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Abstract: Although many existing noise parameter estimations of image signal-dependent noise
have certain denoising effects, most methods are not ideal. There are some problems with these
methods, such as poor noise suppression effects, smooth details, lack of flexible denoising ability,
etc. To solve these problems, in this study, we propose a deep signal-dependent denoising noise
algorithm. The algorithm combines the model method with a convolutional neural network. We
use the noise level of the noise image and the noise image together as the input of the convolutional
neural network to obtain a wider range of noise levels than the single noise image as the input. In the
convolutional neural network, the deep features of the image are extracted by multi-layer residuals,
which solves the difficult problem of training. Extensive experiments demonstrate that our noise
parameter estimation has good denoising performance.

Keywords: signal-dependent noise; noise parameter estimation; convolutional neural network;
image denoising

1. Introduction

Image denoising is a classic and indispensable research topic in low-level vision tasks,
which is the premise of high-level vision tasks [1]. The clear and high-quality images
obtained by denoising serve the high-level vision and make completing the tasks better.
This paper mainly introduces the denoising of signal-dependent noisy images.

With the continuous updating of digital image acquisition technology, equipment for
acquiring images and the number of acquired images are also increasing, and people’s
requirements for image quality are also increasing. However, due to the imperfections
of imaging systems, imaging equipment, and transmission media, many different types
of noise are introduced during the formation of images in different devices, which can
affect the imaging effect, and thus the quality of the image. Noise-contaminated images
will have a considerable impact on subsequent image processing. Noise pollution will
affect the quality of subsequent image processing, such as image recognition, segmentation,
classification, and so on [2].

In this paper, we model the signal-independent noise in the image, and then input it
into the denoising network to solve the problem. During training and testing, networks
that take the noise level of the input image and the noise image as input have a wider range
of noise levels than networks with a single noise image as the input. The success of CNN
denoisers is significantly dependent on whether the distributions of synthetic and real
noises are well matched. Therefore, realistic noise models are the foremost issue for blind
denoising of real photographs. According to [3], signal-dependent noise can be modeled by
signal-dependent Gaussian noise distribution, and the signal-dependent Gaussian model
has been considered as a more appropriate alternative than other models for real raw noise
modeling. In addition, it is necessary to further optimize the graph after noise modeling.
Because there are two unavoidable errors in modeling, the first one is the error generated
in the estimation of noise parameters. The second is when pixel values are obtained by the
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local statistical feature method, which also has errors. Thus, after acquiring the preliminary
picture, we use the preliminary image and the noise image together as the input into the
denoising network. The two errors are reduced through the network.

At present, image denoising relies on the image degradation model, but most of the
image degradation model algorithms are simple and do not match the complex noise in
the real image. It leads to the less ideal denoising effect. Therefore, it is necessary to
design a more reasonable model or an algorithm with better performance. This paper
proposes a method combining the model method and the convolutional neural network.
The preliminary image obtained by the model method is used as a part of the network’s
input, and the final image is output through the continuous iteration of the network.

Most image denoising is Gaussian noise denoising. The variance of the noise is
constant and does not change with the position and intensity of the pixel, the noise level
is the only parameter required for modeling. The model of this degradation process is
generally defined as:

y = x + n (1)

where x is the degraded image pixel value, y is the original image pixel value, n is Additive
White Gaussian Noise (AWGN) with a standard deviation of σ. Since Gaussian white
noise has only one unknown parameter, the variance of the noise, DnCNN enumerates the
variance of different values in the process of training the network model [4], meaning that
the network can remove AWGN in the case of unknown noise variance. However, because
there are other noises in the real image, the Gaussian modeling of the image cannot achieve
a good denoising effect.

Alessandro Foi [5] modeled the real noise as a signal-dependent Poisson–Gaussian
noise model and proposed an estimation method for Poisson–Gaussian noise parameters.
However, he trimmed the underexposure and overexposure data when experimenting.
Despite achieving good performance, the method is limited to Poisson–Gaussian noise due
to modeling problems. The model needs to know the Gaussian and Poisson components a
and b, the model is as follows:

z(v) = k(v) + σ(k(v))ζ(v) (2)

σ2(y(v)) = ay(v) + b (3)

where v is the pixel position in the domain. z(v) is the observed signal, and k(v) is the
original signal. ζ(v) is zero-mean independent random noise with a standard deviation
equal to 1. σ is a function that gives the standard deviation of the overall noise component.
The variance is an expression for the Poisson Gaussian noise component from which
estimates of a and b are obtained.

Liu et al. [6] proposed a generalized signal-dependent noise model.

g = f + f γu + w (4)

σ( f ) =
√

f 2γσ2
u + σ2

w (5)

where g is the noisy pixel value, f is the noise-free pixel value, and u and w are zero-mean
Gaussian variables. γ is an exponential parameter that controls signal dependence by
changing the three NLF parameters γ, σ2

u , and σ2
w, and the noise model can represent

various types of noise by changing these three parameters. Existing models usually assume
that one parameter is known, and only estimate the remaining two parameters to simplify
the problem. This method requires three parameters; thus, the amount of calculation is
large.

The model we propose in this paper is a noise parameter estimation for real camera
noise, which can be modeled with a signal-dependent Gaussian distribution [3].

xp ∼ N(yp, σ2
r + σsyp) (6)
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where xp is the degraded image pixel value, yp is the original image pixel value, and the
noise parameters σs and σr are fixed and only change with the gain of the sensor. The main
reasons for adopting this model are as follows: similar to the generalized noise model
shown in [6], the exponential coefficient will make the calculation of the numerical solution
difficult, and the number of unknown parameters in the Gaussian correlated noise model
is less than that of the generalized signal-dependent noise model, thus the estimation
difficulty will be much less. The model we use is more accurate in parameter estimation
than the Poisson–Gaussian noise model, and the denoising effect is better.

In this paper, we propose a deep signal-dependent denoising noise algorithm. The
algorithm further improves the noise suppression ability and improves the visual effect of
the restored image. The denoising algorithm in this paper can effectively improve image
quality, which plays an important role in many fields. First, we find a more reasonable
model for the signal-related noise image, which has a wider range of application scenarios
and a higher accuracy of parameter estimation. Second, we combine the model with
the convolutional neural network to further improve the image-denoising effect. The
algorithm further improves the noise suppression ability and improves the visual effect
of the restored image. The denoising algorithm in this paper can effectively improve the
image quality, which has a wide range of applications for the multimedia, military, medical,
and other industries.

2. The Related Work

Ben et al. [3] proposed a technique for jointly denoising bursts of images taken from a
handheld camera. Burst image noise parameter estimation operates on a set of successive,
rapidly taken images to compute a single, noise-free result. In particular, they propose a
convolutional neural network architecture for predicting spatially varying kernels that can
both align and denoise frames: a synthetic data generation approach based on a realistic
noise formation model. The method for burst denoising they proposed has the signal-to-
noise ratio benefits of multi-image denoising and the large capacity and generality of a
convolution neural network.

Liu et al. [7] proposed a segmentation-based image denoising algorithm for signal
dependent noise. First, they identify the noise level function for a given single noisy image.
Then, after initial denoising, segmentation is applied to the prefiltered image.

Tan et al. [8] proposed a deep convolutional neural network named “deep residual
noise estimator” (DRNE) for pixel-wise noise-level estimation. The DRNE framework
they designed consists of a stack of customized residual blocks without any pooling or
interpolation operations. The noise level estimation graph obtained by DRNE, and the
ground truth graph are used as the input of the convolutional neural network, which makes
the original network achieve better results.

Talmaj et al. [9] improved KPN, and they proposed a deep neural network-based
approach called Multi-Kernel Prediction Networks (MKPN) for burst image denoising.
MKPN predicts kernels of not just one size but of varying sizes and performs a fusion of
these different kernels resulting in one kernel per pixel. This enables MKPN to better extract
information from images. MKPN has achieved good results in texture and homogeneous
area denoising. Bingyang et al. [10] proposed a novel network including noise estimation
module and removal module (NERNet). The noise estimation module automatically
estimates the noise level map corresponding to the information extracted by symmetric
dilated block and pyramid feature fusion block. To fuse noisy multi-modality image
pairs accurately and efficiently, Huanqiu et al. [11] proposed a multi-modality image
simultaneous fusion and denoising method.

Zhonghua et al. [12] proposed a novel model-guided boosting framework. By using
the Regularization by Denoising (RED), they could apply explicit regularization equipped
with powerful image denoising engine to establish the global minimization problem,
making the obtained model clearly defined and well optimized. The framework enjoyed
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the advantage of easily extending to the case of composite denoising via superadding a
regularization term.

Gang Liu et al. [13] proposed a true wide CNN (WCNN) to reorganize several con-
volutional layers. Each subnetwork had its own input and output and was supervised
by its own loss function to capture image features with a specific direction and scale,
allowing the WCNN to have sufficient convolutional layers to capture image features
while avoiding vanishing/exploding gradients. Jiechao Shen et al. [14] proposed the
sparse representation-based network (SRNet). They considered combining the sparse rep-
resentation with deep learning to make this traditional model more effective and efficient.
They embedded the convolutional neural network (CNN) into the sparse representation
framework. Laya et al. [15] proposed the Multi Scaling Aided Double Decker (MUS-ADD)
convolutional neural network. It solved the disadvantages of the traditional method, which
required a large number of models, etc. Shuang Xu et al. [16] built a more interpretable
network. An observation model was proposed to account for modality gap between tar-
get and guidance images. Then, they formulated a deep prior regularized optimization
problem, and solved it by the alternating direction method of multipliers (ADMM) algo-
rithm. Yang Ou et al. [17] proposed a novel multi-scale weighted group sparse coding
model (MS-WGSC). It better restored the structure and the edges of images contaminated
by noise. Lei Zhang et al. [18] proposed the Robust Low-Rank Analysis with Adaptive
Weighted Tensor (AWTD) method. It obtained the low-rank approximation of the tensor
by adding adaptive weights to the unfolding matrix of the tensor. By decomposing true
image into a cartoon part and texture part, Xiao Li et al. [19] proposed a fractional image
denoising model with two-component regularization terms. Sunder Ali et al. [20] proposed
a cascaded and recursive convolutional neural network (CRCNN) framework, which could
cope with spatial variant noise and blur artifacts in a single denoising framework. Lei
Zhang et al. [21] designed a novel denoising model named Kronecker Component with
Low-Rank Dictionary (KCLD), which replaced the Frobenius norm with a Nuclear norm in
order to capture the low-rank property better. Phan et al. [22] proposed an adaptive model
that used the mean curvature of an image surface to control the strength of smoothing.
A fast method for noise level estimation is proposed to improve the effectiveness of the
proposed model.

In [23], Heng Yao et al. proposed an algorithm to efficiently estimate the noise level
function (NLF), which is defined as the noise standard deviation with respect to image
intensity. The method divided the input image into overlapping patches. The confidence
levels of the noise samples and the prior of the camera response function were then
employed as constraints for the recovery of the NLF. The NLF was incorporated into other
denoising schemes to obtain better results than the original scheme.

Guo et al. [24] trained a convolutional blind denoising network (CBDNet) with a
more realistic noise model and real-world noisy–clean image pairs. To further provide an
interactive strategy to rectify denoising results conveniently, a noise estimation subnetwork
with asymmetric learning to suppress under-estimation of noise level was embedded
into CBDNet. They adopted an asymmetric loss by imposing more penalty on an under-
estimation error of noise level, making CBDNet perform robustly when the noise model
was not well matched with real-world noise.

Zhao et al. [25] proposed a simple but robust network called SDNet to improve the
effectiveness and practicability of deep denoising models. Additionally, there is no need to
estimate the noise level. The model learning had exploited clean–noisy image pairs, newly
produced, built on a generalized signal-dependent noise model. To separate the noise
from image content as fully as possible, a kind of lifting residual module was specifically
proposed for discriminative feature extraction. The network emphasized separating the
noise from image content via a direct, fully end-to-end residual learning strategy.

In [26], Dong et al. proposed a grouped residual dense network (GRDN). The core
part of DRDN is defined as a grouped residual dense block (GRDB) and used as a building
module of GRDN. They experimentally show that image-denoising performance can be
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significantly improved by cascading GRDBs. Meanwhile, they developed a new generative
adversarial network-based real-world noise modeling method.

3. Proposed Methods

Synthetic noise images are used in this paper. The most important noises in real
images are Poisson noise (shot noise) and Gaussian noise. Some scholars have proposed a
simple and practical noise model based on the original data of digital imaging sensors [3].
The signal-dependent noise model gives a function consisting of the Poisson part of the
modeled photon sensing and the Gaussian part of the remaining stationary perturbations
in the output data. Two parameters of a given noisy image model can be estimated by the
image restoration algorithm based on local statistical features. Overall architecture of the
algorithm is shown in Figure 1.
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3.1. The Image Restoration Algorithm on Local Statistical Features

In this paper, the Gaussian correlation noise model shown in Equation (6) is used to
model the image degradation process. The estimated values of the two parameters are
obtained by estimating the parameters of the noise model, and then the preliminary image
is obtained through local statistical features.

3.1.1. Noise Model Parameter Estimation

First, two important assumptions are given: first, according to [27], the statistical
features of a pixel in a degraded image with signal-dependent noise can be derived from
a local region centered at that pixel. Second, there are a certain number of locally homo-
morphic sub-blocks in the original image, and the variance of the pixel intensity in the
sub-blocks is approximately 0. Assuming that the pixel blocks of yp and its adjacent areas
are homomorphic sub-blocks, the brightness of the original pixels in the homomorphic sub-
blocks are yp and E(yp) = yp. The equation represents the local mean of the homomorphic
subblock image without noise as equal to the local mean of noisy image. According to the
modeling formula of xp, we can acquire:

D(xp) = σ2
r + σs

2yp (7)

E(xp) = yp (8)

where E is local mean, D is variance of noise, xp is the degraded image pixel value, yp is
the original image pixel value, and σs and σr are the noise parameters. The two formulas
can be simplified to acquire:

D(xp) = σ2
r + σs

2E(xp) (9)

Equation (9) is derived from Equations (7) and (8). Equation (7) is a quadratic equation
of σs and σr, which has an infinite number of solutions about the variables σs and σr. To
obtain the unique solution of σs and σr, it is necessary to select multiple homomorphic
sub-blocks, then a set of linear equations composed of binary linear equations in the form of
Equation (9) can be obtained. The number of sub-equations depends on the homomorphic
sub-blocks quantity. Typically, the number of image homomorphic sub-blocks are more
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than two, thus the system of equations is an overdetermined system of equations. The
overdetermined systems of equations are expressed.

∑p∈H [σ2
r + σs

2E(xp)− D(xp)]
2
= 0 (10)

In this paper, Equation (10) is solved by the least squares method. By taking the
partial derivative of σs and σr in Equation (10), we can acquire both of the equations
in Equation (11). The solutions of σs and σr are transformed into solving the system of
linear equations shown below. We polluted the images of the Set12 dataset with noise
σs = 2.0 × 10−2, σr = 10−1, and then estimated the average value of noise parameters
obtained by Equation (11) to be σs = 1.978× 10−2, σr = 1.15× 10−1, with an error within 0.02.{

∑p∈H [σ3
r + σs

2σrE(xp)− σrD(xp)] = 0
∑p∈H [σsσ2

r E(xp) + σ3
s E2(xp)− σsD(xp)E(xp)] = 0

(11)

At this point, the unknown parameters σs and σr of the model have unique solutions
that satisfy the least squares method.

3.1.2. The Image Restoration Algorithm on Local Statistical Features

It can be seen from the above reasoning that the variance corresponding to the obser-
vations of the Gaussian signal-dependent noise model is as follows:

σ2(xp) = σ2
r + σ2

s yp (12)

Arranging the above formula will result in yp =
σ2(xp)−σ2

r
σ2

s
. Since the parameters σs

and σr can be estimated by solving the above equations, just solve for σ2(xp) to acquire the
preliminary image. According to the assumption proposed by Lee [28], the mean µ(xp) and
variance σ2(xp) of xp are determined by the mean and variance of the observations in the
neighborhood pixels point of the center pixel p. Thus, σ2(xp) can be obtained as follows:

σ2(xp) =
1

Mt
∑q∈Wp

(xq − µ(xp))
2 (13)

where Mt is the number of pixels in the neighborhood. Substituting the expression of
σ2(yp) into the above formula will result in:

yp =
1

σ2
s Mt

∑q∈Wp
(xq − µ(xp))

2 − σ2
r

σ2
s

(14)

3.2. Convolutional Neural Network

The preliminary image obtained by the above image restoration algorithm based on
the statistical characteristics of the local regions inevitably has two errors. The first error is
caused when estimating the parameters σs and σr. The second error is brought about by
the local statistical features of the selected pixels. Therefore, the denoising effects of the
preliminary image are not ideal. The following two errors caused by the above algorithm
are reduced by the convolutional neural network.

3.2.1. Network Design

The network in this paper employed a simple design, which can reduce the amount
of calculation and speed up the training while completing the task. The function of the
designed network is mainly to reduce the error of the preliminary image. The convolutional
network structure is illustrated in Figure 2. The network takes the preliminary image and
noisy image as input, and then extracts the shallow features of the image by a convolutional
layer, and then extracts the deep features of the image through the residual network. The
residual network is composed of a set of 6 residual blocks. Deeper networks are used
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to extract deep features. However, after the network layer is deepened, the gradient
disappearance and gradient explosion make the training of the network meaningless.
Therefore, the residual network is used to avoid the problem, which not only ensures
the effect but also controls speed. After the residual network extracts the deep-level
features, the data are up_sampled using a up_convolutional layer and the image is returned
to the original size. The last convolution layer fuses the features into a single-channel
image. The size of the convolution kernel used in the first convolutional layer and the
last convolutional layer are both 9 × 9, and the size of the convolution kernel used by all
the remaining convolutional layers is 3 × 3. The convolution layers in the residuals block
are all 128 convolution kernels with a stride of 1. Only in this way can each layer in the
residual network output the same size as the feature map. It helps to fuse features. The
LeakyReLU activation function with a slope of 0.2 is employed in the paper, which fixes
the problem that the non-positive gradient of ReLU is 0, causing some parameters never to
be updated. This activation function has a small positive slope in the negative area, thus
it can backpropagate even with negative input values. Furthermore, after experiments,
it is found that batch normalization is hardly helpful for the denoising of real images.
Part of the reason is that the real noise distribution is fundamentally different from the
Gaussian distribution. The architecture of the proposed network is shown in Figure 3a,
and the residual connection is shown in Figure 3b. Table 1 shows the parameter settings of
Convolutional Neural Networks.
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Table 1. The parameter settings of Convolutional Neural Network.

Layer Kernel Leaky-ReLU Stride

Conv1 9 × 9 × 64 Yes 1

Conv2 3 × 3 × 128 Yes 1

Conv3 3 × 3 × 128 Yes 1

Conv4 3 × 3 × 128 No 1

Conv5 3 × 3 × 128 No 1

DeConv6 3 × 3 × 256 Yes 1

Conv7 9 × 9 × 1 No 1

3.2.2. Loss Function Design

The mean squared error (MSE) below is used as the objective function (the loss func-
tion) to measure the difference between the predicted image R(Yj) and the corresponding
ground truth value Yj − Xj. Xj represents the jth clean image. θ represents the parameters

of the trained model in the network.
{
(Yj, Xj)

}N
j=1 represents there are N image pairs of

predicted images and real images. Potentially clean images are recovered by the Adam
optimizer using a loss function.

L(θ) =
1

2N

N

∑
j=1

∣∣∣∣∣∣R(Yj, θ)− (Yj − Xj)
∣∣∣|22 (15)

4. Experiment

In this section, we assess the performance of the proposed method and compare it
with other methods to show the improvement of the method relative to other methods.

The experimental environment comprised an Intel Core i7-9700k CPU, 128 GB RAM,
and a NVIDIA GeForce RTX 2070 GPU. In addition, the deep learning framework used
was Pytorch.

The paper uses the Berkeley Segmentation Dataset (Berkeley segmentation dataset,
BSD) (BSD500 for short) as the network training dataset. The BSD500 dataset contains
500 grayscale images, and all images are of size 481 × 321. In the experiment, 200 sets
of noise are added to each image to construct an image with real noise. Therefore, the
training dataset consists of 105 training samples in total. The noise parameters σs and σr
are randomly sampled from [10−3, 10−2] to [10−2.5, 10−1], respectively.

In the selection of test data sets, we use Kodak, McMaster, and Set12 as test data sets,
and compare the more advanced methods proposed on these data sets. Although KPN [3]
is designed for multi-frame image input, it can be adjusted to a single-frame image by
changing the network input to compare with our method.

For comparison with other methods, we evaluated the noise levels corresponding to
three fixed sets of σs and σr. Similar to [29], gamma correction was performed first, then
we added signal-dependent Gaussian noise, took the generated noise image as the input:
N(0, σ2

r + σsyp), where yp was the intensity of image pixels and the noise parameters σs and
σr were randomly sampled from [10−3, 10−2] to [10−2.5, 10−1]. Furthermore, similar to [4],

the noise level was estimated as:
√

σ2
r + σsyp. Note that the noise Equation (6) assigned

three single sets of parameter values, i.e., σ1 (σs = 2.0 × 10−2, σr = 10−1), σ2 (σs = 6.0 × 10−2,
σr = 2 × 10−1), and σ3 (σs = 9.0 × 10−2, σr = 3 × 10−1), to generate clean-noisy image pairs
for image denoising. We claim that harnessing noise Equation (6) with combinations of
different parameter settings may lead to better results. In spite of that, it was found that the
parameter setting as above is a more robust candidate than several other choices.

Similar to most CNNs used for image denoising, the optimizer chooses the adaptive
moment estimation (Adam) method in setting network parameters, and the loss function is
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MSE. The whole training process contains 180 epochs, and the batch size is set to 20, thus
the training data set can be divided into 5000 batches. However, for each epoch, we only
sample the first 3000 batches for training. Before the next epoch training, we shuffle the
order of all batches and select the top 3000 batches for training. The training adopts a linear
piecewise learning rate, the learning rate of the top 90 epochs is 10−3, the next 60 epochs
are 10−4, and the last 30 epochs are 10−5.

To test the effectiveness of each block for our network on image denoising, we used
ablation experiments to analyze the performance. The images in the Set12 dataset were
selected for the experiment, and the noise level σ1 (σs = 2.0 × 10−2, σr = 10−1) was added.
Then, we denoised the images separately in groups. The denoising results are shown in
Table 2, which shows the PSNR. The results show that residuals made the denoising effect
better. Additionally, the addition of preliminary image made the denoising effect better.

Table 2. The average PSNR(DB) results of different methods on three datasets. (a) Remove three
residual blocks. (b) Remove all residual blocks. (c) Remove the preliminary image from the input.
(d) Original network.

Method a b c d

PSNR 28.67 29.61 31.24 33.50

The paper selects four methods: KPN [3], CBDNet [24], SRNet [14], and WCNN [13].
The link to the code is posted in references [30–33]. Five methods are compared on all
the datasets used in the paper. KPN generates a stack of per-pixel filter kernels that
jointly aligns, averages, and denoises a burst to produce a clean version of the reference
frame. The establishment of the CBD model takes into account both the Poisson–Gaussian
model and the in-camera processing pipeline. However, the Poisson–Gaussian model
does not have a wider range of scenarios than the signal-dependent Gaussian model in
the paper. Each subnetwork of WCNN has its input and output and is supervised by its
loss function to capture image features with a specific direction and scale, allowing the
WCNN to have sufficient convolutional layers to capture image features while avoiding
vanishing/exploding gradients. SRNet embeds the CNN into the sparse representation
framework. In each phase, two subnetworks are designed with MSR block to model
the updating of the sparse coefficient and image, respectively. However, it suffers from
performance bottlenecks and large time consumption.

Figure 4a–d is a diagram of each stage of the paper. To see the contrast, we enlarge
the green part of the image into the red part. It can be seen that the images have more
detail loss and less clarity even if the preliminary image can see the denoising effect. The
denoising effect of the restored image is better. The picture detail loss is less, the recovery
effect is better.
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Figure 5a–e shows a visual comparison of different algorithms in the Set12 dataset.
The KPN image effect is normal, the details are lost, and the denoising effect of the shadow
area is not very ideal. CBDNet is better than KPN in detail recovery. It loses less detail



Electronics 2023, 12, 1201 10 of 17

and restores the shadow part well, but the overall image is not clear. CBDNet is better at
processing low-noise images. While SRNet and WCNN performed well in terms of image
sharpness and detail, there is still room for improvement. The algorithm proposed in this
paper can recover image details more clearly and obtain a better visual effect. It still does
not effectively remove all real noise, because the noise model does not perfectly represent
real noise.
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Table 3 shows the average PSNR in Set12 data sets. Table 4 shows the average SSIM of
different algorithms in Set12 data sets. The average PSNR of the algorithm in the paper
is higher than the other algorithms. Except for low-noise images, the denoising effect
of CBDNet is slightly better than that of the method in this paper. The performance of
SRNet and WCNN is similar to that of the proposed algorithm. However, in terms of SSIM,
our algorithm is superior to other algorithms. It shows that the proposed algorithm is
superior to the previous algorithms in denoising performance. The average SSIM index of
the restored image is close to that of the original image, indicating that the quality of the
restored image is close to that of the original noiseless image.

Table 3. The average PSNR(DB) results of different methods on three datasets.

Dataset Noise Level KPN [3] CBDNet [24] SRNet [14] WCNN [13] Ours

McMaster
σ1 32.69 34.34 33.76 33.65 34.31
σ2 31.09 31.51 31.73 31.92 33.25
σ3 29.76 29.84 30.42 30.78 31.03

Set12
σ1 30.96 33.53 33.11 32.91 33.50
σ2 29.82 30.88 31.16 31.23 31.52
σ3 28.59 28.79 29.28 29.57 29.95

Kodak
σ1 31.98 35.71 34.95 34.71 35.65
σ2 30.57 31.86 32.44 32.93 33.63
σ3 29.45 29.79 30.07 30.48 31.46
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Table 4. The average SSIM results of different methods on three datasets.

Dataset Noise Level KPN [3] CBDNet [24] SRNet [14] WCNN [13] Ours

McMaster
σ1 0.684 0.785 0.727 0.723 0.783
σ2 0.615 0.661 0.689 0.697 0.715
σ3 0.564 0.613 0.621 0.635 0.651

Set12
σ1 0.668 0.729 0.710 0.701 0.724
σ2 0.632 0.655 0.642 0.646 0.708
σ3 0.551 0.577 0.598 0.585 0.604

Kodak
σ1 0.718 0.789 0.771 0.762 0.783
σ2 0.684 0.724 0.735 0.738 0.761
σ3 0.642 0.665 0.689 0.691 0.710

Figure 6 shows the average PSNR of our algorithm on the Set12 test set at the noise
level of σ3 (σs = 9.0 × 10−2, σr = 3 × 10−1). It shows the line graph of PSNR changing
with the number of iterations. As the number of iterations increases, PSNR gradually
flattens out.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 18 
 

 

Figure 5. Denoising results of the images on the Set12 dataset by different methods. (a) KPN [3]. (b) 
CBDNet [24]. (c) SRNet [14]. (d) WCNN [13]. (e) Ours. 

Table 3 shows the average PSNR in Set12 data sets. Table 4 shows the average SSIM 
of different algorithms in Set12 data sets. The average PSNR of the algorithm in the paper 
is higher than the other algorithms. Except for low-noise images, the denoising effect of 
CBDNet is slightly better than that of the method in this paper. The performance of SRNet 
and WCNN is similar to that of the proposed algorithm. However, in terms of SSIM, our 
algorithm is superior to other algorithms. It shows that the proposed algorithm is superior 
to the previous algorithms in denoising performance. The average SSIM index of the re-
stored image is close to that of the original image, indicating that the quality of the re-
stored image is close to that of the original noiseless image. 

Table 3. The average PSNR(DB) results of different methods on three datasets. 

Dataset Noise Level KPN [3] CBDNet [24] SRNet [14] WCNN [13] Ours 

McMaster 
σ1 32.69 34.34 33.76 33.65 34.31 
σ2 31.09 31.51 31.73 31.92 33.25 
σ3 29.76 29.84 30.42 30.78 31.03 

Set12 
σ1 30.96 33.53 33.11 32.91 33.50 
σ2 29.82 30.88 31.16 31.23 31.52 
σ3 28.59 28.79 29.28 29.57 29.95 

Kodak 
σ1 31.98 35.71 34.95 34.71 35.65 
σ2 30.57 31.86 32.44 32.93 33.63 
σ3 29.45 29.79 30.07 30.48 31.46 

Figure 6 shows the average PSNR of our algorithm on the Set12 test set at the noise 
level of 3σ ( sσ  = 9.0 × 10−2, rσ  = 3 × 10−1). It shows the line graph of PSNR changing with 
the number of iterations. As the number of iterations increases, PSNR gradually flattens 
out. 

 
Figure 6. The relationship between the number of iterations Epoch and PSNR. 

Table 4. The average SSIM results of different methods on three datasets. 

Dataset Noise Level KPN [3] CBDNet [24] SRNet [14] WCNN [13] Ours 
McMaster σ1 0.684 0.785 0.727 0.723 0.783 
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Figure 7 shows the loss of our algorithm on the Set12 test set at the noise level of σ3
(σs = 9.0 × 10−2, σr = 3 × 10−1). It shows the line graph of loss changing with the number of
iterations. As the number of iterations increases, loss decreases and gradually flattens out.
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To verify the denoising effect of our algorithm under high noise, we added a set of
denoising experiments σ (σs = 9.0 × 10−1, σr = 3.0 × 1) for verification. Figure 8a,b shows a
comparison of the denoising effect of the proposed method in the case of high noise.
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To verify the performance of the denoising algorithm in real scenes, we selected the
α57 digital cameras launched by Sony to collect 30 images. To evaluate the performance of
our method in terms of visual quality, we performed a subjective evaluation as a qualitative
analysis experiment. The evaluation was carried out as a rating experiment where 40 users
experienced in image processing viewed, in random order, a set of images. The users
were asked to provide ratings for each image according to the following attributes: noise
and detail. The final result of the ratings averaged over the observers is illustrated in
Figures 9 and 10.

Figure 11a–f shows two images we randomly selected. From the first picture, the
details of the houses in the shaded part of the image restored by KPN are missing, and the
overall effect of the image is not ideal. The local detail of the CBDNet algorithm is stronger
than KPN, but the overall visual effect is a bit fuzzy, and the image quality is not good.
WCNN and SRNet are better than the first two algorithms in terms of sharpness and image
detail, but there is still room for improvement. In the marked areas in the image, we can see
that other algorithms are rough in detail recovery in the shadow area, and the denoising
effect is not ideal. Our algorithm performs well in this respect. The algorithm in this paper
has the strongest local detail retention ability, and the restored image has fine details and a
clear texture. In the second picture, KPN is missing some details in the recovered image.
The text in the book is obscured, and the overall picture is poor in definition. In the image
recovered by CBDNet, the text of the book can be seen, but it is not clear, and the overall
image is a little fuzzy. The images recovered by WCNN and SRNet are good, but lower than
the algorithm in this paper. In the marked areas in the images, we can see that the labels in
the images recovered by other algorithms are fuzzy, and the denoising effect around the
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labels is not ideal, while the label recovered by our algorithm is clear and the denoising
effect is ideal. The algorithm in this paper has a good performance in detail recovery and
overall quality.
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Figure 12a,b shows the comparison before and after denoising of our algorithm. It can
be intuitively seen from comparison figures that the noise in the images is greatly reduced
after denoising by our algorithm. The image recovery effect is good, and the details are
perfectly restored.
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In general, our algorithm can reconstruct the detailed features more successfully. Alt-
hough it does not achieve the best denoising effect in low noise images, the overall de-
noising effect is better and the restored images are clear, which is better than other algo-
rithms.  

5. Conclusions 
The paper presents a deep signal-dependent denoising noise algorithm. There are 

two main stages to the work. Firstly, the noise parameters of the image are estimated by 
the noise parameters, and then the preliminary image is obtained according to the local 
statistical characteristics. Secondly, using the initial recovery map as input to the network 
along with the original map, take the initial restored image and the original image to-
gether as the input of the network, and the convolutional neural network can be used to 
reduce the error of the preliminary image and make the recovered image closer to the 
original image. We use the noise level of the noise image and the noise image together as 
the input of the convolutional neural network to obtain a wider range of noise levels than 
the single noise image as the input. It makes the denoising algorithm more widely used 
and has a better effect on detail recovery. We compared and analyzed denoising algo-
rithms based on subjective vision. It was verified that the algorithm in this paper has a 
relatively evident inhibitory effect on signal-dependent noise, and the recovered images 
are of higher quality. This paper deals with grayscale images. For the future work, we 
hope to denoise color noise images. We believe that a combination of traditional image 
denoising and deep learning will become a great way to deal with noisy images.  
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Figure 12. Image denoising comparison. (a1,a2) The original image. (b1,b2) Ours.

In general, our algorithm can reconstruct the detailed features more successfully. Al-
though it does not achieve the best denoising effect in low noise images, the overall denois-
ing effect is better and the restored images are clear, which is better than other algorithms.

5. Conclusions

The paper presents a deep signal-dependent denoising noise algorithm. There are
two main stages to the work. Firstly, the noise parameters of the image are estimated by
the noise parameters, and then the preliminary image is obtained according to the local
statistical characteristics. Secondly, using the initial recovery map as input to the network
along with the original map, take the initial restored image and the original image together
as the input of the network, and the convolutional neural network can be used to reduce
the error of the preliminary image and make the recovered image closer to the original
image. We use the noise level of the noise image and the noise image together as the input
of the convolutional neural network to obtain a wider range of noise levels than the single
noise image as the input. It makes the denoising algorithm more widely used and has a
better effect on detail recovery. We compared and analyzed denoising algorithms based on
subjective vision. It was verified that the algorithm in this paper has a relatively evident
inhibitory effect on signal-dependent noise, and the recovered images are of higher quality.
This paper deals with grayscale images. For the future work, we hope to denoise color noise
images. We believe that a combination of traditional image denoising and deep learning
will become a great way to deal with noisy images.
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Abbreviations

The following abbreviations are used in this manuscript:

Short Name Full Name
CNNs Convolutional Neural Networks
AWGN Additive White Gaussian Noise
DnCNN Feed-forward Denoising Convolutional Neural Networks
NLF Noise Level Function
BDE Bayesian Deep Ensemble
DRNE Deep Residual Noise Estimator
KPN Kernel Prediction Network
MKPN Multi-Kernel Prediction Networks
RED Regularization by Denoising
WCNN Wide CNN
MSR-block Multiscale Residual Block
CBDNet Convolutional Blind Denoising Network
NERNet Noise Estimation module and Removal Network
SDNet Software Defined Network
SRNet Sparse Representation-based Network
MUS-ADD Multi Scaling Aided Double Decker
ADMM Alternating Direction Method of Multipliers
MS-WGSC Multi-Scale Weighted Group Sparse Coding
AWTD Adaptive Weighted Tensor
CRCNN Cascaded and Recursive Convolutional Neural Network
KCRD Kronecker Component with Low-Rank Dictionary
GRDN Grouped Residual Dense Network
MSE Mean Squared Error
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity

References
1. Radlak, K.; Malinski, L.; Smolka, B. Deep learning based switching filter for impulsive noise removal in color images. Sensors

2020, 20, 2782. [CrossRef]
2. Zhang, W. Digital image processing method for estimating leaf length and width tested using kiwifruit leaves (Actinidia chinensis

Planch). PLoS ONE 2020, 15, e0235499. [CrossRef]
3. Mildenhall, B.; Barron, J.T.; Chen, J.; Sharlet, D. Burst denoising with kernel prediction networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; Volume 13, pp. 2502–2510.
4. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image de-noising.

IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef]
5. Foi, A.; Trimeche, M.; Katkovnik, V.; Egiazarian, K. Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image

Raw-Data. IEEE Trans. Image Process. 2008, 17, 1737–1754. [CrossRef]
6. Liu, X.; Tanaka, M.; Okutomi, M. Practical Signal-Dependent Noise Parameter Estimation From a Single Noisy Image. IEEE Trans.

Image Process. 2014, 23, 4361–4371. [CrossRef]

http://doi.org/10.3390/s20102782
http://doi.org/10.1371/journal.pone.0235499
http://doi.org/10.1109/TIP.2017.2662206
http://doi.org/10.1109/TIP.2008.2001399
http://doi.org/10.1109/TIP.2014.2347204


Electronics 2023, 12, 1201 17 of 17

7. Liu, X.; Tanaka, M.; Okutomi, M. Signal dependent noise removal from a single image. IEEE Int. Conf. Image Process. IEEE 2014,
20, 2679–2683.

8. Tan, H.; Xiao, H.; Lai, S.; Liu, Y.; Zhang, M. Pixelwise Estimation of Signal-Dependent Image Noise Using Deep Residual Learning.
Comput. Intell. Neurosci. 2019, 30, 45–46. [CrossRef]

9. Marinc, T.; Srinivasan, V.; Gul, S.; Hellge, C.; Samek, W. Multi-Kernel Prediction Networks for Denoising of Burst Images. In
Proceedings of the 2019 IEEE International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; Volume 15,
pp. 2404–2408. [CrossRef]

10. Guo, B.; Song, K.; Dong, H.; Yan, Y.; Tu, Z.; Zhu, L. NERNet: Noise estimation and removal network for image denoising. J. Vis.
Commun. Image Represent. 2020, 71, 102851. [CrossRef]

11. Qi, G.; Hu, G.; Mazur, N. A novel multi-modality image simultaneous denoising and fusion method based on sparse representa-
tion. Computers 2021, 10, 129. [CrossRef]

12. Xie, Z.; Liu, L.; Wang, C. Model-guided boosting for image denoising. Signal Process. 2022, 201, 108721. [CrossRef]
13. Liu, G.; Dang, M.; Liu, J.; Xiang, R.; Tian, Y.; Luo, N. True wide convolutional neural network for image denoising. Inf. Sci. 2022,

610, 171–184. [CrossRef]
14. Sheng, J.; Lv, G.; Wang, Z.; Feng, Q. SRNet: Sparse representation-based network for image denoising. Digit. Signal Process. 2022,

130, 103702. [CrossRef]
15. Tojo, L.; Maik, V.; Devi, M. Image Denoising Using Multi Scaling Aided Double Decker Convolutional Neural Network. Optik

2022, 13, 170350. [CrossRef]
16. Xu, S.; Zhang, J.; Wang, J.; Sun, K.; Zhang, C.; Liu, J.; Hu, J. A model-driven network for guided image denoising. Inf. Fusion 2022,

85, 60–71. [CrossRef]
17. Ou, Y.; Swamy, M.; Luo, J.; Li, B. Single image denoising via multi-scale weighted group sparse coding. Signal Process. 2022,

200, 108650. [CrossRef]
18. Zhang, L.; Liu, C. Robust Low-Rank Analysis with Adaptive Weighted Tensor for Image Denoising. Displays 2022, 73, 102200.

[CrossRef]
19. Li, X.; Meng, X.; Xiong, B. A fractional variational image denoising model with two-component regularization terms. Appl. Math.

Comput. 2022, 427, 127178. [CrossRef]
20. Khowaja, S.A.; Yahya, B.N.; Lee, S.L. Cascaded and Recursive ConvNets (CRCNN): An effective and flexible approach for image

denoising. Signal Process. Image Commun. 2021, 99, 116420. [CrossRef]
21. Zhang, L.; Liu, C. Kronecker component with robust low-rank dictionary for image denoising. Displays 2022, 74, 102194.

[CrossRef]
22. Phan, T.D.K. A weighted total variation based image denoising model using mean curvature. Optik 2020, 217, 164940. [CrossRef]
23. Yao, H.; Zou, M.; Qin, C.; Zhang, X. Signal-Dependent Noise Estimation for a Real-Camera Model via Weight and Shape

Constraints. IEEE Trans. Multimed. 2021, 24, 640–654. [CrossRef]
24. Guo, S.; Yan, Z.; Zhang, K.; Zuo, W.; Zhang, L. Toward Convolutional Blind Denoising of Real Photographs. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; Volume 16,
pp. 1712–1722. [CrossRef]

25. Zhao, H.; Shao, W.; Bao, B.; Li, H. A simple and robust deep convolutional approach to blind image denoising. In Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27 October–2 November 2019;
Volume 29.

26. Kim, D.W.; Ryun Chung, J.; Jung, S.W. Grdn: Grouped residual dense network for real image denoising and gan-based real-
world noise modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
Long Beach, CA, USA, 16–20 June 2019; Volume 14.

27. Akyüz, A.O.; Reinhard, E. Noise reduction in high dynamic range imaging. J. Vis. Commun. Image Represent. 2007, 18, 366–376.
[CrossRef]

28. Lee, J.-S. Digital Image Enhancement and Noise Filtering by Use of Local Statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 2,
165–168. [CrossRef]

29. Plotz, T.; Roth, S. Benchmarking denoising algorithms with real photographs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; Volume 17, pp. 1586–1595.

30. Available online: https://paperswithcode.com/paper/burst-denoising-with-kernel-prediction (accessed on 5 November 2022).
31. Available online: https://paperswithcode.com/paper/toward-convolutional-blind-denoising-of-real (accessed on 8 November 2022).
32. Available online: https://github.com/JiechaoSheng/SRNet (accessed on 9 November 2022).
33. Available online: https://paperswithcode.com/paper/dc-wcnn-a-deep-cascade-of-wavelet-based (accessed on 11 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1155/2019/4970508
http://doi.org/10.1109/icip.2019.8803335
http://doi.org/10.1016/j.jvcir.2020.102851
http://doi.org/10.3390/computers10100129
http://doi.org/10.1016/j.sigpro.2022.108721
http://doi.org/10.1016/j.ins.2022.07.122
http://doi.org/10.1016/j.dsp.2022.103702
http://doi.org/10.1016/j.ijleo.2022.170350
http://doi.org/10.1016/j.inffus.2022.03.006
http://doi.org/10.1016/j.sigpro.2022.108650
http://doi.org/10.1016/j.displa.2022.102200
http://doi.org/10.1016/j.amc.2022.127178
http://doi.org/10.1016/j.image.2021.116420
http://doi.org/10.1016/j.displa.2022.102194
http://doi.org/10.1016/j.ijleo.2020.164940
http://doi.org/10.1109/TMM.2021.3056879
http://doi.org/10.1109/cvpr.2019.00181
http://doi.org/10.1016/j.jvcir.2007.04.001
http://doi.org/10.1109/TPAMI.1980.4766994
https://paperswithcode.com/paper/burst-denoising-with-kernel-prediction
https://paperswithcode.com/paper/toward-convolutional-blind-denoising-of-real
https://github.com/JiechaoSheng/SRNet
https://paperswithcode.com/paper/dc-wcnn-a-deep-cascade-of-wavelet-based

	Introduction 
	The Related Work 
	Proposed Methods 
	The Image Restoration Algorithm on Local Statistical Features 
	Noise Model Parameter Estimation 
	The Image Restoration Algorithm on Local Statistical Features 

	Convolutional Neural Network 
	Network Design 
	Loss Function Design 


	Experiment 
	Conclusions 
	References

