.t. diag(B) = 0, B ≥ 0, B = BT .
(2)

On the basis of BDR, we remodel the reconstruction error E of data X, which may
contain outliers, and propose the objective function of robust subspace clustering with
block diagonal representation (OBDR) as follows:

min
Z,B,E
‖E‖` + λ

2 ‖Z− B‖2
F + γ‖B‖K,

s.t. diag(B) = 0, B ≥ 0, B = BT , E = X− XZ.
(3)

||·||` is an alternative regularization method for handling different types of noise. In
general, F norm is selected to deal with Gaussian noises and slight sparse noises in the data,
meanwhile, sparse noises can be better processed by ||·||1 . In the case of corruptions or
outliers, ||·||2,1 is a better choice. For different noises, appropriate regularization methods
can effectively reduce the sensitivity of the algorithm to noisy data and improve the
robustness of the algorithm.

Aiming at handling outliers, we select ||·||2,1 to replace ||·||` in Equation (3),

min
Z,B,E
‖E‖2,1 +

λ
2 ‖Z− B‖2

F + γ‖B‖K,

s.t. diag(B) = 0, B ≥ 0, B = BT , E = X− XZ.
(4)

Next, we use the augmented Lagrange multiplier method ALM [40,41] to rewrite
Equation (4) and define the objective function F (Z, B, E) as follows:

min
Z,B,E

F(Z, B, E) = µ
2 ‖X− XZ− E + Λ

µ ‖
2

F
+ ‖E‖2,1 +

λ
2 ‖Z− B‖2

F + γ‖B‖K,

s.t. diag(B) = 0, B ≥ 0, B = BT .
(5)

where µ and Λ are the penalty parameter and Lagrange multiplier, respectively. Equation (5)
shows that, OBDR not only uses l2,1 norm to handle outliers, but also uses F norm to deal
with Gaussian noise and slight sparse noise.

Following [42,43], we summarize the framework of the OBDR in Figure 1. The objec-
tive function of OBDR retains the self-expressiveness and subspace preserving property in
the first term of F (Z, B, E), and the Laplacian rank constraint in the last term. Moreover, the
noises are separated from the input data X in the first term of F (Z, B, E) and modeled by
the l2,1 norm in the second term. The optimized self-expressive matrix Z is used to calculate
the affinity matrix W = (|Z| + |ZT|)/2, and then, W is fed to spectral clustering to get the
clustering result.
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3. Optimization of the Objective Function

Firstly, ||B||K is rewritten as a convex optimization problem [17],∣∣∣∣∣∣∣∣B∣∣∣∣∣∣∣∣K = min
V
〈LB, V〉,

s.t. 0 4 V 4 I, tr(V) = K.
(6)

Then, Equation (5) is equivalent to

minJ(Z, B, E) = µ
2 ‖X− XZ− E + Λ

µ ‖
2

F
+
∣∣∣∣∣∣E∣∣∣∣∣∣2,1 +

λ
2 ‖Z− B‖2

F + γ〈Diag(B1)− B, V〉
s.t. diag(B) = 0, B ≥ 0, B = BT , 0 4 V 4 I, tr(V) = K.

(7)

Finally, the ADMM method is adopted to solve the variables E, Z, B, and V. The
optimization consists of four sub-problems as follows:

(1) Update E with fixed Z, B, and V
E is updated as:

Et+1 = argmin
E

µ

2
‖X− XZ− E +

Λ
µ
‖

2

F
+ ‖E‖2,1. (8)

To solve Equation (8), the following theorem is introduced.

Theorem 1 ([44]). Given a matrix A = [a1, a2, . . . , ai, . . . ], solve the following problem:

min
W

σ‖W‖2,1 +
1
2
‖W − A‖2

F (9)

then, the optimal solution W* of Equation (9) can be solved column by column, and the i-th column
of W* as follows:

W∗(:, i) =

{
‖ai‖−σ
‖ai‖

ai, i f σ < ‖ai‖,
0, otherwise.

(10)

According to Theorem 1, we rewrite Equation (8) as:

Et+1 = argmin
E

1
2
‖E− (X− XZ +

Λ
µ
)‖

2

F
+

1
µ
‖E‖2,1. (11)
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Let A = X− XZ + Λ
µ , and A = [a1, a2, . . . , ai, . . . ], the optimal solution E* is given:

E∗(:, i) =

{ ‖ai‖− 1
µ

‖ai‖
ai, i f 1

µ < ‖ai‖,
0, otherwise.

(12)

(2) Update Z with fixed E, B, and V
Z is updated as:

Zt+1 = argmin
Z

µ

2
‖X− XZ− E +

Λ
µ
‖

2

F
+

λ

2
‖Z− B‖2

F. (13)

Since ||A
∣∣|2F = Tr(AT A) , we define the function f and transform it as follows:

f (Z) = µ
2 ‖X− XZ− E + Λ

µ ‖
2

F
+ λ

2 ‖Z− B‖2
F

= µ
2 Tr((X− XZ− E + Λ

µ )
T
(X− XZ− E + Λ

µ ))

+ λ
2 Tr((Z− B)T(Z− B)).

(14)

Take the derivative of Equation (14), we obtain:

∂ f
∂Z

= µ

(
XTXZ− XTX + XTE− XT Λ

µ

)
+ λ(Z− B). (15)

Set Equation (15) to 0, then(
µXTX + λI

)
Z = µXTX− µXTE + XTΛ + λB.

We derive Z,

Z =
(

µXTX + λI
)−1(

µXTX− µXTE + XTΛ + λB
)

. (16)

(3) Update B with fixed E, Z, and V
B is updated as:

Bt+1 = argmin
B

λ
2 ‖Z− B‖2

F + γ〈Diag(B1)− B, V〉

s.t. diag(B) = 0, B ≥ 0, B = BT .

According to the reference [17], the closed-form solution of B is given as:

Bt+1 =
[
(Â + ÂT)/2

]
+

(17)

where [A]+ = max(A, 0), A = Z− γ
λ (diag(V)1T −V),Â = A− Diag(diag(A)).

(4) Update V with fixed E, B, and Z
V is updated as:

Vt+1 = argmin
V
〈Diag(B1)− B, V〉 s.t. 0 4 V 4 I, tr(V) = K. (18)

Equation (18) can be solved as follows [17]:

Vt+1 = UUT (19)

where U ∈ Rn∗K consists of the K eigenvectors associated with the first K smallest eigenval-
ues of Diag(B1) − B.

The process of OBDR is summarized as Algorithm 1.
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Algorithm 1 OBDR

Input: X, λ, γ, ρ

Initialization: V = 0, B = 0, Z = 0, E = 0, Λ = 0, µ = 10−3, µmax = 108, ε = 10−6, t = 0, Maxloop = 500.
1. WHILE t < Maxloop DO
2. Update E by Equation (12);
3. Update Z by Equation (16);
4. Update B by Equation (17);
5. Update V by Equation (19);
6. Update Λ, Λ = Λ + µ(X − XZ − E);
7. Update µ, µ = min(ρµ, µmax);
8. if Max(‖Zt+1 − Z‖∞,‖Bt+1 − B‖∞,‖X− XZ− E‖∞) < ε, break;
9. t = t + 1;
10. END.
Ouput: Z, B

µ is the parameter for updating the Lagrange multiplier Λ, and its initial value is
usually within (10−8, 10−3). Parameter ρ directly affects the update times of the algorithm.
Generally, the larger ρ is, the higher the efficiency of the algorithm will be. However,
large ρ will cause the variables to change greatly and miss the optimal solution; on the
contrary, lowering ρ can bring high variable accuracies and good results but also takes a lot
of time [45]. Considering both the updating efficiency and clustering results, we set the
maximum number of iterations (Maxloop) in Algorithm 1 to 500 and set ρ according to the
datasets to ensure an accurate coefficient matrix Z. Then the affinity matrix W = (|Z| +
|ZT|)/2 is calculated and fed into spectral clustering to get the clustering result.

The computation complexity of OBDR includes two parts, i.e., the process of updating
E, Z, B, and V, and spectral clustering. Because the time complexity of eigenvector decom-
position and spectral clustering is O (n3), and the time complexity of updating variables is
O (Tn3), where T is iterative times, the total time complexity of OBDR is O (Tn3).

4. Experiments and Discussions
4.1. Experimental Datasets

In order to evaluate the robustness of the proposed algorithm, we test four artifi-
cial data sets under noises, including outliers, masking noises, Gaussian noises, and a
mixture of various noises. We restrict our discussions and experiments to the following
corruption processes:

(1) Outliers: For a given data set, outliers are data that are beyond all subspaces of this
data, i.e., outliers come from different data models, rather than a simple situation that
is floating between subspaces [19], so we select small samples from different data sets
to simulate outliers for a given data set;

(2) Masking noises: A fraction of an image is masked by setting the elements of the
masked position to 0 [46];

(3) Additive Gaussian noises: x̃|x ∼ N(x, σ2 I) for an image x [46].

The details of noisy data sets are described as follows:

(1) Dataset1 for outliers (D1)

We conduct experiments on the MNIST dataset for k = {2, 4, 6} digits, respectively.
For each k, we randomly select 100 images for each digit, down sample each image to
28 × 28 pixels and vectorize it as a vector of length 784. Therefore, the size of Dataset1 is
784 × 100 k, for k = {2, 4, 6}. After that, we randomly replace a fraction p = {1%, 3%, 5%,
10%} of Dataset1 with images from ORL, which were cropped to the same size as digits, i.e.,
784-length vectors. Finally, we normalize each column vector to have a unit length. Two
clusters in Dataset1 are shown in Figure 2. Dataset1 is denoted as D1 for simplicity, D2~D4
are defined similarly.
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Figure 2. MNIST confused with a small number of ORL images.

(2) Dataset2 for masking noise (D2)

On the ORL dataset, we conduct clustering experiments for k = {10, 20, 30} people. For
each k, we randomly pick k people from ORL, each of which has 10 images and the images
are down sampled to 32 × 32 pixels. Then, we perform masking operations for each people.
We randomly corrupt 4 out of 10 photos with mask size 5 × 5 at random positions, then a
test dataset with 40% corrupted images is produced. Repeat the masking operations with
mask sizes 8 × 8 and 10 × 10 to have two more test datasets. Furthermore, we test the
noise-free dataset as a benchmark. Finally, we vectorize images and normalize each vector
to have a unit length. Some images are shown in Figure 3.
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Figure 3. Masking photos from ORL.

(3) Dataset3 for Gaussian noise (D3)

The extended YaleB dataset contains 38 people, each of which contains 64 frontal face
images under different Lambertian conditions. We conduct clustering experiments on the
YaleB for k = {3, 5, 8} people. For each k, we randomly pick k people, each of which has
64 images. The images are down sampled to 32 × 32 pixels and vectorized as a vector of
length 1024. Next, we randomly add Gaussian noise N (0.1, 0.01) to a fraction p = {10%,
20%, 30%} of vectors. Similarly, we test the noise-free dataset as a benchmark. Some images
from YaleB as shown in Figure 4.
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(4) Dataset4 for mixture noise (D4)

In practice, a data set may be corrupted by various noises simultaneously and the per-
formance of data clustering is seriously damaged [26,47]. On the basis of Dataset1~Dataset3,
we add three kinds of data noises with a ratio of 1: 1: 1 to the ORL. Specifically, for each
people, we randomly pick one image to add masking noise with mask size 10 × 10 and one
image to add Gaussian noise N(0.1, 0.01), respectively, and then replace one image with a
cropped MNIST image with 32 × 32 pixels. So, there are three corrupted images for each
people. On the Dataset4, we also conduct clustering experiments for k = {10, 20, 30} people.
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4.2. Experimental Setup

ACC [17] and NMI [48] were used to evaluate the clustering performance of algorithms
under noises.

Let U = [u1, u2, . . . , un], V = [v1, v2, . . . , vn] represent the real labels and the clustering
labels of all data, respectively. ACC is defined as follows:

ACC(U , V) =
1
n

n

∑
i=1

ind(ui, g(vi)) (20)

where ui and vi denote the real label and the clustering label of the i-th data point, respec-
tively, ind(x, y) = 1 if x = y, and 0 otherwise. The function g(.) maximizes the ACC by
permuting the labels V to match the labels U.

NMI is defined as follows:

NMI(U, V) =
∑R

i=1 ∑T
j=1 P(pi ∩ qj) log

P(pi∩qj)

P(pi)P(qj)

−[∑R
i=1 P(pi) log P(pi) + ∑T

j=1 P(qj) log P(qj)]/2
. (21)

P(c) = |c|/n denotes the probability that the data points belong to the cluster c, where
|c| is the cardinality of c, pi is the set of data points with the real label ui, while qj is the set
with the clustering label vj. R and T represent the number of real labels and output labels
of data, respectively.

The value ranges of ACC and NMI are [0, 1], and the higher the ACC and NMI, the
better the performance.

We picked five algorithms for comparison, and the algorithms are described as follows:
SSC [13]: The sparse subspace clustering algorithm, which uses sparse representation

among data to obtain clustering results;
LRR [19]: The low rank subspace clustering algorithm, which uses low rank represen-

tation among data to obtain clustering results;
BDR [17]: Subspace clustering by block diagonal representation, the coefficient matrix

obtained by BDR presents a block diagonal structure;
SBDR [16]: Structured block diagonal representation for subspace clustering. On the

basis of BDR, SBDR added additional a subspace structure constraint;
RBDR [39]: Block diagonal representation learning for robust subspace clustering for

handling data noise.
All the codes used in the experiment were released by the authors. For the parameter(s)

in each algorithm, we searched the optimal values within the range of [10−5, 105] to ensure
the good performance on most test sets. The parameters are shown in Table 2.

Table 2. The parameter values used in each algorithm.

Datasets SSC LRR BDR SBDR RBDR OBDR

D1 α = 20 λ = 0.45 λ = 70
γ = 0.1

λ = 100
γ = 10
δ = 1

λ = 1 × 10−4

γ = 1 × 10−4

λ = 70
γ = 0.1
ρ = 2

D2, D4 α = 100 λ = 1.45 λ = 70
γ = 0.1

λ = 100
γ = 0.1

δ = 1 × 10−5

λ = 1 × 10−3

γ = 1 × 10−4

λ = 70
γ = 0.1
ρ = 1.05

D3 α = 20 λ = 0.85 λ = 10
γ = 0.1

λ = 70
γ = 0.1
δ = 0.1

λ = 1 × 10−4

γ = 1 × 10−5

λ = 10
γ = 1 × 10−3

ρ = 1.45

All experiments were run on a computer equipped with an Intel Core I3-10100 proces-
sor, 8 G memory, and Windows10 operating system.
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4.3. Experimental Results

We run 10 trials on each test set, and the averaged ACC and NMI are shown in
Tables 3 and 4, respectively, the best ACC and NMI on each test set are shown in bold.

Table 3. ACCs of algorithms on Dataset1~Dataset4.

Datasets #Subjects Noise Level SSC LRR BDR SBDR RBDR OBDR

D1

2

Clean 0.8685 0.8955 0.9230 0.9245 1 0.8425 0.8965
1% 0.6355 0.8955 0.6715 0.8465 0.9230 0.8910
3% 0.5566 0.7085 0.5110 0.5115 0.6945 0.8805
5% 0.5090 0.5105 0.5090 0.5120 0.6945 0.8645
10% 0.5735 0.5185 0.5720 0.5180 0.6870 0.6975

4

Clean 0.6420 0.7368 0.7712 0.7548 0.6202 0.7560
1% 0.6515 0.7232 0.6222 0.6352 0.6020 0.7183
3% 0.5735 0.6038 0.6153 0.6295 0.5453 0.6358
5% 0.5623 0.5968 0.6095 0.6213 0.4370 0.5930
10% 0.3640 0.5777 0.4040 0.5590 0.2892 0.5767

6

Clean 0.5712 0.6235 0.6077 0.6437 0.6100 0.6423
1% 0.5495 0.5528 0.5828 0.5460 0.5828 0.6073
3% 0.5113 0.5465 0.5758 0.5570 0.5758 0.5682
5% 0.5183 0.5368 0.5452 0.6042 0.3832 0.5607
10% 0.3023 0.4640 0.2582 0.4525 0.1840 0.5398

D2

10

Clean 0.8000 0.8760 0.8820 0.8820 0.5470 0.8830
5 × 5 0.7440 0.8550 0.8590 0.8640 0.7990 0.8700
8 × 8 0.6440 0.7800 0.7460 0.7690 0.6150 0.7830

10 × 10 0.6480 0.7490 0.6120 0.6030 0.4980 0.6850

20

Clean 0.7650 0.7940 0.8135 0.8155 0.3975 0.8350
5 × 5 0.6660 0.7680 0.7835 0.7950 0.7070 0.8220
8 × 8 0.6150 0.6910 0.6375 0.6560 0.5090 0.6905

10 × 10 0.5935 0.6020 0.5085 0.5130 0.4205 0.5625

30

Clean 0.7307 0.7903 0.8143 0.8370 0.2423 0.8543
5 × 5 0.6370 0.7627 0.7913 0.7970 0.6747 0.8317
8 × 8 0.5840 0.6530 0.6233 0.6670 0.4827 0.6923

10 × 10 0.5850 0.6107 0.5047 0.5363 0.4120 0.5857

D3

3

Clean 0.6495 0.9638 0.9664 0.9303 0.3327 0.9824
10% 0.6489 0.4898 0.7495 0.8059 0.3221 0.8729
20% 0.6101 0.4394 0.7330 0.7479 0.2466 0.7947
30% 0.5681 0.3351 0.6628 0.6016 0.1889 0.6686

5

Clean 0.5962 0.7163 0.7987 0.7941 0.4210 0.8687
10% 0.5300 0.6069 0.5966 0.7050 0.3210 0.7622
20% 0.4206 0.4287 0.5572 0.5841 0.2567 0.5962
30% 0.3859 0.3087 0.4563 0.5222 0.2212 0.5269

8

Clean 0.5115 0.7094 0.8687 0.9127 0.2882 0.8468
10% 0.5626 0.6160 0.6409 0.7411 0.2511 0.7568
20% 0.4495 0.5039 0.6149 0.7000 0.1889 0.7080
30% 0.4102 0.4127 0.5564 0.6221 0.1876 0.6268

D4

10 0.5880 0.2621 0.6580 0.6511 0.5315 0.6905
20 0.6003 0.3285 0.5796 0.6121 0.4762 0.6188
30 0.5682 0.3562 0.5802 0.6000 0.4935 0.6062

1 The best ACC on each test set is shown in bold.
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Table 4. NMIs of algorithms on Dataset1~Dataset4.

Datasets #Subjects Noise Level SSC LRR BDR SBDR RBDR OBDR

D1

2

Clean 0.4991 0.6078 0.6707 0.7173 2 0.5649 0.6242
1% 0.2302 0.5919 0.2876 0.5840 0.5528 0.6063
3% 0.0858 0.3252 0.0066 0.0066 0.3298 0.5594
5% 0.0047 0.0053 0.0047 0.0047 0.3259 0.4863
10% 0.0649 0.0051 0.0044 0.0048 0.2860 0.2366

4

Clean 0.4154 0.5842 0.6133 0.6821 0.4849 0.5507
1% 0.5702 0.5688 0.5534 0.6065 0.4822 0.5292
3% 0.5128 0.4777 0.5283 0.5803 0.3456 0.4590
5% 0.4768 0.4641 0.5100 0.5631 0.1989 0.4442
10% 0.0947 0.4222 0.4024 0.4744 0.0503 0.4182

6

Clean 0.4255 0.5589 0.5623 0.6533 0.5623 0.5774
1% 0.5468 0.5047 0.5325 0.6008 0.5325 0.5258
3% 0.4859 0.4876 0.5037 0.5662 0.5037 0.4841
5% 0.4844 0.4742 0.4644 0.5883 0.2605 0.4658
10% 0.1254 0.3832 0.1475 0.4651 0.0221 0.4379

D2

10

Clean 0.8662 0.8976 0.8952 0.9047 0.6324 0.9176
5 × 5 0.7726 0.8839 0.8793 0.8812 0.8229 0.8958
8 × 8 0.6804 0.7917 0.7819 0.7981 0.6242 0.8008

10 × 10 0.6564 0.7493 0.6346 0.6259 0.5225 0.6957

20

Clean 0.8571 0.8732 0.8821 0.8941 0.5541 0.9009
5 × 5 0.7643 0.8439 0.8635 0.8761 0.7861 0.8840
8 × 8 0.7135 0.7644 0.7282 0.7479 0.6246 0.7646

10 × 10 0.6943 0.6954 0.6264 0.6342 0.5572 0.6548

30

Clean 0.8561 0.8829 0.9023 0.9144 0.4277 0.9221
5 × 5 0.7745 0.8543 0.8813 0.8895 0.7913 0.8989
8 × 8 0.7281 0.7602 0.7459 0.7766 0.6387 0.7900

10 × 10 0.7228 0.7295 0.6626 0.6805 0.5974 0.7046

D3

3

Clean 0.4188 0.8712 0.8130 0.4870 0.2130 0.8851
10% 0.4008 0.2657 0.5454 0.3702 0.2454 0.6236
20% 0.3573 0.1741 0.4949 0.3082 0.1800 0.5637
30% 0.3126 0.0200 0.4427 0.3215 0.1042 0.3843

5

Clean 0.4224 0.7805 0.5714 0.6398 0.3714 0.8190
10% 0.4703 0.5853 0.4749 0.4872 0.2749 0.5723
20% 0.3817 0.3917 0.4856 0.4606 0.1856 0.4908
30% 0.3463 0.2234 0.4470 0.4507 0.1470 0.4109

8

Clean 0.4420 0.6417 0.5438 0.7066 0.2545 0.5757
10% 0.5266 0.5351 0.4895 0.5647 0.2372 0.5979
20% 0.4449 0.4240 0.4523 0.5982 0.1675 0.4959
30% 0.3917 0.3253 0.4420 0.4658 0.1420 0.5457

D4

10 0.6362 0.3120 0.6299 0.6413 0.5500 0.6360
20 0.6810 0.5065 0.6500 0.6488 0.5121 0.6541
30 0.7030 0.5542 0.6741 0.6760 0.5935 0.6912

2 The best NMI on each test set is shown in bold.

We observe that for each pair of algorithm and dataset, both the ACC and NMI
decrease generally with the increasing of the noise levels, which verifies that the noise will
hurt the performance of each algorithm. For the dataset D1, in terms of ACC and NMI,
no algorithm achieved the best performance in all test cases. The main reason for these
phenomena is that D1 is a dataset with outliers, which are data from different data models,
rather than a simple situation that is floating between subspaces [19]. All the algorithms try
to express the outliers in the subspaces of the main body of the data, but the randomness of
the outliers and the distinct differences between them make the expression more uncertain,
and then the performance of some algorithms decreases abruptly or even increases with
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the increasing of the noise levels. For example, the ACC of SBDR decreases from 0.8465 to
0.5115 when the noise level increases from 1% to 3%, and the ACC of RBDR increases from
0.8425 to 0.9230 when the noise level increases from 0 to 1%. Similar things happen with the
NMI results. However, with regard to ACC and NMI, the performance of OBDR decreases
gradually and monotonically with the increasing noise levels, which shows the stability of
OBDR on the noisy data with outliers. Additionally, among these algorithms, the SBDR and
the OBDR are the top two algorithms in terms of both ACC and NMI. Specifically, in terms
of ACC, the OBDR wins in six test cases, and the second best one is the SBDR, which wins
in four cases. However, in terms of NMI, the SBDR wins in 11 cases, and the second best
one is OBDR, which wins in 3 cases. The two algorithms work in different ways. The SBDR
pursues the structure of subspaces at the expense of long running time (see Figure 5), and
achieves the best NMIs in most cases on D1. However, the OBDR models the outliers and
separates the noises from the subspaces, thus it has the second better performance. On the
datasets D2 and D3, the OBDR has significant advantages over the compared algorithms,
including the SBDR with regard to ACC and NMI. As the dataset D4 is concerned, when
the data set is corrupted by various noises simultaneously, the OBDR wins in all the three
cases in terms of ACC, while the SSC wins in two out of three cases with regard to NMI.
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Moreover, we report the wins/ties/losses (W/T/L) and average ranks to record
times of best performance and overall performance of the algorithms, respectively. From
Table 5, we observe that, in view of W/T/L, OBDR performs significantly better than other
algorithms on the test datasets. Specifically, the OBDR wins in 28 and 19 out of the 42 cases
in terms of ACC and NMI, respectively, which are higher than that of other algorithms. In
terms of average rank, we observe that OBDR is better than the others. Lower ranks are
better, and OBDR is the algorithm with the lowest average ranks in terms of ACC and NMI
(average rank = 1.50 and 2.19, respectively), and SBDR is the second lowest one (average
rank = 2.73 and 2.42, respectively). Meanwhile, we calculate the p-values of the Friedman
test [49] for statistical comparison between the six algorithms. The results are shown in
Table 5. In terms of both ACC and NMI, Friedman test results are significant at α = 0.05
significance level. Thus, the six algorithms perform significantly different from each other
at the test datasets.

Table 5. W/T/L, average ranks and p-values.

SSC LRR BDR SBDR RBDR OBDR p-Value

ACC
W/T/L 0/0/42 6/0/36 1/1/40 5/0/37 1/1/40 28/0/14 3

Av. ranks 4.65 3.65 3.33 2.73 5.24 1.50 1.0 × 10−21

NMI
W/T/L 2/0/40 4/0/38 2/0/40 14/0/28 1/0/41 19/0/23

Av. ranks 4.12 3.55 3.52 2.42 5.20 2.19 1.2 × 10−14

3 The best performance is shown in bold.
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As shown in Tables 3–5, on the noisy data sets, both ACC and NMI of OBDR obtained
the most times of best performance and the best average ranks, thus OBDR can handle
various data noise corruptions better than the compared algorithms. Furthermore, we con-
duct pairwise comparisons using the Nemenyi multiple comparison test [50], as shown in
Table 6. We observe that at the significance hypothesis level α = 0.05, OBDR is significantly
different from all compared algorithms in terms of ACC, and significantly different from all
compared algorithms except SBDR in terms of NMI, indicating that the SBDR is also robust
to data noises. In addition, RBDR does not show good clustering performance, possibly
due to its special preprocessing methods of data sets [39]. Overall, the OBDR outperforms
the compared algorithms with regard to the evaluation metrics.

Table 6. The p-values of using the Nemenyi multiple comparison test on Dataset1~Dataset4.

SSC LRR BDR SBDR RBDR

ACC

LRR 0.0729 - - - -
BDR 0.0153 0.9952 - - -

SBDR 3.4 × 10−5 0.3353 0.6725 - -
RBDR 0.7094 0.0005 4.5 × 10−5 1.1 × 10−8 -
OBDR 2.0 × 10−13 7.8 × 10−6 0.0001 0.0319 7.1 × 10−14

NMI

LRR 0.7273 - - - -
BDR 0.6911 1.0000 - - -

SBDR 0.0004 0.0623 0.0729 - -
RBDR 0.0849 0.0007 0.0006 1.3 × 10−10 -
OBDR 3.4 × 10−5 0.0114 0.0139 0.9938 2.5 × 10−12

Figure 5 records the computational time of algorithms on Dataset1~Dataset4 with the
maximum number of clusters, i.e., Dataset1(6), which denotes Dataset1 with six subjects. It
can be seen that SBDR achieves good performance but needs to take a long time to update
the subspace structure matrix.

4.4. Parameter Analysis

Fixing the number of iterations of Algorithm 1, ρ will directly affect the clustering
performance of OBDR. In this section, we search the optimal values of ρ in OBDR on
different data sets. We use noise-free data with the maximum number of clusters in
Dataset1~Dataset3 as the test sets, such as Dataset1(6). The maximum iteration times of
OBDR is set to 500, and the values of λ and γ are set as Table 2. The effect of ρ on OBDR is
shown in Figure 6.
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Based on Figure 6, ρ is set to 2.0, 1.05, and 1.45 on Dataset1, Dataset2 (Dataset4), and
Dataset3, respectively. After fixing ρ, we also conduct the experiments to test the sensitivity
of λ and γ. The results are shown in Figure 7. From Figure 7, we can see that OBDR is more
sensitive to λ than γ on all three datasets. It is observed that OBDR has steady clustering
performance when λ is within [1, 100], and the parameter values in Table 2 are sound for
the three datasets.
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the coefficient matrix via l2,1 norm and F norm, recovers the block diagonal spatial structure
distribution of data by the Laplacian rank constraint, and thus improves the clustering
performance. Experiments on several artificial noisy datasets demonstrate the effectiveness
of OBDR in dealing with complex noises. In this study, the OBDR is evaluated on the
noisy face datasets and handwritten digit datasets, and the results show that the OBDR has
advantages over the compared algorithms with regard to the evaluation metrics. Moreover,
the OBDR can be applied in other subspace clustering tasks, such as motion segmentation,
image segmentation, and object clustering. In the future, we plan to investigate subspace
clustering with deep learning on more high dimensional data. Since the deep learning net-
work can transform the input data into a low dimensional latent space [51–56], combining
of OBDR and the deep learning network (e.g., AutoEncoder) is worthy of careful study.
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