
Citation: Wu, Y.; Wu, B.; Zhou, X.

High-Performance QC-LDPC Code

Co-Processing Approach and VLSI

Architecture for Wi-Fi 6. Electronics

2023, 12, 1210. https://doi.org/

10.3390/electronics12051210

Academic Editor: Djuradj Budimir

Received: 30 January 2023

Revised: 1 March 2023

Accepted: 2 March 2023

Published: 3 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Communication

High-Performance QC-LDPC Code Co-Processing Approach
and VLSI Architecture for Wi-Fi 6
Yujun Wu 1,2,3,*, Bin Wu 1,2,3 and Xiaoping Zhou 1,3

1 Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
2 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
3 CASEMIC Electronics Technology Co., Ltd., Hangzhou 310051, China
* Correspondence: wuyujun18@mails.ucas.ac.cn; Tel.: +86-178-1207-1003

Abstract: The QC-LDPC code, with its excellent error correction performance and hardware friendli-
ness, has been identified as one of the channel encoding schemes by Wi-Fi 6. Shorting, puncturing,
or repeating operations are needed to ensure that user data can be sent with integer symbols and
complete rate matching. Due to the uncertainty of the user data size, the modulation’s selectivity,
and the difference in the number of spatial streams, the receiver must deal with more than 106 situa-
tions. At the same time, other computationally intensive tasks occupy the time slot budget of the
receiver. Typical are demodulation and decoding. Hence, the receiver needs to quickly reverse the
demodulated data process. This paper first proposes a co-processing method and VLSI architecture
compatible with all code lengths, code rates, and processing parameters. The co-processor separates
field and block splicing, simplifying the control logic. There is no throughput rate bottleneck, and the
maximum delay is less than 1 us.

Keywords: QC-LDPC; Wi-Fi 6; co-processing

1. Introduction

Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes have been widely used
in wireless communication protocols, with their excellent error correction performance
and relative ease of implementation. Like the Wireless Local Area Network (WLAN)
series protocol IEEE 802.11n/ac/ax, the QC-LDPC encoding scheme of the Data Field (DF)
is optional in IEEE 802.11n/ac [1]. Furthermore, in IEEE 802.11ax, it is stipulated that
only QC-LDPC encoding can be used when the modulation method is 1024 Quadrature
Amplitude Modulation (QAM) or the resource units are more significant than 484 [2]. To
ensure that the encoded data can be sent in a string of integer symbols and the rate matches,
different protocols adopt their processing characteristics. If the amount of data to be sent
in IEEE 802.16e is less than the allocated amount, redundant ones are added at the end of
the data [3]. For 5G NR, the bit sequence after encoding is written into a circular buffer
and combines with the Hybrid Automatic Repeat Request (HARQ) to complete the rate
matching [4]. For the WLAN, exact symbol matching is carried out by pre-processing before
encoding and post-processing after encoding. Pre- and post-processing can be collectively
referred to as co-processing. Decoding is the inverse process of encoding. The decoder’s
pre-processing and post-processing correspond to the encoder’s post-processing and pre-
processing. The difference is that the acquisition of the decoding parameters depends on
the parsing of the received frame. Taking the decoder as an example, after the receiver
completes the demodulation to obtain the soft information of the DF, the pre-processing
module adds the shortened bits and punctured bits or removes the repeated bits according
to the given parameters, and spells out a series of complete codewords to the decoder
core. The post-processing module extracts pure Physical Layer Service Data Unit (PSDU)
data from the information bits in the codewords when the decoding is completed. In the
actual processing process, due to the uncertainty of user data size and the selectivity of

Electronics 2023, 12, 1210. https://doi.org/10.3390/electronics12051210 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051210
https://doi.org/10.3390/electronics12051210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12051210
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051210?type=check_update&version=1

Electronics 2023, 12, 1210 2 of 9

modulation mode and spatial stream number, Wi-Fi 6 co-processing needs to deal with
more than 106 situations. At the same time, the time slot budget needs to be allocated to
compute-intensive tasks such as demodulation and decoding, and the overall latency of the
co-processor is less than 1us, which brings challenges to the circuit design of co-processing.

Although wireless communication protocols widely use co-processing, and its theoret-
ical research is endless, there has been no research on co-processing implementation [5–7].
J. Yongmin mentioned coprocessing in his encoder architecture, but did not give a specific
implementation [8]. This paper first proposes a QC-LDPC code co-processing method and
VLSI architecture for Wi-Fi 6, which can be compatible with all possible protocol scenar-
ios through reasonable hierarchical division and field analysis. Through the ping-pong
operation of the block splicing module, the problem of practical input across blocks is
solved. This paper is organized as follows: Section 2 introduces the decoder’s parameter
calculation and decoding process. Section 3 presents the methods and architectures for
pre-processing and post-processing of decoders. Section 4 gives the implementation results,
and Section 5 provides a summary.

2. Decoding Process and Parameters Calculation of the Decoder
2.1. Decoding Process

The DF received by the decoder is shown in Figure 1, consisting of a series of code-
words. Each codeword includes the actual information field Data Bits (DBs), the check field
Parity Bits (PBs) obtained from the parity check matrices, and the replica field Repeated
Bits (RBs) that may exist. Each bit of these fields is typically populated by a log-likelihood
ratio (LLR) soft information of the intrinsic channel observations.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 9

from the information bits in the codewords when the decoding is completed. In the actual
processing process, due to the uncertainty of user data size and the selectivity of modula-
tion mode and spatial stream number, Wi-Fi 6 co-processing needs to deal with more than
106 situations. At the same time, the time slot budget needs to be allocated to compute-
intensive tasks such as demodulation and decoding, and the overall latency of the co-
processor is less than 1us, which brings challenges to the circuit design of co-processing.

Although wireless communication protocols widely use co-processing, and its theo-
retical research is endless, there has been no research on co-processing implementation
[5–7]. J. Yongmin mentioned coprocessing in his encoder architecture, but did not give a
specific implementation [8]. This paper first proposes a QC-LDPC code co-processing
method and VLSI architecture for Wi-Fi 6, which can be compatible with all possible pro-
tocol scenarios through reasonable hierarchical division and field analysis. Through the
ping-pong operation of the block splicing module, the problem of practical input across
blocks is solved. This paper is organized as follows: Section 2 introduces the decoder’s
parameter calculation and decoding process. Section 3 presents the methods and architec-
tures for pre-processing and post-processing of decoders. Section 4 gives the implemen-
tation results, and Section 5 provides a summary.

2. Decoding Process and Parameters Calculation of the Decoder
2.1. Decoding Process

The DF received by the decoder is shown in Figure 1, consisting of a series of code-
words. Each codeword includes the actual information field Data Bits (DBs), the check
field Parity Bits (PBs) obtained from the parity check matrices, and the replica field Re-
peated Bits (RBs) that may exist. Each bit of these fields is typically populated by a log-
likelihood ratio (LLR) soft information of the intrinsic channel observations.

Codeword 1 ... Codeword n

Data Bits Parity Bits Repeated
Bits

bit k

LLR
Quantization Widths

Figure 1. Data received by the decoder.

The decoding process can be divided into three stages: pre-processing, decoding, and
post-processing. According to the calculated parameters, the preprocessor will stitch the
received fields into a complete codeword required by the decoding core; the output fields
are shown in Figure 2. First, the preprocessor needs to append shortened bits that the
encoding phase may use to populate the specified length to the standard information field
(SIF). If the repeated bits exist, the preprocessor must remove the replica field that the
encoder added after the codeword. Furthermore, if the punctured bits are present, the
codeword needs to be padded at the end of the check field, and since the deleted bits are
indeterminate, the LLRs value of the padding is zero.

The decoding stage decodes the fields in Figure 2 into the soft information field. A
reliable soft information field is obtained through the iterative propagation of the mes-
sage. Many scholars have worked to achieve the best trade-offs between latency, resource
overhead, throughput, and power consumption [9,10]. The post-processing phase re-
moves the possible SBs and only retains the valid information field DBs needed by the
medium access control (MAC).

Figure 1. Data received by the decoder.

The decoding process can be divided into three stages: pre-processing, decoding, and
post-processing. According to the calculated parameters, the preprocessor will stitch the
received fields into a complete codeword required by the decoding core; the output fields
are shown in Figure 2. First, the preprocessor needs to append shortened bits that the
encoding phase may use to populate the specified length to the standard information field
(SIF). If the repeated bits exist, the preprocessor must remove the replica field that the
encoder added after the codeword. Furthermore, if the punctured bits are present, the
codeword needs to be padded at the end of the check field, and since the deleted bits are
indeterminate, the LLRs value of the padding is zero.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 9

Data Bits Parity Bits Punctured
Bits

Shortened
Bits

Repeated
Bits

Standard
information field Standard parity field

Figure 2. Pre-processed fields.

2.2. Co-Processing Parameter Calculation
This paper takes a single user (multiple users each perform the corresponding oper-

ation) as an example and briefly introduces the parameter calculation process.

2.2.1. Calculate the Real Number of Symbols NSYM and the Number of Available
Bits Navbits

For the reception, the NSYM needs to be computed through the following three steps.
Firstly, the received symbol duration RXTIME is first calculated based on the L-LENGTH
in the L-SIG field:

_ 3() 4 20
3

L LENGTHRXTIME us += • +

(1)

Secondly, the proper duration of the DF is obtained according to the total symbol
duration and time of other fixed fields. Then, it can be divided by the period of the indi-
vidual symbols Tsym to convey the symbol of the DF field N’SYM.

_' other fields
SYM

sym

RXTIME T
N

T
−

=

(2)

Taking the usage of space-time block code (STBC) and extra symbol (ES) into account,
the number of symbols for proper LDPC decoding NSYM is finally obtained according to
Equation (3).

'

'

'

ES=0
1 ES=1, STBC=0
2 ES=1, STBC=1

SYM

SYM SYM

SYM

N
N N

N




= −
 −

 (3)

Finally, according to the number of symbols NSYM, the number of bits in the PSDU
and SERVICE field Npld and the number of available bits Navbits carried by the symbols can
be calculated.

avbits pld sym dbpsN N N N= = •
 (4)

2.2.2. Compute the Number and Length of the Codewords
The number of codewords NCW to be transmitted and the length of the codewords

LLDPC to be used can be calculated from Table 1. Where R repeats the code rate.

2.2.3. Calculate the SBs, PBs, and RBs
From NCW, Navbits, LLDPC, and R, the SBs Nshrt, PBs Npunc, and RBs Nrep are obtained ac-

cording to Equations (5)–(7). The Npunc may need to recompute with increment Navbits [1].

max(0,())shrt CW LDPC pldN N L R N= × × −
 (5)

max(0,())punc CW LDPC avbits pldN N L N N= × − −

(6)

max(0, (1))rep avbits CW LDPC pldN N N L R N= − × × − −

(7)

Figure 2. Pre-processed fields.

The decoding stage decodes the fields in Figure 2 into the soft information field. A
reliable soft information field is obtained through the iterative propagation of the message.
Many scholars have worked to achieve the best trade-offs between latency, resource over-
head, throughput, and power consumption [9,10]. The post-processing phase removes the
possible SBs and only retains the valid information field DBs needed by the medium access
control (MAC).

Electronics 2023, 12, 1210 3 of 9

2.2. Co-Processing Parameter Calculation

This paper takes a single user (multiple users each perform the corresponding opera-
tion) as an example and briefly introduces the parameter calculation process.

2.2.1. Calculate the Real Number of Symbols NSYM and the Number of Available
Bits Navbits

For the reception, the NSYM needs to be computed through the following three steps.
Firstly, the received symbol duration RXTIME is first calculated based on the L-LENGTH
in the L-SIG field:

RXTIME(us) =
⌈

L_LENGTH + 3
3

⌉
•4 + 20 (1)

Secondly, the proper duration of the DF is obtained according to the total symbol
duration and time of other fixed fields. Then, it can be divided by the period of the
individual symbols Tsym to convey the symbol of the DF field N’SYM.

N′SYM =

⌊RXTIME− Tother_ f ields

Tsym

⌋
(2)

Taking the usage of space-time block code (STBC) and extra symbol (ES) into account,
the number of symbols for proper LDPC decoding NSYM is finally obtained according to
Equation (3).

NSYM =


N′SYM ES = 0
N′SYM − 1 ES = 1, STBC = 0
N′SYM − 2 ES = 1, STBC = 1

(3)

Finally, according to the number of symbols NSYM, the number of bits in the PSDU
and SERVICE field Npld and the number of available bits Navbits carried by the symbols can
be calculated.

Navbits = Npld = Nsym×Ndbps (4)

2.2.2. Compute the Number and Length of the Codewords

The number of codewords NCW to be transmitted and the length of the codewords
LLDPC to be used can be calculated from Table 1. Where R repeats the code rate.

Table 1. The number and length of codewords.

Range of Navbits (bits) NCW LLDPC (bits)

Navbits ≤ 648. 1 1296, if Navbits ≥ Npld + 912× (1− R)648, otherwise
648 < Navbits ≤ 1296 1 1944, if Navbits ≥ Npld + 1464× (1− R)1296, otherwise

1296 < Navbits ≤ 1944 1 1944
1944 < Navbits ≤ 2592 2 1944, if Navbits ≥ Npld + 2916× (1− R) 1296, otherwise

2592 < Navbits
⌈

Npld
1944×R

⌉
1944

2.2.3. Calculate the SBs, PBs, and RBs

From NCW, Navbits, LLDPC, and R, the SBs Nshrt, PBs Npunc, and RBs Nrep are obtained
according to Equations (5)–(7). The Npunc may need to recompute with increment Navbits [1].

Nshrt = max(0, (NCW × LLDPC × R)− Npld) (5)

Npunc = max(0, (NCW × LLDPC)− Navbits − Npld) (6)

Nrep = max(0, Navbits − NCW × LLDPC × (1− R)− Npld) (7)

Electronics 2023, 12, 1210 4 of 9

3. The Co-Processing Schemes and Architectures
3.1. The Strategy and Architecture of Pre-Processing

The preprocessor’s architecture, as shown in Figure 3, consists of the input cache: Input
Buffer (IB), the Block Splicing (BS), the output cache: Output Buffer (OB), and the global
controller: Global Control (GC). The external module gives LDPC-related parameters
(usually provided by the baseband frame parsing module, which is not discussed in
this paper) and LLRs information. The preprocessor first stores the LLRs information in
the IB. The highest modulation, the maximum number of antenna streams Nss, and the
quantization of the bit width Q determine the bit width size of the IB, and the bit width
sizes in various configurations are shown in Table 2. Suppose the maximum modulation
supported by the system is 256 QAM, and the maximum number of antenna streams is
two, taking the dual-stream Quadrature Phase Shift Keying (QPSK) as an example. In that
case, the input data format is shown in Figure 4. Where in the effective bit widths dins1_1,
dins1_2, dins2_1, and dins2_2 represent the soft information of the 1st bit, the 2nd bit in
antenna 1, the 1st bit, the 2nd bit in the antenna 2, respectively. The number of effective
bits may be less than the maximum bit widths to maintain pattern compatibility, and the
remaining bits can be filled with zero.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 9

Table 1. The number and length of codewords.

Range of Navbits (bits) NCW LLDPC (bits)

648avbitsN ≤ . 1
1296, if

912 (1)avbits pldN N R≥ + × −
648, otherwise

648 1296avbitsN< ≤ 1
1944, if

1464 (1)avbits pldN N R≥ + × −
1296, otherwise

1296 1944avbitsN< ≤ 1 1944

1944 2592avbitsN< ≤ 2
1944, if

2916 (1)avbits pldN N R≥ + × −
1296, otherwise

2592 avbitsN<
1944

pldN
R•

 1944

3. The Co-Processing Schemes and Architectures
3.1. The Strategy and Architecture of Pre-Processing

The preprocessor’s architecture, as shown in Figure 3, consists of the input cache:
Input Buffer (IB), the Block Splicing (BS), the output cache: Output Buffer (OB), and the
global controller: Global Control (GC). The external module gives LDPC-related parame-
ters (usually provided by the baseband frame parsing module, which is not discussed in
this paper) and LLRs information. The preprocessor first stores the LLRs information in
the IB. The highest modulation, the maximum number of antenna streams Nss, and the
quantization of the bit width Q determine the bit width size of the IB, and the bit width
sizes in various configurations are shown in Table 2. Suppose the maximum modulation
supported by the system is 256 QAM, and the maximum number of antenna streams is
two, taking the dual-stream Quadrature Phase Shift Keying (QPSK) as an example. In that
case, the input data format is shown in Figure 4. Where in the effective bit widths dins1_1,
dins1_2, dins2_1, and dins2_2 represent the soft information of the 1st bit, the 2nd bit in
antenna 1, the 1st bit, the 2nd bit in the antenna 2, respectively. The number of effective
bits may be less than the maximum bit widths to maintain pattern compatibility, and the
remaining bits can be filled with zero.

Input
buffer

Global Control

Block
Splicing

Preprocessor

Output
Buffer

Figure 3. Preprocessor Architecture.

Table 2. The bit width of the input buffer.

Nss BPSK QPSK 16QAM 64QAM 256QAM 1024QAM
1 Q Q 2 × Q 4 × Q 6 × Q 8 × Q
2 2 × Q 2 × Q 4 × Q 8 × Q 12 × Q 16 × Q

… …
8 8 × Q 8 × Q 16 × Q 32 × Q 48 × Q 64 × Q

Figure 3. Preprocessor Architecture.

Table 2. The bit width of the input buffer.

Nss BPSK QPSK 16QAM 64QAM 256QAM 1024QAM

1 Q Q 2 × Q 4 × Q 6 × Q 8 × Q
2 2 × Q 2 × Q 4 × Q 8 × Q 12 × Q 16 × Q

.
8 8 × Q 8 × Q 16 × Q 32 × Q 48 × Q 64 × Q

Electronics 2023, 12, x FOR PEER REVIEW 5 of 9

Zeros dins2_2, dins2_1 dins1_2, dins1_1

LSB

Figure 4. The data format of the input buffer.

If the OB is not whole and the IB is not empty, the preprocessor starts taking data
from IB and stitching fields. Since the QC-LDPC code is a linear block grouping code, the
output data format of the pre-processing module is continuous output by block. Further-
more, considering the compatibility of the length of the codewords, the output bit width
is unified to the maximum bit width, 81 × Q. However, because the bit width size of the
IB is fixed, field stitching and block stitching are mixed, the control is highly complex, and
it is not easy to ensure complete coverage of all possible scenarios. Based on this, this
paper proposes a structure in which field splicing and block splicing are separated, the
top-level control state machine is only for field splicing, and the BS completes the block
splicing.

Taking a codeword in a frame as an example, the critical points of field stitching are
as follows. DBs: Firstly, the length of SBs for the current codeword is needed. Using the
total number of SBs Nshrt and NCW, the quotient and the remainder of the SBs are obtained
by division. If the ordinal number of the current codeword is less than or equal to the rest,
the size of SBs is the quotient plus one, and vice versa, is equal to the quotient. The actual
length of DBs can be obtained by subtracting the size of SBs from the SIF length. The out-
put data of the IB of the last codeword may have a residue connected to the end of the PBs
or the RBs. If PUBs are not zero, the residual number is written to the DBs of the current
codeword before the remaining length of the DBs is taken from IB, as shown in case 1 in
Figure 5. If the RBs are not zero, the RBs in the IB output data needs to be discarded. Next,
the residual widths are written to the DBs, and the remaining lengths of the DBs are con-
tinuously taken out of the IB, as shown in case 2 in Figure 5.

Input Buffer

. . . Parity Bits

Zerosdins2_1 dins2_2

. . . Parity Bits Repeated Bits

Data Bits . . .

dins1_1 dins1_2

Discard

LSB

Output Data N

Residual Bits

Code Word K-1 Code Word K

Case 1

Case 2

Figure 5. Input buffer output residual bits.

SBs: If the SBs for current codewords are not null, they should be padded with zero
of the corresponding length at the end of DBs. If the quantization bit width is 7, the related
soft information is +63 (determined to be zero), the sign bit is filled with zero, and the
other bits are filled with one. When implemented, a control signal can be given so that the
block splicing module will fill the remaining bits of the current block with zero. Suppose
the SBs of the codeword are more significant than the block size. In that case, the block
splicing module continues to output all zero blocks until the number of output blocks
reaches the number of standard information blocks corresponding to the current code
rate.

PBs: The processing of the PBs is similar to the DBs. First, according to the total num-
ber of PUBs Npunc, the NCW, the current codeword order, and the length of the standard
PBs, the actual PBs are determined. Similarly, if there is a residual width in the final output

Figure 4. The data format of the input buffer.

If the OB is not whole and the IB is not empty, the preprocessor starts taking data from
IB and stitching fields. Since the QC-LDPC code is a linear block grouping code, the output
data format of the pre-processing module is continuous output by block. Furthermore,
considering the compatibility of the length of the codewords, the output bit width is unified
to the maximum bit width, 81 × Q. However, because the bit width size of the IB is fixed,
field stitching and block stitching are mixed, the control is highly complex, and it is not easy
to ensure complete coverage of all possible scenarios. Based on this, this paper proposes a
structure in which field splicing and block splicing are separated, the top-level control state
machine is only for field splicing, and the BS completes the block splicing.

Taking a codeword in a frame as an example, the critical points of field stitching are
as follows. DBs: Firstly, the length of SBs for the current codeword is needed. Using the
total number of SBs Nshrt and NCW, the quotient and the remainder of the SBs are obtained
by division. If the ordinal number of the current codeword is less than or equal to the
rest, the size of SBs is the quotient plus one, and vice versa, is equal to the quotient. The
actual length of DBs can be obtained by subtracting the size of SBs from the SIF length.

Electronics 2023, 12, 1210 5 of 9

The output data of the IB of the last codeword may have a residue connected to the end of
the PBs or the RBs. If PUBs are not zero, the residual number is written to the DBs of the
current codeword before the remaining length of the DBs is taken from IB, as shown in case
1 in Figure 5. If the RBs are not zero, the RBs in the IB output data needs to be discarded.
Next, the residual widths are written to the DBs, and the remaining lengths of the DBs are
continuously taken out of the IB, as shown in case 2 in Figure 5.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 9

Zeros dins2_2, dins2_1 dins1_2, dins1_1

LSB

Figure 4. The data format of the input buffer.

If the OB is not whole and the IB is not empty, the preprocessor starts taking data
from IB and stitching fields. Since the QC-LDPC code is a linear block grouping code, the
output data format of the pre-processing module is continuous output by block. Further-
more, considering the compatibility of the length of the codewords, the output bit width
is unified to the maximum bit width, 81 × Q. However, because the bit width size of the
IB is fixed, field stitching and block stitching are mixed, the control is highly complex, and
it is not easy to ensure complete coverage of all possible scenarios. Based on this, this
paper proposes a structure in which field splicing and block splicing are separated, the
top-level control state machine is only for field splicing, and the BS completes the block
splicing.

Taking a codeword in a frame as an example, the critical points of field stitching are
as follows. DBs: Firstly, the length of SBs for the current codeword is needed. Using the
total number of SBs Nshrt and NCW, the quotient and the remainder of the SBs are obtained
by division. If the ordinal number of the current codeword is less than or equal to the rest,
the size of SBs is the quotient plus one, and vice versa, is equal to the quotient. The actual
length of DBs can be obtained by subtracting the size of SBs from the SIF length. The out-
put data of the IB of the last codeword may have a residue connected to the end of the PBs
or the RBs. If PUBs are not zero, the residual number is written to the DBs of the current
codeword before the remaining length of the DBs is taken from IB, as shown in case 1 in
Figure 5. If the RBs are not zero, the RBs in the IB output data needs to be discarded. Next,
the residual widths are written to the DBs, and the remaining lengths of the DBs are con-
tinuously taken out of the IB, as shown in case 2 in Figure 5.

Input Buffer

. . . Parity Bits

Zerosdins2_1 dins2_2

. . . Parity Bits Repeated Bits

Data Bits . . .

dins1_1 dins1_2

Discard

LSB

Output Data N

Residual Bits

Code Word K-1 Code Word K

Case 1

Case 2

Figure 5. Input buffer output residual bits.

SBs: If the SBs for current codewords are not null, they should be padded with zero
of the corresponding length at the end of DBs. If the quantization bit width is 7, the related
soft information is +63 (determined to be zero), the sign bit is filled with zero, and the
other bits are filled with one. When implemented, a control signal can be given so that the
block splicing module will fill the remaining bits of the current block with zero. Suppose
the SBs of the codeword are more significant than the block size. In that case, the block
splicing module continues to output all zero blocks until the number of output blocks
reaches the number of standard information blocks corresponding to the current code
rate.

PBs: The processing of the PBs is similar to the DBs. First, according to the total num-
ber of PUBs Npunc, the NCW, the current codeword order, and the length of the standard
PBs, the actual PBs are determined. Similarly, if there is a residual width in the final output

Figure 5. Input buffer output residual bits.

SBs: If the SBs for current codewords are not null, they should be padded with zero of
the corresponding length at the end of DBs. If the quantization bit width is 7, the related
soft information is +63 (determined to be zero), the sign bit is filled with zero, and the other
bits are filled with one. When implemented, a control signal can be given so that the block
splicing module will fill the remaining bits of the current block with zero. Suppose the SBs
of the codeword are more significant than the block size. In that case, the block splicing
module continues to output all zero blocks until the number of output blocks reaches the
number of standard information blocks corresponding to the current code rate.

PBs: The processing of the PBs is similar to the DBs. First, according to the total number
of PUBs Npunc, the NCW, the current codeword order, and the length of the standard PBs,
the actual PBs are determined. Similarly, if there is a residual width in the final output of IB
for the DBs, the remaining bits are written before the number of remaining PBs is taken
from the IB.

PUBs: If the PUBs are not null, it is filled with indeterminate data of the corresponding
length, corresponding to zero value for the soft information. The detailed implementation
is similar to the SBs.

RBs: If the RBs are exited, the length of the RBs of the current codeword is determined
based on the total number of RBs Nrep, the NCW, and the ordinal number of the current
codeword. If residual widths exist in the last IB output data widths for the PBs, the residual
data are discarded before the remaining RBs lengths are read out of the IB. In the case of
higher modulation, such as 1024 QAM, it may be possible for an output of IB to contain
both the PBs, the RBs, and the DBs for the next codeword.

To this end, this paper designs the state flow diagram shown in Figure 6, which is
divided into the following six states:

IDLE1: idle
INFOR: IF processing
SHORT: SBs processing
PARITY: PBs processing
PUNC: PUBs processing
REPT: RBs processing
Where:

Electronics 2023, 12, 1210 6 of 9

statrt1: the start of field processing. Four conditions determine it: there are remaining
codewords in this frame, the ready signal that the decoding core has prepared, the IB is not
empty, and there are no residual bits to be processed.

len_if_cnt: length of the remaining pending IF.
w_ib: the output width of the IB.
b_if _cnt: the number of blocks of the IF to be processed.
len_p: length of PUBs.
len_r: the size of RPs.
len_r_cnt: length of the remaining pending RPs.
b_cnt: the number of blocks to be processed.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 9

of IB for the DBs, the remaining bits are written before the number of remaining PBs is
taken from the IB.

PUBs: If the PUBs are not null, it is filled with indeterminate data of the correspond-
ing length, corresponding to zero value for the soft information. The detailed implemen-
tation is similar to the SBs.

RBs: If the RBs are exited, the length of the RBs of the current codeword is determined
based on the total number of RBs Nrep, the NCW, and the ordinal number of the current
codeword. If residual widths exist in the last IB output data widths for the PBs, the resid-
ual data are discarded before the remaining RBs lengths are read out of the IB. In the case
of higher modulation, such as 1024 QAM, it may be possible for an output of IB to contain
both the PBs, the RBs, and the DBs for the next codeword.

To this end, this paper designs the state flow diagram shown in Figure 6, which is
divided into the following six states:

IDLE1: idle
INFOR: IF processing
SHORT: SBs processing
PARITY: PBs processing
PUNC: PUBs processing
REPT: RBs processing
Where:
statrt1: the start of field processing. Four conditions determine it: there are remaining

codewords in this frame, the ready signal that the decoding core has prepared, the IB is
not empty, and there are no residual bits to be processed.

len_if_cnt: length of the remaining pending IF.
w_ib: the output width of the IB.
b_if _cnt: the number of blocks of the IF to be processed.
len_p: length of PUBs.
len_r: the size of RPs.
len_r_cnt: length of the remaining pending RPs.
b_cnt: the number of blocks to be processed.

IDLE1

INFOR

SHORT

PARITY

PUNC REPT

otherwise

otherwise

otherwise

otherwise

otherwise otherwise

start1

len_if_cnt < = w_ib

len_p >0 len_r >0

b_if_cnt = = 0
b_cnt = = 0

len_r_cnt < w_ib

Initialization

Figure 6. State diagram of field splicing. Figure 6. State diagram of field splicing.

Block stitching is the next layer of field stitching, and block stitching is carried out
based on the output of the IB and the corresponding valid bit length. Figure 7 shows the
state diagram, with a total of seven states:

IDLE2: idle
WR_B: general block stitching
REPT: RPs processing
SH_PD: SBs padding
SH_B: SBs full block padding
PU_PD: PUBs padding
PU_B: PUBs full block padding
Thereinto:
start2: the start of block splicing, and valid when start1 is valid, or there is a residual

bit, that is start2 = start1 || res_ bits.
state 1: the state of field splicing
p_pd: the first block padding of PUBs is complete
s_pd: the first block padding of SBs is complete
It is worth noting that len_p and len_r cannot be greater than zero at the same time.

Because when we conduct rate matching, we can only delete a part of the bits (punctured)
or add a part (repeated) to adapt to the communication system integer symbol transmitting
and receiving.

Electronics 2023, 12, 1210 7 of 9

Electronics 2023, 12, x FOR PEER REVIEW 7 of 9

Block stitching is the next layer of field stitching, and block stitching is carried out
based on the output of the IB and the corresponding valid bit length. Figure 7 shows the
state diagram, with a total of seven states:

IDLE2: idle
WR_B: general block stitching
REPT: RPs processing
SH_PD: SBs padding
SH_B: SBs full block padding
PU_PD: PUBs padding
PU_B: PUBs full block padding
Thereinto:
start2: the start of block splicing, and valid when start1 is valid, or there is a residual

bit, that is 2 1 || _start start res bits= .
state 1: the state of field splicing
p_pd: the first block padding of PUBs is complete
s_pd: the first block padding of SBs is complete
It is worth noting that len_p and len_r cannot be greater than zero at the same time.

Because when we conduct rate matching, we can only delete a part of the bits (punctured)
or add a part (repeated) to adapt to the communication system integer symbol transmit-
ting and receiving.

IDLE2

WR_B

PU_PD REPT

otherwise

otherwise

otherwise otherwise

start2

s_pd

b_if_cnt == 0

SH_PD

SH_BPU_B

otherwise

otherwise otherwise

b_if_cnt ==0

b_cnt >0

b_cnt == 0

p_pd

len_cnt <= w_ib

b_if_cnt >0

b_cnt == 0

r_cnt <= w_ib

(len_if_cnt <= w_ib)&&
(state 1 == INFOR)

len_p >0 len_r >=0

Initialization

Figure 7. State diagram of block splicing.

The valid bit length may be cross-block, as shown in Figure 8. This paper adopts a
ping-pong structure, two sets of shift registers, and alternately outputs the spliced blocks.
As shown in Figure 8, the valid inputs at clock cycle i are x1, x2, x3, and x4, where x1, x2
fill the current block (Registers Group1) by shifting left and x3, x4 shift left to write another
set of registers (Registers Group2). In processing the SBs, the symbol bits, and the numeric
bits are filled with different values, and two submodules can complete the filling of the
symbol bits and the numeric bits, respectively.

Figure 7. State diagram of block splicing.

The valid bit length may be cross-block, as shown in Figure 8. This paper adopts a
ping-pong structure, two sets of shift registers, and alternately outputs the spliced blocks.
As shown in Figure 8, the valid inputs at clock cycle i are x1, x2, x3, and x4, where x1, x2 fill
the current block (Registers Group1) by shifting left and x3, x4 shift left to write another set
of registers (Registers Group2). In processing the SBs, the symbol bits, and the numeric bits
are filled with different values, and two submodules can complete the filling of the symbol
bits and the numeric bits, respectively.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 9

. . .x3x4

. . .x3x4

. . .
. . .

79 . . . 3 2 1x1x2

79 . . . 3 2 1x1x2

. . .78 17779

. . .78 17779 . . .

Zerosx3 x4x1 x2

Registers Group1 Registers Group2

Clock cycle
i

79

78 1

. . .Clock cycle
i+1

77

3 2 1

79

x1x2

LSB

Quantization
Widths

. . .

. . .x3x4

Figure 8. Valid input bits span blocks.

Whenever a block is spliced, the block stitching module writes the block to the OB,
the depths of which are set to 24; i.e., the total number of blocks of a codeword. When the
idle indication of the decoding core module and the OB is whole, it is transmitted to the
decoding core module in burst mode. In general, in addition to the first time the output
cache is filled, the decoding iteration time is sufficient for the OB to fill up, so the delay in
increasing the link is equivalent to the first fill time. In the case of high modulation, the
pre-processing module only requires a few dozen clock cycles to meet the low latency
requirements of the link.

3.2. Post-Processing Strategy and Architecture
After the decoding phase is over, the decoding core module outputs the SIF to the

post-processing module. The post-processing module deletes the SBs in the SIF and out-
puts them to the backing stage according to the specified bit width, as shown in Figure 9.

Input buffer 2

Global Control 2

Postprocessor

Bit width converter

Figure 9. Postprocessor Architecture.

4. Implementation Results
The Register Transfer Level (RTL) models for the proposed preprocessor and post-

processor hardware architecture are designed with Verilog HDL and synthesized with the
Semiconductor Manufacturing International Corporation (SMIC) 55 nm Complementary
Metal Oxide Semiconductor (CMOS) process. A summary of the implementation results
is presented in Table 3. It can be seen from the table that the preprocessor accounts for
95.8% of the overall resources, the internal resources of the processing module are mainly
distributed to IB, OB, and BS modules, and the GC module accounts for a relatively small
amount. The maximum clock frequency of the co-processor is 1 GHz, and the theoretical
maximum throughput rate is 16 Gbps. This far exceeds the maximum standard through-
put rate of 2401.9 Mbps (resource block RU = 2 × 996, protection interval GI = 0.8 us) of
dual-stream 1024 QAM, so there is no throughput rate neck.

Table 3. Hardware complexity of the proposed implementation.

Component Area (mm2) Complexity (kGE 1) Percentage (%)
Block Stitching 0.079 61.91 45.52

Input Buffer 0.046 35.73 26.28
Output Buffer 0.037 28.63 21.05
Global Control 0.005 4.01 2.95
Preprocessor 0.167 130.28 95.80

Figure 8. Valid input bits span blocks.

Whenever a block is spliced, the block stitching module writes the block to the OB,
the depths of which are set to 24; i.e., the total number of blocks of a codeword. When the
idle indication of the decoding core module and the OB is whole, it is transmitted to the
decoding core module in burst mode. In general, in addition to the first time the output
cache is filled, the decoding iteration time is sufficient for the OB to fill up, so the delay
in increasing the link is equivalent to the first fill time. In the case of high modulation,
the pre-processing module only requires a few dozen clock cycles to meet the low latency
requirements of the link.

3.2. Post-Processing Strategy and Architecture

After the decoding phase is over, the decoding core module outputs the SIF to the
post-processing module. The post-processing module deletes the SBs in the SIF and outputs
them to the backing stage according to the specified bit width, as shown in Figure 9.

Electronics 2023, 12, 1210 8 of 9

Electronics 2023, 12, x FOR PEER REVIEW 8 of 9

. . .x3x4

. . .x3x4

. . .
. . .

79 . . . 3 2 1x1x2

79 . . . 3 2 1x1x2

. . .78 17779

. . .78 17779 . . .

Zerosx3 x4x1 x2

Registers Group1 Registers Group2

Clock cycle
i

79

78 1

. . .Clock cycle
i+1

77

3 2 1

79

x1x2

LSB

Quantization
Widths

. . .

. . .x3x4

Figure 8. Valid input bits span blocks.

Whenever a block is spliced, the block stitching module writes the block to the OB,
the depths of which are set to 24; i.e., the total number of blocks of a codeword. When the
idle indication of the decoding core module and the OB is whole, it is transmitted to the
decoding core module in burst mode. In general, in addition to the first time the output
cache is filled, the decoding iteration time is sufficient for the OB to fill up, so the delay in
increasing the link is equivalent to the first fill time. In the case of high modulation, the
pre-processing module only requires a few dozen clock cycles to meet the low latency
requirements of the link.

3.2. Post-Processing Strategy and Architecture
After the decoding phase is over, the decoding core module outputs the SIF to the

post-processing module. The post-processing module deletes the SBs in the SIF and out-
puts them to the backing stage according to the specified bit width, as shown in Figure 9.

Input buffer 2

Global Control 2

Postprocessor

Bit width converter

Figure 9. Postprocessor Architecture.

4. Implementation Results
The Register Transfer Level (RTL) models for the proposed preprocessor and post-

processor hardware architecture are designed with Verilog HDL and synthesized with the
Semiconductor Manufacturing International Corporation (SMIC) 55 nm Complementary
Metal Oxide Semiconductor (CMOS) process. A summary of the implementation results
is presented in Table 3. It can be seen from the table that the preprocessor accounts for
95.8% of the overall resources, the internal resources of the processing module are mainly
distributed to IB, OB, and BS modules, and the GC module accounts for a relatively small
amount. The maximum clock frequency of the co-processor is 1 GHz, and the theoretical
maximum throughput rate is 16 Gbps. This far exceeds the maximum standard through-
put rate of 2401.9 Mbps (resource block RU = 2 × 996, protection interval GI = 0.8 us) of
dual-stream 1024 QAM, so there is no throughput rate neck.

Table 3. Hardware complexity of the proposed implementation.

Component Area (mm2) Complexity (kGE 1) Percentage (%)
Block Stitching 0.079 61.91 45.52

Input Buffer 0.046 35.73 26.28
Output Buffer 0.037 28.63 21.05
Global Control 0.005 4.01 2.95
Preprocessor 0.167 130.28 95.80

Figure 9. Postprocessor Architecture.

4. Implementation Results

The Register Transfer Level (RTL) models for the proposed preprocessor and post-
processor hardware architecture are designed with Verilog HDL and synthesized with the
Semiconductor Manufacturing International Corporation (SMIC) 55 nm Complementary
Metal Oxide Semiconductor (CMOS) process. A summary of the implementation results
is presented in Table 3. It can be seen from the table that the preprocessor accounts for
95.8% of the overall resources, the internal resources of the processing module are mainly
distributed to IB, OB, and BS modules, and the GC module accounts for a relatively small
amount. The maximum clock frequency of the co-processor is 1 GHz, and the theoretical
maximum throughput rate is 16 Gbps. This far exceeds the maximum standard through-
put rate of 2401.9 Mbps (resource block RU = 2 × 996, protection interval GI = 0.8 us) of
dual-stream 1024 QAM, so there is no throughput rate neck.

Table 3. Hardware complexity of the proposed implementation.

Component Area (mm2) Complexity (kGE 1) Percentage (%)

Block Stitching 0.079 61.91 45.52
Input Buffer 0.046 35.73 26.28

Output Buffer 0.037 28.63 21.05
Global Control 0.005 4.01 2.95
Preprocessor 0.167 130.28 95.80

Global Control2 0.001 1.01 0.74
Input Buffer2 0.005 3.88 2.85

Bit Width Converter 0.002 1.32 0.97
Postprocessor 0.008 6.21 4.56

Total 0.175 136.49 100
1 One gate equivalent (GE) corresponds to the area of a two-input drive-one NAND gate of size 1.28 um2.

5. Conclusions

This paper first proposes a QC-LDPC code, co-processing method, and VLSI archi-
tecture for Wi-Fi 6 chips. Through field splicing and block splicing, the strategy and
architecture are compatible with all possible protocol modes (>106). The corresponding
implementation result shows the co-processor enables a maximum throughput of 16 Gbps,
a maximum latency of less than 1 us, a hardware complexity of 136 kGE, and can flexibly
scale to future 8-space streams and 16-space streams.

Author Contributions: Conceptualization, B.W.; methodology, Y.W.; implementation, Y.W.; writing-
original, Y.W.; writing-review and editing, X.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The RTL codes of the co-processor can be found at: https://pan.baidu.
com/s/1lK9gRxO0vE-5RnJf02hg6Q?pwd=t2g4.w (access on 1 January 2023).

Conflicts of Interest: The authors declare no conflict of interest.

https://pan.baidu.com/s/1lK9gRxO0vE-5RnJf02hg6Q?pwd=t2g4.w
https://pan.baidu.com/s/1lK9gRxO0vE-5RnJf02hg6Q?pwd=t2g4.w

Electronics 2023, 12, 1210 9 of 9

References
1. IEEE, 802.11-2016; Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements—

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standard Association:
Piscataway, NJ, USA, 2016.

2. IEEE, 802.11ax-2021; Standard for Information Technology—Telecommunications and Information Exchange between Systems
Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-Efficiency WLAN. IEEE Standard Association:
Piscataway, NJ, USA, 2021; pp. 1–767.

3. IEEE, 802.16-2004; Standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Broadband Wireless
Access Systems. IEEE Standard Association: Piscataway, NJ, USA, 2004.

4. 3GPP TS 38.212 V16.1.0 (2020–03); 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR.
Multiplexing and channel coding (Release 16). ETSI: Sophia Antipolis, France, 2020.

5. Suls, A.; Lefevre, Y.; Van Hecke, J.; Guenach, M.; Moeneclaey, M. Error Performance Prediction of Randomly Shortened and
Punctured LDPC Codes. IEEE Commun. Lett. 2019, 23, 560–563. [CrossRef]

6. Beermann, M.; Beermann, V.P. Joint optimization of multi-rate LDPC code ensembles for the AWGN channel based on shortening
and puncturing. In Proceedings of the 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul,
Turkey, 20 November 2014; pp. 200–205.

7. Asvadi, R.; Banihashemi, A.H. A Rate-Compatible Puncturing Scheme for Finite-Length LDPC Codes. IEEE Commun. Lett. 2013,
17, 147–150. [CrossRef]

8. Yongmin, J.; Chulho, C.; Jaeseok, K.; Yunho, J. 7.7 Gbps encoder design for IEEE 802.11n/ac QC-LDPC codes. In Proceedings of
the 2012 International SoC Design Conference (ISOCC), Jeju Island, Replublic of Korea, 4–7 November 2012; pp. 215–218.

9. Tsatsaragkos, I.; Paliouras, V. A Reconfigurable LDPC Decoder Optimized for 802.11n/ac Applications. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 2018, 26, 182–195. [CrossRef]

10. Roberts, M.K.; Jayabalan, R. An area efficient and high throughput multi-rate quasi-cyclic LDPC decoder for IEEE 802.11n
applications. Microelectron. J. 2014, 45, 1489–1498. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/LCOMM.2019.2900893
http://doi.org/10.1109/LCOMM.2012.112812.121785
http://doi.org/10.1109/TVLSI.2017.2752086
http://doi.org/10.1016/j.mejo.2014.07.003

	Introduction
	Decoding Process and Parameters Calculation of the Decoder
	Decoding Process
	Co-Processing Parameter Calculation
	Calculate the Real Number of Symbols NSYM and the Number of Available Bits Navbits
	Compute the Number and Length of the Codewords
	Calculate the SBs, PBs, and RBs

	The Co-Processing Schemes and Architectures
	The Strategy and Architecture of Pre-Processing
	Post-Processing Strategy and Architecture

	Implementation Results
	Conclusions
	References

