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Abstract: Long Short-Term Memory (LSTM) networks have been widely used to solve sequence
modeling problems. For researchers, using LSTM networks as the core and combining it with
pre-processing and post-processing to build complete algorithms is a general solution for solving
sequence problems. As an ideal hardware platform for LSTM network inference, Field Programmable
Gate Array (FPGA) with low power consumption and low latency characteristics can accelerate the
execution of algorithms. However, implementing LSTM networks on FPGA requires specialized
hardware and software knowledge and optimization skills, which is a challenge for researchers.
To reduce the difficulty of deploying LSTM networks on FPGAs, we propose F-LSTM, an FPGA-
based framework for heterogeneous computing. With the help of F-LSTM, researchers can quickly
deploy LSTM-based algorithms to heterogeneous computing platforms. FPGA in the platform will
automatically take up the computation of the LSTM network in the algorithm. At the same time,
the CPU will perform the pre-processing and post-processing in the algorithm.To better design the
algorithm, compress the model, and deploy the algorithm, we also propose a framework based
on F-LSTM. The framework also integrates Pytorch to increase usability. Experimental results on
sentiment analysis tasks show that deploying algorithms to the F-LSTM hardware platform can
achieve a 1.8× performance improvement and a 5.4× energy efficiency improvement compared
to GPU. Experimental results also validate the need to build heterogeneous computing systems.
In conclusion, our work reduces the difficulty of deploying LSTM on FPGAs while guaranteeing
algorithm performance compared to traditional work.

Keywords: LSTM; FPGA; heterogeneous computing; network pruning; automation tool

1. Introduction

In recent years, deep neural networks have developed rapidly. Recurrent Neural
Network (RNN) [1] is a type of deep neural network used to solve sequence problems,
which learns temporal information about a sequence by adding the network’s output of the
previous time step to the current network input. LSTM [2] networks, a particular type of
RNN network, can selectively remember important information and discard unimportant
information. LSTM has shown a powerful ability to learn and predict sequences and has
been widely used in tasks requiring sequence modeling, such as sentiment analysis and
speech recognition.

For researchers, using LSTM as a core and combining it with pre-processing and post-
processing to build complete algorithms becomes a general solution when solving tasks that
require sequence modeling. The solution’s core is a structurally identical LSTM network.
Researchers can solve various tasks by adding different pre-processing and post-processing.
We refer to these solutions collectively as LSTM-based algorithms. For the raw data, we
need to perform a series of pre-processing before we can input the processed sequences into
the LSTM network. For example, when using LSTM to solve the sentiment analysis task [3],
pre-processing in the algorithm includes tokenization and word embedding. Similarly, for
the output of the LSTM network, we need to perform a series of post-processing to obtain
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the final result. Again, taking sentiment analysis as an example, post-processing includes a
dense layer and so f tmax function.

The hardware platforms running deep neural networks are mainly general-purpose
processors like CPU and GPU. However, as the size of LSTM networks increases, the
CPU can be overwhelmed by many computations. Although GPUs are good at parallel
computing, they cannot run LSTM networks efficiently due to the inherent recurrent
characteristics of LSTM. Meanwhile, the high power consumption of GPU is unacceptable
in some energy-sensitive applications, such as data centers and edge computing. Due to the
low energy consumption, low latency, high performance, and reconfigurability of FPGA
using FPGA as the hardware platform for inferring LSTM networks is an ideal solution [4].

For researchers, however, implementing an LSTM network based on FPGA requires
specific software and hardware knowledge, which requires a team of domain researchers,
software engineers, and hardware engineers and requires the team to spend much time
designing and optimizing the implementation. For researchers, these requirements take
work to meet. Moreover, a complete LSTM-based algorithm does include not only the
core LSTM network but also pre-processing and post-processing. Generally speaking,
the amount of computation and storage of pre-processing and post-processing is small,
but the inherent logic is complex. Implementing and optimizing the operations in pre-
processing and post-processing on FPGA is no less challenging than implementing an
LSTM network. However, the performance improvement and energy reduction resulting
from implementing pre-processing and post-processing on FPGAs are negligible for the
overall algorithm.

Due to the complexity of FPGA development, the LSTM network in the famous deep
neural network framework PyTorch [5] only provides support for CPU and GPU and lacks
support for FPGA. Using FPGA for training the LSTM network is not a wise choice. What
we need to do is to perform the inference of the LSTM network on the FPGA. It is not a
challenge for researchers to use PyTorch to combine LSTM network, pre-processing, and
post-processing to build a complete algorithm when solving sequence modeling tasks.
What bothers researchers is how to translate the LSTM model into a high-performance,
energy-efficient FPGA implementation and combine it with existing pre-processing and
post-processing.

To solve these problems, we propose an FPGA-based heterogeneous computing frame-
work, F-LSTM. With the help of F-LSTM, researchers can deploy LSTM-based algorithms
into an FPGA-based heterogeneous computing platform. The FPGA in the platform will
automatically assume the computation of the LSTM network in the algorithm. To ensure
the algorithm’s integrity, F-LSTM will leave the pre-processing and post-processing to
the CPU in the heterogeneous computing platform. Meanwhile, we designed a workflow
based on F-LSTM, which can help us to complete the design, compression, and deployment
of LSTM-based algorithms.

The contributions of this paper are as follows.

• We proposed a heterogeneous computing framework based on FPGA, which leaves
the pre-processing and post-processing to the CPU. The FPGA is responsible for the
computation of LSTM to ensure the algorithm’s integrity. To ensure the reliability of
F-LSTM, we used the API provided by Vitis to guarantee the data transfer between
the CPU and the FPGA and the correct boot of the kernel on the FPGA. To reduce the
system latency, we store the LSTM model parameters in the BRAM on the FPGA, and
the LSTM kernel reads them from the global memory (usually DDR on FPGA) on the
FPGA before starting the computation. This read operation is performed only once
during the entire life of the algorithm.

• We designed a configurable LSTM kernel using High-level synthesis language. We
divided the kernel into three parts: matrix-vector multiplication, activation functions,
and element-wise computation. To speed up the core matrix-vector multiplication,
we prune the LSTM model, use the CRS format to store the sparse weight matrix to
reduce storage, and design special matrix-vector multiplication to reduce the number
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of computations. To reduce the delay caused by the exponential function term in the
activation function, we use piecewise linear approximation (PWL) to implement the
sigmoid on FPGA and replace tanh by hardtanh during network training. To reduce
the overall delay of the kernel, we use HLS pragma unroll and pipeline to optimize the
loop and use pragma data f low to generate multiple matrix-vector multiplication PEs.

• We developed a workflow based on F-LSTM. The workflow consists of algorithm
design, model compression, and algorithm deployment. This workflow can help us to
complete the migration of LSTM-based algorithms from the general-purpose processor
to the F-LSTM hardware platform.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3
introduces the basics of LSTM, fpga-based heterogeneous computing. Section 4 describes
the design of F-LSTM and the implementation of the LSTM kernel. Section 5 introduces the
workflow based on F-LSTM. The experimental setup and results are described in Section 6.
Section 7 concludes the paper.

2. Related Work

In recent years, there has been increased research on using FPGA to accelerate neural
networks. Much FPGA-based work focuses on convolutional neural network (CNN) ac-
celeration. Ref. [6] proposed a programmable and flexible CNN architecture, as well as
data quantization strategies and compilation tools. Ref. [7] introduced an automated tool,
hls4ml, for deploying ultra-low-latency, low-power deep neural networks with convolu-
tional layers on FPGA. Ref. [8,9] implemented the high-performance CNN-based object
detection algorithms on FPGA. Compared to CNN, research on accelerating RNN on FPGA,
especially LSTM, is rare and homogeneous. Most of the work [4,10–16] focused on design-
ing special pruning methods and LSTM kernels based on the methods. Ref. [4] proposed
a load-balance-aware pruning method that can compress the LSTM model size by 10×
with negligible loss of prediction accuracy and a hardware architecture that works directly
on the sparse LSTM model. Ref. [10] proposed a structured compression technique and
a comprehensive framework to optimize and automatically implement LSTM variants
on FPGA. Ref. [11] proposed a structured pruning method and a hardware architecture
of the compressed LSTM. Ref. [12] proposed bank-balanced sparsity(BBS) and a 3-step
software-hardware co-optimization approach to applying BBS in FPGA hardware.

FPAG-based heterogeneous computing with high performance, energy efficiency,
and programmability has been applied in KNN [17], Kmeans [18], and SWIFOLD [19].
Moreover, much research [20–22] has focused on running CNN on the heterogeneous
computing platform.

We apply FPGA-based heterogeneous computing to LSTM-based algorithms and
design a workflow that includes algorithm design, model compression, and algorithm
deployment. We effectively utilize the high-performance, energy-efficient, and reconfigura-
bility of FPGA and reduce the difficulty of deploying LSTM networks on FPGA.

3. Background
3.1. LSTM

As a particular type of RNN cell, LSTM can selectively remember some essential
features and discard some unimportant features for a long time. The structure of the LSTM
cell is shown in Figure 1. The LSTM cell input [xt, ht−1] for the current time step t consists
of the current sequence input xt and the hidden layer output ht−1 from the previous time
step t− 1. Significantly, the LSTM cell contains a special memory ct to store the cell state. It
also includes an input gate, a cell gate, an output gate, and a forget gate to remember or
forget features selectively. As shown in the standard LSTM cell in Figure 1, the output ht
and the cell state ct are generated by the following equations:

gt = tanh(Wg[xt, ht−1] + bg) (1)
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it = sigmoid(Wi[xt, ht−1] + bi) (2)

ot = sigmoid(Wo[xt, ht−1] + bo) (3)

ft = sigmoid(W f [xt, ht−1] + b f ) (4)

ct = ft � ct−1 + it � gt (5)

ht = tanh(ct)� ot (6)

gt, it, ft, and ot are the output vectors of the cell gate, input gate, forget gate, and output
gate. W denotes the weight matrix (e.g., Wi is the weight matrix between the input gate
and the LSTM cell input), and b denotes the bias vector (e.g., bi is the bias vector of the
input gate).

Figure 1. Structure of LSTM cell. σ denotes the sigmoid function, tanh denotes the hyperbolic tangent
function, × denotes matrix-vector multiplication, + operator denotes elementwise addition, and
operator � denotes elementwise multiplication.

3.2. FPGA-Based Heterogeneous Computing

FPGA-based heterogeneous computing has high performance, low power consump-
tion, and reconfigurability features. Vitis [23] is an integrated programming environment
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for FPGA acceleration supported by Xilinx. With Vitis, we can quickly build FPGA-based
heterogeneous computing frameworks. Vitis’ composition is shown in Figure 2. The source
code is divided into host code for execution on the host and kernel code for execution on
the FPGA. The host code is programmed in C/C++, which can use the XRT(Xilinx Runtime)
API and can be compiled by the host compiler to obtain an executable host program. The
kernel code can be programmed using RTL [24] or C/C++ HLS [25]. The hardware compiler
synthesizes the kernel code into logic circuits on the FPGA and generates FPGA binaries
for use by the host code. During execution, the main job of the host program is to use the
APIs supported by Vitis to transfer data between the CPU and FPGA and to boot the kernel.
The details of the API implementation are hidden under the XRT, driver, and shell on the
FPGA. Control signals and data between the host and FPGA are transferred via PCIe.

Figure 2. Vitis programming environment overview.

4. System Architecture of F-LSTM

In this paper, we propose an FPGA-based heterogeneous computing framework, F-
LSTM. Figure 3 shows the system architecture of the framework. In the design, we follow
the Vitis design idea. In the system we build, software and hardware work together. The
host code runs on the CPU and is responsible for the pre-processing and post-processing
in the LSTM-based algorithm. The kernel code runs on the FPGA and is responsible for
the LSTM network inference that takes up most of the computation in the algorithm. If
the FPGA is not loaded externally with the model, updating the model on the FPGA may
require a re-synthesis of the project, which often takes several hours or even days. We load
the model parameters from global memory at runtime to avoid this situation. Moreover,
To avoid the delay caused by reading weights of the LSTM model from global memory,
the kernel preloads weights into the BRAM on the FPGA before starting the computation.
Without changing the model, the preloading performs only once during the whole life of
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the algorithm. During the subsequent computation, the system does not need to modify
the weight stored in the BRAM again. The operation of the LSTM-based algorithm on the
F-LSTM platform can be divided into the following steps:

1. The host preprocesses the original data (text, audio) to obtain the feature vector
sequence [xt, xt+1, · · · , xt+T ] (assuming the length of the sequence is T).

2. The host writes the feature vector sequence [xt, xt+1, · · · , xt+T ] to the global memory
using the API provided by Vitis, sets the kernel parameters and boots the LSTM kernel.

3. The kernel reads the current time step input xt from the global memory and forms the
LSTM cell input with the previous time step output ht−1.

4. The kernel performs LSTM network inference. Four independent processing ele-
ments(PEs) read the weights and inputs in BRAM, perform sparse matrix-vector
multiplication(SPMV), and output the results to the activation function PEs. Activa-
tion function PEs compute the values of it, gt, ot, and ft and then hand them to the
element-wise PE. Element-wise PE performs element-wise multiplication, element-
wise addition, and tanh to obtain the output ht and cell memory ct.

5. The kernel writes the output ht and cell state ct for each time step back to the BRAM
and global memory.

6. Go back to (3) and loop the operation T times.
7. The host reads the result of the LSTM network inference from the global memory

using the API provided by Vitis: the output sequence [ht, ht+1, · · · , ht+T ] and the cell
state sequence [ct, ct+1, · · · , ct+T ]. The host selects the necessary data and performs
post-processing to obtain the final result.

Figure 3. System architecture of F-LSTM.

The implementation details for transferring data between the kernel and the host,
setting kernel parameters, and booting the kernel are all hidden under the APIs provided
by Vitis. Using these APIs reduces our work and allows us to focus on implementing a
high-performance LSTM kernel on an FPGA.
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We divide the LSTM kernel into three parts: sparse matrix-vector multiplication,
activation function, and elementwise computation. The following paper will explain each
part in detail.

4.1. Sparse Matrix-Vector Multiplication

First, among all computations of LSTM, matrix-vector multiplication is the most
computationally intensive operation, and reducing the computation is one way to achieve
high-performance LSTM network inference. Second, storing weights directly in limited
BRAMs on FPGA is impractical for large models. It is shown that trained LSTM models
have much redundancy in weights, and pruning the unimportant weights (setting them
to 0) only slightly or even not affects the model’s accuracy but can reduce the number of
weight parameters and the computational complexity. Ref. [26] provides a threshold-based
weight pruning method, which prunes small weights with absolute values smaller than the
threshold and retrains the remaining weights. We can apply pruning and retraining on a
large model iteratively to produce a small model. The compressed LSTM network reduces
computation and storage with only a slight loss of accuracy, which makes it possible
to implement a high-performance LSTM network on FPGA with limited computation
and storage resources. The weight pruning method converts the dense weight matrix
into a sparse matrix. Since zero values are no longer involved in the computation of
matrix-vector multiplication, we need to design special hardware to accelerate sparse
matrix-vector multiplication.

We use the CRS [27] format to store sparse matrixes. CRS is a data structure that
chooses not to store zero values of the sparse matrix, reducing the cost of storage and
operations. As shown in Figure 4, CRS consists of three arrays: Values, ColumnIndex ,
RowPtr. Values holds the values of the non-zero weights of the sparse matrix. ColumnIndex
and RowPtr encode the position information of the non-zero weights. ColumnIndex stores
the number of columns for each weight. RowPtr contains the index of the first weight of
each row in Values.

Figure 4. (a) dense matrix before pruning; (b) sparse matrix after pruning (threshold set to 0.4);
(c) sparse matrix of CRS representation
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The main code of Algorithm 1 demonstrates the computation of the matrix-vector
multiplication y = Mx. We use the CRS to save the matrix M by RowPtr, ColumnIndex and
Values.The first f or loop accesses each row by iteration, and the second f or loop accesses
each column to achieve the multiplication of the non-zero elements of the matrix M with
the corresponding elements in the vector and saves the results in the vector y. To speed up
the execution of the code, we use unroll pragma to allow iterations to occur in parallel and
pipeline pragma to make the loop execute in a streaming style.

Algorithm 1 Sparse Matrix-Vector Multiplication.

1: INPUT: Vector x, Matrix M (represent by Values, ColumnIndex, RowPtr)
2: for i = 0; i ≤ Numo f Rows; i ++ do
3: y0 = 0
4: for k = RowPtr[i]; k ≤ RowPtr[i + 1]; k ++ do
5: unroll and pipeline loop here
6: y0+ = Values[k] ∗ x[ColumnIndex[k]]
7: end for
8: y[i] = y0
9: end for

10: RETURN y

The input of SPMV PE consists of the input xt for the current time step and the output
vector ht−1 for the previous time step. The input vector multiplies with four independent
weight matrixes to obtain four intermediate vectors. To reduce the latency of the kernel, we
use the data f low pragma to generate four independent PEs, each performing matrix-vector
multiplication in parallel. All four PEs need to read the input of the LSTM cell, which may
lead to memory access conflicts and, thus, higher latency for the whole kernel. To avoid
memory conflict access, we must copy four copies of the input vector before performing
sparse matrix-vector multiplication.

4.2. Activation Function

The inference of LSTM includes the computation of nonlinear activation functions tanh
and sigmoid. Exponential terms appear in the activation function’s computation, making
it very difficult to implement the activation function directly in FPGA. The taylor series
approximation [28], CORDIC algorithm [29], is a commonly used alternative. The Taylor
series approximation method converts the activation function into a simple polynomial
calculation by solving the Taylor expansion of the activation function, then removing the
higher order terms and keeping only the lower order terms needed to guarantee accuracy.
Polynomial computation requires Digital signal processors (DSP). Even though DSPs have
been integrated into modern FPGAs, for neural networks, the limited DSP resources should
be used for the large number of parallel computations in the network. The CORDIC
algorithm is an iterative algorithm that allows for higher accuracy but requires more
FPGA resources.

We implement sigmoid in FPGA using PWL, which requires fewer FPGA resources.
The basic idea of PWL is to use a series of functions to approximate a nonlinear function.
On the FPGA, the breakpoints of these functions can be stored in a lookup table, and the
intermediate values are then computed based on these functions. On FPGA, if one of the
inputs to the multiplier is a power of 2, then the multiplication operation can be replaced
by a shift. We use Equation (7) [30] to approximate sigmoid, which requires only a tiny
amount of FPGA resources.
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f (x) =


1− 1

2

(
1− 1

4 |x|
)2

, 0 < x ≤ 4

1
2

(
1− 1

4 |x|
)2

, −4 < x ≤ 0
1, 4 < x
0, x ≤ −4

(7)

Since tanh is challenging to approximate using PWL, we choose to replace tanh in
LSTM with hardtanh in the Equation (8) when building the algorithm. Experimental results
on sentiment analysis in Figure 5 demonstrate that this approach does not increase the
training time or decrease the model’s final accuracy.

hardtanh(x) =


−1, x < −1
x, −1 ≤ x ≤ 1
1, x > 1

(8)

Figure 5. Comparison between tanh and hardtanh in terms of training time and model’s accuracy.

4.3. Elementwise Computation

As shown in Figure 1, after performing matrix-vector multiplication and activation
function, we can get the output vectors of the input gate, output gate, cell gate, and forget
gate. As described in Equations (5) and (6), four vectors are involved in elementwise
multiplication, elementwise addition, and tanh to obtain the cell state vector ct and the
output vector ht.

5. WorkFlow

We can transform LSTM-based algorithms running on general-purpose processors to
algorithms running on the F-LSTM platform. Figure 6 shows the workflow of algorithm
transformation. First, when designing the algorithm, it is necessary to divide the algorithm
into three parts: pre-processing, LSTM network, and post-processing. The pre-processing
and post-processing are written using Python code, and PyTorch provides the LSTM
network. The LSTM network can be trained to obtain an accurate model. To reduce the
amount of storage and computation, we also need to compress the model, which involves
iterative pruning and fine-tuning. Ultimately, we will obtain a tiny LSTM model with little
accuracy loss. The compressed LSTM model comprises a complete network structure and
sparse weight matrix. The input size and the size dimension describe the network structure
(we do not consider multilayer LSTM networks for now), which we call configuration. The
weights are the sparse matrixes and bias vectors of the gates. We need to transform the
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sparse matrix into three arrays of CRS and generate a binary file for the LSTM kernel to
preload.

With the configuration of the LSTM model and a pre-prepared Vitis project template,
we can transform the LSTM network into a project that can be synthesized by Vitis, contain-
ing both the host code and the kernel code. We use HLS to program the kernel. Although
it may result in slightly worse optimal performance than RTL-based designs, HLS-based
designs increase the level of abstraction, reduce iteration time, simplify the verification
phase, and allow for more exploration and evaluation of the design solution. Most impor-
tantly, generating HLS code is much simpler than generating RTL code. We implement the
f orward interface in the host code. Primary functions of the f orward interface include:

1. transferring the vector sequence into global memory for preloading by the LSTM
kernel

2. setting the kernel parameters and booting the kernel
3. transferring the outputs of the kernel back to the host

The role of our f orward interface is similar to f orward interface in Pytorch, which
provides an API with hidden details for the user to call. To enable better migration of
the PyTorch project, we use ctype to bind the f orward interface in the host code so that
researchers can call it using the Python language. With f orward interface, researchers
can easily reuse previous pre-processing and post-processing code to reconstruct the
complete LSTM-based algorithm while using the generated LSTM kernel to accelerate
network inference.

Figure 6. Workflow based on F-LSTM, which consists of three steps: designing the algorithm,
compressing the model, and deploying the algorithm.

6. Experimental Results
6.1. Experimental Setup

The F-LSTM hardware platform consists of a host platform and an FPGA platform:
(1) The host platform is an Intel(R) Xeon(R) D-2183IT, which runs at 2.2 GHz. (2) The FPGA
platform is a KCU1500 accelerated development board with 16GB DDR4 external memory.
The maximum number of BRAM, DSP48E, FF, and LUTs available on the KCU1500 are
2160, 2760, 663,360, and 331,680, respectively. The CPU and FPGA are connected via a
PCIe 2.0 × 8 interface. In addition, the hardware used to compare with the heterogeneous
computing platform is the Nvidia Geforce GTX 1080Ti.

Our experimental data are obtained from the IMDB dataset [31], a movie review
dataset for sentiment analysis. The IMDB dataset contains a training set of 25,000 and a test
set of 25,000. Movie reviews are labeled as positive and negative based on the sentiment of
the text. We use PyTorch 1.6 to implement the LSTM-based sentiment analysis algorithm
and train through the IMDB dataset to obtain an accurate LSTM model. The input size of
the LSTM network is 300, the hidden size is 1500, and we set the batch size to 1 to meet the
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real-time application. We use iterative pruning and fine-tuning to compress the model until
the sparsity reaches 80% (sparsity refers to the ratio of the pruned weights to the original
weights). We use Vitis 2021.1 to design the LSTM template project and ctype 3.1 as a python
binding tool. The sentiment analysis algorithm in F-LSTM is shown in Figure 7, where the
tokenization, embedding, dense layer, and so f tmax functions are deployed on the CPU
while the LSTM network runs on the FPGA.

Figure 7. LSTM-based algorithm for sentiment analysis.

6.2. Resource Utilization and Performance

First, we measured the resource utilization and performance of our FPGA implemen-
tation. In the experiments, performance can be measured by latency, which in this paper
refers to the execution time required to predict all reviews in the test set. We also compared
the two schemas’ resource utilization and performance (generating a single sparse matrix-
vector multiplication PE or four sparse matrix-vector multiplication PEs). We performed a
full resource report on the LSTM kernel using the Vitis tool. When the target frequency is
set to 300 MHz, the resource utilization is shown in Table 1. It can be seen that although the
scheme of generating more PEs will take up more system resources, the concurrency of the
system will also be higher, and the latency of the algorithm will be lower.

Table 1. Comparison between two schema (generating one SPMV PE or four SPMV PEs).

SPMV NUM BRAM DSP48 FF LUT Latency (s)

1 987 (46%) 220 (8%) 208,980 (31.5%) 109,921 (33.1%) 2986

4 1072 (50%) 966 (35%) 215,897 (32.5%) 121,535 (36.7%) 752

6.3. Compare with GPU

Our most important goal is to optimize latency and energy efficiency. The lower the
latency or higher the energy efficiency, the better the performance of the FPGA design.
Energy efficiency is the use of less energy to perform the same task or produce the same
result. In our experiment, energy efficiency can be calculated by multiplying the power
consumption by the latency. We use the power analysis feature of VivadoTM to estimate
FPGA power consumption and the NVIDIA System Management Interface (nvidiasmi)
command line tool to measure GPU power consumption. Since both platforms use the
CPU for some additional work, we do not add the CPU power consumption to the overall
power consumption. Both the GPU and the FPGA run pruned models. Figure 8 shows
the power consumption and latency of the FPGA and GPU. It can be seen that the FPGA
achieves a 1.8× speedup and 5.4× energy efficiency compared to the GPU.
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Figure 8. Power and Latency on FPGA and GPU.

Table 2 shows the size and accuracy of the model running on FPGA and GPU. To
illustrate the effect of pruning on the accuracy, we also measured the size and accuracy of
the original dense model. We measure the size of the LSTM model running on the GPU
through Pytorch’s API. The size of the LSTM model running on FPGA refers to the size of
the binary file used for FPGA preloading. The accuracy is the ratio of the number of correct
predictions to the total number of input samples. As we can see, the pruning method can
significantly reduce the model size with almost no impact on the model’s accuracy. Even
with a sparsity as high as 80%, the accuracy of the pruned model running on the GPU
does not degrade, and the accuracy of the pruned model running on the FPGA, although
degraded, is negligible (the degradation in accuracy may be caused by the implementation
of the sigmoid function using PWL). Moreover, using the self-CRS representation of the
sparse weight matrix can further reduce the model size since we only need to store a small
number of weights.

Table 2. Size and Accuracy of the model running on FPGA and GPU.

Model Sparsity Platform Size (MB) Accuracy

Pruned Model
(CRS) 80% FPGA 10.42 91.5%

Pruned Model 80% GPU 21.53 92.4%

Dense Model 0% GPU 57.82 92.3%

6.4. Necessity of Heterogeneous Computing

To evaluate the necessity of using heterogeneous computation, we use the system API
to measure the latency of each layer in pre-processing, LSTM network, and post-processing.
In the algorithm for sentiment analysis, the pre-processing includes the tokenization and
embedding, and the post-processing includes the dense layer and so f tmax function. From
Table 3, we can see that the latency of pre-processing and post-processing is only a tiny
percentage of the latency of the whole algorithm. All we need to do is accelerate LSTM
network inference. Moreover, runtime preloading the model parameters from external
storage is necessary. We measured the resources and time required to update the model
parameters for both ways of updating them. As shown in Table 4, it can be seen that remov-
ing the preloading logic saves a few resources, while the time required for resynthesizing
the project is much longer than the preload operation.



Electronics 2023, 12, 1139 13 of 15

Table 3. Latency of layers in the sentiment analysis algorithm.

Layer

Latency(s) Platform
F-LSTM GPU

Tokenization 2.43 2.43

Embedding 11.28 10.91

LSTM 752.3 1364.3

Dense 15.21 10.02

Softmax 5.92 6.91

Total 787.14 1394.93

Table 4. Comparison of two methods of updating model weights.

Method BRAM DSP48 FF LUT Time
Required

Synthesis
Project 1004 966 201,330 102,321 14.1 s

Preload 1072 966 215,897 121,535 7 h 32 m

6.5. Compare with Other Works

Table 5 shows how our work compares to others regarding performance, usability,
and scalability. For a better performance comparison, the throughput has been normalized
to 300 MHz, assuming the throughput depends linearly on the frequency. As can be
seen, our work has a significant performance advantage. Runtime loading refers to the
implementation providing an interface for updating the model weights on the FPGA,
which means that we can spend very little time updating new models with higher accuracy
onto the FPGA instead of spending hours or even days resynthesizing the project. Finally,
only our work extends the scalability of the LSTM implementation; none of the other
implementations integrate with currently popular deep learning frameworks.

Table 5. Comparison of implementations for LSTM network on FPGA.

Works FPGA Freq (MHz) Perform
(GOP/s)

Runtime
Loading Integrated

[13] XCZU6EG 238 9.63 Supported -

[14] XC7VX485 142 0.95 Supported -

[15] XC7Z045 150 14.52 Supported -

[16] XC7Z020 140 9.71 Not
supported -

This Work KCU1500 300 43.1 Supported PyTorch

7. Conclusions

We present an FPGA-based heterogeneous computing framework, F-LSTM, and a
workflow based on F-LSTM. Guided by the workflow, researchers can design, compress,
and deploy LSTM-based algorithms to the F-LSTM hardware platform to meet the require-
ments of high performance and energy efficiency. The workflow integrated with Pytorch
significantly reduces the difficulty of deploying LSTM-based algorithms on FPGA-based
heterogeneous computing platforms. We designed and optimized the LSTM kernel for
the pruning model to better utilize the FPGA. Experimental results show that running the
algorithm on the F-LSTM hardware platform can outperform the GPU in terms of speed
and energy efficiency with little degradation in accuracy. Our work also validates the need
to build a heterogeneous computing platform. Compared to some other work, we have
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a performance advantage and perform better in terms of ease of use and scalability. For
future work, we intend to integrate TensorFlow into our framework and add compression
methods such as knowledge distillation and quantization to our workflow. In conclusion,
our work reduces the difficulty of deploying LSTM models on FPGAs while guaranteeing
the performance of LSTM-based algorithms.
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