
Citation: Barkalov, A.; Titarenko, L.;

Mazurkiewicz, M.; Krzywicki, K.

Improving the Spatial Characteristics

of Three-Level LUT-Based Mealy

FSM Circuits. Electronics 2023, 12,

1133. https://doi.org/10.3390/

electronics12051133

Academic Editors: Leonardo Pantoli,

Egidio Ragonese, Paris Kitsos,

Gaetano Palumbo and Costas

Psychalinos

Received: 5 February 2023

Revised: 23 February 2023

Accepted: 24 February 2023

Published: 26 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Improving the Spatial Characteristics of Three-Level LUT-Based
Mealy FSM Circuits
Alexander Barkalov 1,2,†,* , Larysa Titarenko 1,3,† , Małgorzata Mazurkiewicz 4,†,*
and Kazimierz Krzywicki 5,†

1 Institute of Metrology, Electronics and Computer Science, University of Zielona Góra, ul. Licealna 9,
65-417 Zielona Góra, Poland

2 Department of Computer Science and Information Technology, Vasyl Stus’ Donetsk National University,
600-richya str. 21, 21021 Vinnytsia, Ukraine

3 Department of Infocommunication Engineering, Faculty of Infocommunications, Kharkiv National University
of Radio Electronics, Nauky Avenue 14, 61166 Kharkiv, Ukraine

4 Institute of Control & Computation Engineering, University of Zielona Góra, ul. Licealna 9,
65-417 Zielona Góra, Poland

5 Department of Technology, The Jacob of Paradies University, ul. Teatralna 25,
66-400 Gorzów Wielkopolski, Poland

* Correspondence: a.barkalov@imei.uz.zgora.pl (A.B.); m.mazurkiewicz@issi.uz.zgora.pl (M.M.)
† These authors contributed equally to this work.

Abstract: The main purpose of the method proposed in this article is to reduce the number of look-
up-table (LUT) elements in logic circuits of sequential devices. The devices are represented by models
of Mealy finite state machines (FSMs). Thesee are so-called MPY FSMs based on two methods of
structural decomposition (the replacement of inputs and encoding of output collections). The main
idea is to use two types of state codes for implementing systems of partial Boolean functions. Some
functions are based on maximum binary codes; other functions depend on extended state codes. The
reduction in LUT counts is based on using the method of twofold state assignment. The proposed
method makes it possible to obtain FPGA-based FSM circuits with four logic levels. Only one LUT
is required to implement the circuit corresponding to any partial function. An example of FSM
synthesis using the proposed method is shown. The results of the conducted experiments show that
the proposed approach produces LUT-based FSM circuits with better area-temporal characteristics
than for circuits produced using such methods as Auto and One-hot of Vivado, JEDI, and MPY FSMs.
Compared to MPY FSMs, the values of LUT counts are improved. On average, this improvement is
8.98%, but the gain reaches 13.65% for fairly complex FSMs. The maximum operating frequency is
slightly improved as compared with the circuits of MPY FSMs (up to 0.64%). For both LUT counts
and frequency, the gain increases together with the growth for the numbers of FSM inputs, outputs
and states.

Keywords: Mealy FSM; FPGA; LUT; synthesis; replacement of inputs; collections of outputs; twofold
state assignment

1. Introduction

To represent various sequential blocks, a model of a Mealy finite state machine
(FSM) [1] can be applied. There are many examples of using this model in the implementa-
tion of various digital systems [2]. In this paper, we consider FSM circuits implemented
using field-programmable gate arrays (FPGAs) [3,4]. This choice is due to the wide use
of FPGAs in the implementation of a wide variety of projects [4,5]. Leading experts are
confident that FPGAs will continue to dominate logic design for at least the next twenty
years [6].

When using any logic basis for the implementation of FSM circuits, a number of
optimization problems always arise [7,8]. One of the most important tasks is to obtain

Electronics 2023, 12, 1133. https://doi.org/10.3390/electronics12051133 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051133
https://doi.org/10.3390/electronics12051133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4941-3979
https://orcid.org/0000-0001-9558-3322
https://orcid.org/0000-0001-5487-5468
https://orcid.org/0000-0002-1088-5784
https://doi.org/10.3390/electronics12051133
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051133?type=check_update&version=1

Electronics 2023, 12, 1133 2 of 31

a circuit that is optimal in terms of hardware costs. By optimal, we mean a circuit that
consumes the minimum possible amount of chip resources while simultaneously providing
the required level of performance and power consumption. In the case of FPGA-based cir-
cuits [9], the optimization strategy significantly depends on the types of configurable logic
blocks (CLBs) used [10]. In this paper, we discuss the most common CLBs which include
look-up table (LUT) elements, programmable flip-flops, and dedicated multiplexers [10,11].
To combine these CLBs into an FSM circuit, the following chip resources are used: the
synchronization tree, programmable interconnections, and programmable input-outputs
[12,13]. The method proposed in this paper is aimed at reducing the number of LUTs (LUT
count) in a resulting FSM circuit.

It is generally accepted that reducing LUT count leads to improving the spatial char-
acteristics of FSM circuits (reducing the occupied chip areas) [14,15]. Area reduction can
be achieved by applying structural decomposition (SD) methods [9] leading to multi-
level FSM circuits. However, such a reduction may have an overhead [9]. This overhead
consists of a significant performance degradation compared to equivalent single-level
FSM circuits [14,16]. However, performance has to be sacrificed if the criterion of design
optimality is the minimum occupied chip area.

The best LUT counts can be obtained for three-level FSM circuits when the methods
of replacing FSM inputs and encoding collections of FSM outputs [17] are used together.
However, for sufficiently complex FSMs, some of the logic blocks (or even all three blocks)
may have a multilevel structure. This leads to an increase in the number of logical levels and
interconnections. In turn, this leads to an increase in the occupied area, power consumption
and delay time of the FSM circuit. In this paper, we propose a method to reduce the LUT
counts of three-level FSM circuits. The proposed method is based on using twofold state
assignment [18]. This approach leads to a decrease in the number of LUTs and their levels
in the resulting LUT-based FSM circuits.

There are some leading companies producing FPGA chips. The largest producer is
AMD Xilinx [19]. As follows from [4], FPGAs from AMD Xilinx are widely used in various
projects. Due to this, we structured our approach according to the FPGA families [19] by
AMD Xilinx. In our research, we use FPGAs from the VIrtex-7 family [10].

The article contains several new scientific results. Firstly, a new architecture of an
LUT-based Mealy FSM circuit is proposed. Secondly, methods for the uniform distribution
of inputs and state encoding are proposed, which make it possible to reduce the number of
LUTs in the circuit of the input replacement block in comparison with the known methods
for implementing this block. Thirdly, a new method for stabilizing FSM outputs is proposed,
in which the input register is replaced by a register of output collection codes. The noted
new approaches led to the main contribution of the article, which is a novel design method
aimed at hardware reduction in the multilevel circuits of LUT-based Mealy FSMs. The
hardware reduction is achieved due to the use of two types of state codes. The maximum
binary state codes are used to replace the FSM inputs. Other partial Boolean functions
depend on extended state codes. The proposed approach leads to four-level FSM circuits
where any partial function is represented by a single LUT. The conducted experiments
show that the resulting FSM circuits include fewer LUTs compared to equivalent three-level
circuits [17]. It is very important that the hardware reduction does not lead to the significant
deterioration of temporal characteristics.

The rest of the paper is organized as follows. Section 2 shows the peculiarities of the
LUT-based Mealy FSM design. The analysis of related works is discussed in Section 3.
Section 4 presents the main idea of our method. In Section 5, we include a step-by-step
example showing how to apply the proposed method. Section 6 includes the experimental
results. The last part of the article is a short conclusion.

2. Peculiarities of LUT-Based Mealy FSM Design

The law of the behaviour of a Mealy FSM can be represented using three sets and two
functions [20]. These sets are the following: a set of internal states S = {s1, . . . , sM}, a set of

Electronics 2023, 12, 1133 3 of 31

inputs X = {x1, . . . , xL}, and a set of outputs Y = {y1, . . . , yN}. The interstate transitions
are represented by a function of transitions. An output function shows the FSM outputs
generated during these transitions. In this article, we use a state transition graph (STG) [1]
as an initial tool for FSM design. An STG consists of vertices representing FSM states. The
vertices are connected by arcs corresponding to interstate transitions. Each arc is marked by
an input signal (the conjunction of inputs leading to a particular transition) and a collection
of outputs associated with this transition [1]. To synthesize the FSM circuit, we transformed
this STG into the equivalent state transition table (STT) [1].

To design an FSM circuit, it is necessary to replace abstract states sm ∈ S with binary
codes K(sm). This is the state-assignment step [1]. To minimize the number of state variables
and input memory functions (IMFs), it is necessary to minimize the bitness of state codes.
The minimum possible number RMB of state-code bits corresponds to a maximum state
assignment [20]. This number is determined as

RMB = dlog2 Me. (1)

To encode states, state variables creating a set T = {T1, . . . , TRMB} are used. To keep
the state codes, a special register, RG, consisting of RMB flip-flops is used as a part of
FSM circuit.

In most practical cases [9], as elements of the state register are used the synchronous
D flip-flops. Each state variable is represented by a unique flip-flop. The input of the r-th
flip-flop is connected with an IMF Dr ∈ D where D = {D1, . . . , DRMB} is a set of IMFs. The
initial state code is forcibly loaded into RG. To do this, a special pulse of initialization Start
is used. Set D determines a state code loaded into RG. To load a code K(sm), the pulse of
synchronization Clock is used.

Using either STG or STT, a direct structure table (DST) [20] can be constructed. There
are six columns in the DST [20]: sC, sT , Xh, Yh, Dh, h. The data from these columns have
the following meaning: sC is an initial state for a given transition; sT is a final state for this
transition; Xh is a conjunction of FSM inputs determining the transition 〈sC, sT〉; Yh is a
collection of outputs (CO) produced during the transition 〈sC, sT〉; Dh is a set of IMFs equal
to 1 to execute the h-th transition (to load the code K(sT) into RG); and h is the transition
number (h ∈ {1, . . . , H}). The DST is a base for constructing the following systems of
Boolean functions (SBFs) [21]:

D = D(T, X); (2)

Y = Y(T, X). (3)

The SBFs (2) and (3) are a base for implementing the so-called P Mealy FSM [9]. In
FPGA-based FSMs, the flip-flops of RG are distributed among the CLBs, including LUTs,
generating the functions (2). Thus, the distributed state-code register is hidden. As a result,
there are only two blocks in the structural diagram of LUT-based P Mealy FSM (Figure 1).

X

Start

Clock LT LY

YT

Figure 1. Structural diagram of LUT-based P Mealy FSM.

The LUTs of a block LT implement IMFs (2). The memory elements of LT create the
RG. This explains why the pulses Start and Clock enter LT. Obviously, the state variables
Tr ∈ T come out of the block LT. The block LY generates functions (3) representing the
outputs yn ∈ Y . Each LUT has SL inputs.

Electronics 2023, 12, 1133 4 of 31

The functions (2) and (3) are represented by their sum of products (SOPs) [1]. An
SOP of a Boolean function fi ∈ D ∪ Y has NI(fi) literals. For rather complex FSMs, the
following condition may hold:

NI(fi) > SL. (4)

If (4) takes place, then the circuit of P Mealy FSM is multi-level. It is known [9] that
multi-level circuits are less efficient than the equivalent single-level circuits (the former are
much slower and require more power than the latter). The same is true for the numbers
of interconnections in the equivalent single-level and multi-level circuits. The growth in
interconnections leads to the further growth in the values of both time of cycle and power
consumption. The use of SD-based methods can lead to a significant improvement in the
overall circuit quality [9,17].

There are two types of literals in SOPs of functions (2) and (3): external inputs xl ∈ X
and elements of the set T (the variables Tr ∈ T). Each function fi ∈ D ∪ Y depends
on Ri ≤ RMB state variables and Li ≤ L inputs. There is only one LUT in the circuit
corresponding to the function fi ∈ D ∪Y, if the following condition is true:

Ri + Li ≤ SL. (5)

If condition (5) holds, then the values of function fi ∈ D ∪Y are generated by a single-LUT
circuit. If condition (5) takes place for all R + N functions, then the circuit of P Mealy FSM
is single-level. A single-level circuit has the best possible values of the required chip area,
power consumption and maximum operating frequency.

However, there are FSMs with around 500 states and 30 inputs [2]. In this case,
each function fi ∈ D ∪Y may depend on up to 39 arguments. Thus, their SOPs can include
up to 39 literals. Of course, these SOPs cannot be implemented using only a single LUT
with SL = 6 inputs. Thus, the corresponding circuits will be multi-level with spaghetti-type
interconnecting systems. To improve the characteristics of multi-level circuits, various
optimization methods should be applied. In this paper, we propose an approach which
allows reducing the chip area occupied by the LUT-based FSM circuit when the condition
(5) is violated.

3. Brief Analysis of Related Works

The problem of area reduction is discussed in thousands of monographs and articles.
For example, various methods for solving this problem are proposed in the following
works (to name but a few): [14,22–28]. As follows from [23], reducing the required chip
area is connected with reducing the LUT count for a corresponding circuit. To achieve
this goal, three groups of methods can be used: a proper state assignment, a functional
decomposition (FD) of Boolean functions, and SD-based approaches [9].

The proper state assignment leads to the elimination of some literals from SOPs (2) and (3) [20].
If the elimination of literals results in the fulfilment of condition (5) for SOPs of all functions (2) and
(3), then the resulting FSM circuit is single-level. This can be achieved using, for example, the state
assignment method JEDI distributed with the CAD system SIS [29]. JEDI-based optimization is
achieved by creating adjacent codes for states whose transitions depend on the same FSM inputs
xl ∈ X. As shown in [30], this allows elimination of up to 3 literals from SOPs representing
benchmark FSMs from the library LGSynth93 [31]. Thus, JEDI can solve the optimization problem
if the relation NI(fi)− SL ≤ 3 holds. However, this relation only takes place for rather simple
FSMs [9].

As follows from various research [32–35], there is no best universal state-assignment
approach. For example, optimization success depends on how many variables xl ∈ X
the transitions from each state depend on. For different FSMs, the same state-assignment
method may either improve or deteriorate the quality of resulting circuits. In addition,
the optimization strategy depends strongly on the peculiarities of the logic elements used
[33]. If LUTs are used, the spatial improvement can be achieved due to an increase in
the state-code length [36]. In the extreme case, the number of bits is equal to M. This is a

Electronics 2023, 12, 1133 5 of 31

one-hot state assignment [1], when the RG includes M flip-flops. The results of research
reported in [32] show that the one-hot state assignment can improve the FSM characteristics,
if there is M > 16. However, it is necessary to take into account the number of FSM inputs
[34]. As shown in [32], using MBC improves FSM quality if there is L > 10 (compared to
FSMs with one-hot codes). This situation stimulates the development of new types of state
codes and encoding strategies.

If no state-assignment method allows the implementation of a single-level circuit for
a given FSM, then decomposition methods should be applied. In this case, the initial
functions (2) and (3) are represented as a composition of partial Boolean functions (PBFs).
The decomposition is executed till the condition (4) is satisfied for each partial function. Any
kind of decomposition leads to a multi-level FSM circuit.

In the case of FD-based FSM circuits, CLBs are connected by complicated systems of
“spaghetti-type” interconnections [11]. Such circuits have much lower clock rates compared
to equivalent single-level solutions. This is connected with the fact that, now, “...wires
delay has come to dominate logic delay” [37]. In addition, compared to single-level circuits,
FD-based circuits are more power-consuming. This phenomenon is due to the fact that the
interconnections absorb up to 70% of the total power consumed by an FPGA-based FSM
circuit [37]. However, the advantage of FD is that it is applicable to the implementation
of Boolean functions of any practical complexity. Therefore, FD-based algorithms are
used in all industrial CAD systems aimed at the implementation of FPGA-based digital
systems [38–41].

In many cases, the methods of structural decomposition [9] allow the production of
FSM circuits with better space-time-energy characteristics than their FD-based counterparts.
The SD-based FSM circuits can be viewed as a composition of large logic blocks with unique
input-output systems. Such an approach leads to the regularization of interconnections
compared to FD-based FSM circuits [16]. Different methods of SD can be used together.
Due to this, the number of blocks can vary from 2 to 4, depending on how many methods
are used. The methods of SD and FD can be used together [9].

Two methods of SD are most commonly used. One of them is the replacement of
inputs (RI) with some additional variables [9]. The second method is the encoding of
COs [9]. Below is a brief description of these methods.

The process of RI comes down to replacing inputs xl ∈ X with the additional variables
from a set B = {b1, . . . , bG}. The replacement makes sense if L � G [9]. As a result, the
SBFs (2) and (3) are replaced by the systems

B = B(T, X); (6)

D = D(T, B); (7)

Y = Y(T, B). (8)

The system (6) is represented by a block with inputs xl ∈ X and Tr ∈ T. In the following
text, we denote this block with the symbol LB. Obviously, the circuit of LB consumes
some chip resources. The systems (7) and (8) are implemented by block LTY. This approach
makes sense if the SOPs (7) and (8) include much fewer literals than the SOPs (2) and (3)
[9]. In this case, the LUT counts in the circuit of P FSM significantly exceed the total number
of LUTs necessary to implement SBFs (6)–(8).

During the interstate transitions, Q different COs Yq ⊆ Y are generated. Each CO can
be represented by a code K(Yq). This code includes RCO bits [9]:

RCO = dlog2 Qe. (9)

Electronics 2023, 12, 1133 6 of 31

The COs are encoded using some additional variables creating a set Z = {z1, . . . , zRCO}.
If this approach is applied together with the RI, then the SBF (3) is replaced with the
following SBFs:

Z = Z(T, B); (10)

Y = Y(Z). (11)

The system (10) depends on the same variables as the system (7). Thus, these two SBFs are
implemented using the same block, LTZ. To implement SBF (11), block LY is used. Sharing
these methods turns the original P FSM (Figure 1) into MPY FSM (Figure 2).

X

Start

Clock LB

B

Z

LTZ

LY

Y

T

Figure 2. Structural diagram of MPY Mealy FSM.

In MPY FSM, the block LB generates the additional variables (6). The block LTZ
generates IMFs represented by (7) and additional variables (10). The block LY generates
the FSM outputs (11). As shown in [17], the transition from P FSM to MPY FSM allows the
reduction in LUT counts in equivalent FSM circuits. Of course, this area reduction leads to
a decrease in the value of maximum operating frequency. This decrease can be viewed as
the area-reducing overhead.

To obtain SBF (6), a table of RI should be constructed [20]. Its columns are marked
by states sm ∈ S, whereas additional variables bg ∈ B mark its rows. There is a symbol
xl written at the intersection of a row bg ∈ B and column sm ∈ S, if the variable bg ∈ B
replaces the input xl ∈ X for the state sm ∈ S. In fact, the block LB is a multiplexer, the
information inputs of which are connected to inputs xl ∈ X and the control inputs are
connected to state variables Tr ∈ T.

To obtain SBFs (7) and (10), it is necessary to create a transformed DST. In the trans-
formed DST, the column Xh is replaced by a column Bh, whereas the column Yh is replaced
by a column Zh. These new columns are filled in as follows. For example, the first row
of DST includes a CO Y2 generated during a transition 〈s1, s2〉 caused by the input signal
X1 = x1x2. Let the following relations take places for the state s1 ∈ S : x1 = b1 and x2 = b2.
In this case, the input signal X1 = x1x2 is replaced by the conjunction B1 = b1b2 written in
the column Bh. If K(Y2) = 101, then the additional variables z1, z3 ∈ Z are written in the
column Zh. All other rows of the transformed DST are filled in the same manner.

To obtain SBF (11), it is necessary to create the Karnaugh map whose cells are marked
by the variables zr ∈ Z. The symbols Yq are written inside the cells. Using this map, the
minimized SOPs (11) are constructed. The minimization makes sense if some literals are
eliminated from all product terms of a SOP representing a function yn ∈ Y [9].

The application of this approach is most efficient if condition (4) is satisfied for all func-
tions fi ∈ B ∪ D ∪ Z ∪Y [9]. Otherwise, there will be more than a single LUT in the circuits
for functions that do not satisfy condition (4). Moreover, this leads to the multi-levelness of
the corresponding blocks, which further reduces the MPY FSM performance. To implement
these multi-level circuits, the methods of FD should be applied.

Electronics 2023, 12, 1133 7 of 31

To overcome this shortcoming of MPY FSM, we propose to transform its structural
diagram using the method of two-fold state assignment (TSA) [18]. This idea is discussed
in the next section.

4. Main Idea of Proposed Method

To execute the TSA, it is necessary to create a partition πS = {S1, . . . , SK} of the set of
states. As a result, each state sm ∈ S has two codes. The maximum binary code K(sm) has
RMB bits. This code represents a state as some element of the set S. The partial code C(sm)
represents a state as some element of a class Sk ∈ πS. This class includes Mk elements. To
encode them, Rk bits are sufficient:

Rk = dlog2(Mk + 1)e. (12)

In (12), the value of Mk is incremented to encode the relation sm /∈ Sk. We use the code with
all zeroes to encode this relation. This code represents the state sm ∈ Sk for all classes other
than Sk.

The codes C(sm) for all classes Sk ∈ πS form an extended state (ESC) code of the state
sm ∈ Sk. Each ESC includes RS bits, where

RS = R1 + · · ·+ RK. (13)

To create ESCs, the additional variables are used. These variables are elements of a
set V = V1 ∪ V2 ∪ . . . ∪ VK. The variables vr ∈ Vk create the codes C(sm) for the states
sm ∈ Sk. To generate ESCs, it is necessary to transform state codes K(sm) into codes C(sm)
for all states sm ∈ S. To transform the codes, it is necessary to create the following SBF:

V = V(T). (14)

We discuss a case wherein both the replacement of inputs and encoding of COs are
executed. In this case, each class Sk ∈ πS determines three sets. A set Bk ⊆ B includes
variables bg ∈ B determining transitions from the states sm ∈ Sk. A set of additional
variables Zk ⊆ Z includes elements determining COs generated during transitions from
the states sm ∈ Sk. Finally, the elements of a set Dk ⊆ D include IMFs equal to 1 in the
codes of the states next to states sm ∈ Sk. Each class Sk ∈ πS determines the following
systems of PBFs:

Dk = Dk(Vk, Bk); (15)

Zk = Zk(Vk, Bk). (16)

To obtain the final values of functions Dr ∈ D and zr ∈ Z, it is necessary to create the
following SBFs:

D = D(D1, . . . , DK); (17)

Z = Z(Z1, . . . , ZK). (18)

The functions fi ∈ D ∪ Z are disjunctions of corresponding PBFs.
The combined use of these three methods of SD leads to MPTY Mealy FSMs. The

subscript “T” shows that the two-fold state assignment is used. Its structural diagram
consists of four logic levels (Figure 3).

In MPTY Mealy FSM, the block LB generates functions (6) to replace FSM inputs using
additional variables. The second logic level consists of blocks LB1, . . . , LBK. Each block LBk
implements systems of PBFs (15) and (16). These functions are transformed into functions
fi ∈ D ∪ Z by the block LTZ. This block represents the third logic level of FSM circuit. The
block LTZ includes two distributed registers. One of them is the state code register RG.
The RG outputs are used as a feedback for the input transformation. In addition, they

Electronics 2023, 12, 1133 8 of 31

enter a block LV to create ESCs. The second register (a register RZ) keeps the codes of
COs. We discuss the necessity of RZ later. Both registers are zeroed by the pulse Start and
synchronized by the pulse Clock. The fourth logic level includes two blocks. The block LY
generates FSM outputs represented by (11). The block LV transforms the maximum state
codes K(sm) into extended state codes C(sm). This block implements SBF (14).

To reduce the chip area occupied by the LUT-based circuit of MPTY Mealy FSM, we
propose two new approaches. One of them allows the reduction of the number of LUTs and
their levels in the circuit of LB. The second method aims to reduce the number of flip-flops
necessary for the stabilization of the FSM operation.

LB1 . . .

LTZ
Start

Clock

B
1

V
1

LBK

B
K

V
K

Z
1

D
1

Z
K

D
K

B

LB

X T

LY

Z

Y

LV

T

V

V

Figure 3. Structural diagram of MPTY Mealy FSM.

We use the symbol X(bg) for a set of FSM inputs replaced by an additional variable
bg ∈ B. As a rule, the RI is executed in the following way [20]: the number of FSM inputs in
different sets X(bq) should be maximal. At best, identical inputs xl ∈ X should be replaced
by the same variable bg ∈ B. Such an approach allows minimization of the chip area if
an FSM circuit is implemented using programmable logic arrays (PLAs) [9]. However,
PLAs have a lot of inputs, whereas this number is very limited for LUTs. Thus, we propose
distributing inputs xl ∈ X in a way which allows holding the following condition for the
maximum possible number of sets X(bg):

|X(bg)|+ RMB = SL. (19)

Obviously, if (19) takes place for the set X(bg), then a circuit generating the function bg ∈ B
includes only one element. If (19) takes place for all sets X(bg), then the block LB includes
G elements. In addition, this circuit is single-level.

To increase the value of |X(bg)|, we propose to encode the states in a way that decreases
the number of state variables in functions (6). Let S(bg) ⊆ S be a set of states whose
transitions depend on the inputs xl ∈ X(bg). We propose to encode the states sm ∈ S(bg) in
such a way that their codes create the minimum possible number of generalized cubes of
RMB-dimensional Boolean space. This approach allows excluding some state variables as
literals of SOPs (6).

As a rule, FSMs are not stand-alone units. They are used as parts of a digital system.
Due to it, the stability of the outputs is one of the very important problems in FSM circuit
design [13,42,43]. If an FSM is a part of some digital system, then the FSM outputs are
inputs of other system’s blocks. It is known [1,20] that outputs of Mealy FSMs are unstable:
input fluctuations may lead to output fluctuations. In turn, these fluctuations of FSM
outputs may cause failure in some blocks of a digital system. It is possible to avoid such

Electronics 2023, 12, 1133 9 of 31

failures by stabilizing the FSM inputs. To do this, it is necessary to introduce a synchronous
register of inputs (RI) [20]. This changes the FSM operation mode.

De facto, the set of inputs X = {x1, . . . , xL} consists of outputs of various system blocks.
These outputs enter the flip-flops of RI. Till these outputs are transients, the synchronization
signal of RI is not active. Due to this, the FSM is disconnected from other blocks. Thus, the
RI keeps the values of FSM inputs registered in the previous cycle. After the stabilization
of system outputs, they are loaded into the RI using the required edge of synchronization.
Thus, eliminating the dependence of the inputs’ stability on the stability of system outputs
leads to additional area costs and reduces overall performance. This is an overhead of
stability (additional LUTs, flip-flops, interconnections, power consumption and delay).
Thus, it makes sense to reduce this overhead.

In our paper, we propose to include a register RZ into block LTZ. There is a flip-flop
in each CLB generating a function zr ∈ Z. Thus, to organize the RZ, there is no need for
additional LUTs. In addition, these flip-flops could be controlled by already-existing pulses
Start and Clock. Obviously, the proposed approach does not require additional CLBs. This
means that it does not require the additional chip area (compared to an FSM architecture
which uses either a registration of inputs or a registration of outputs).

A method for the synthesis of MPTY Mealy FSMs is proposed in this paper. We start
the design from an STG [1]. To create tables representing the blocks of the FSM circuit,
the STG is transformed into the equivalent STT [1]. The proposed method includes the
following steps:

1. Creating STT of Mealy FSM.
2. Executing replacement of FSM inputs.
3. Assignment of maximum binary state codes K(sm) optimizing SBF (6).
4. Creating SBF (6) representing the block LB.
5. Finding the partition πS with the minimum cardinality number.
6. Assignment of partial codes C(sm) to states sm ∈ Sk.
7. Encoding of COs Yq ⊆ Y using maximum binary codes.
8. Creating SBF (11) representing the block LY.
9. Constructing tables of LB1–LBK and creating SBFs (15) and (16).
10. Constructing the table of LTZ and creating systems (17) and (18).
11. Constructing table of LV and deriving the system (14).
12. Implementing LUT-based circuit of MPTY FSM.

If an FSM A is synthesized using the model of MPTY Mealy FSM, then we denote such
a situation by the symbol MPTY(A). Next, we discuss an example of MPTY FSM synthesis.

5. Example of Synthesis of MPTY Mealy FSM Logic Circuit

We discuss the synthesis of Mealy FSM MPTY(A1) using LUTs with SL = 5 inputs.
The STG (Figure 4) represents the FSM A1.

Using STG (Figure 4), we can derive the sets S = {s1, . . . , s6} (each vertex of STG
corresponds to a state); X = {x1, . . . , x8} (these inputs are shown above the STG arcs); and
Y = {y1, . . . , y9} (these outputs are written above the STG arcs). This gives the following
values: M = 6, L = 8, and N = 9. There are H = 17 arcs connecting the vertices of STG
(Figure 4). Obviously, there are H = 17 rows in the equivalent STT. As follows from (1),
RMB = 3 is necessary to execute the maximum binary state assignment. This gives the sets
T = {T1, T2, T3} and D = {D1, D2, D3}.

Step 1. The procedure of transformation is executed using the approach shown in
[1]. Each arc of STG determines a row of STT. Each row includes a current state sC, a
transition state sT , an input signal Xh which determines the transition from sC into sT , an
output collection Yh, and the row number, h. In the discussed example, the STG (Figure 4)
is transformed into STT (Table 1). This table includes an additional column q containing
the subscripts of COs written in each row of the column Yh.

Electronics 2023, 12, 1133 10 of 31

S1

S4

S6

S5

S3

x1x2/y1y7

x7/y4y9

x1x7x8/y3y6

x7/y
1y2

x1x2x3/y2x
1 x

2 x
3 /y

1 y
2

S2

x
4 /y

4 y
5

x4/y3y6
x1/y6y8y9

x1x7x8/-

1/y5y8

x
3 /y

1 y
7

x1/-

x
1 x

7 /y
2

x
4x

5x
6 /y

4y
9

x
4 x

5 x
6 /y

4 y
5

x4x5/y1y3y7

Figure 4. State transition graph of Mealy FSM A1.

Table 1. State transition table of FSM A1.

Sc ST Xh Yh q h

s1 s1 x1 - 1 1
s2 x1x2 y1y7 2 2
s5 x1 x2x3 y2 3 3
s3 x1 x2 x3 y1y2 4 4

s2 s2 x4 y3y6 5 5
s4 x4x5 y1y3y7 6 6
s6 x4 x5x6 y4y9 7 7
s5 x4 x5 x6 y4y5 8 8

s3 s6 1 y5y8 9 9

s4 s4 x1 y5y8 10 10
s6 x1x7 y2 3 11
s1 x1 x7x8 - 1 12
s2 x1 x7 x8 y3y6 5 13

s5 s6 x7 y4y9 7 14
s3 x7 y1y2 4 15

s6 s4 x3 y1y7 2 16
s1 x3 y4y5 8 17

Step 2. The interstate transitions from sm ∈ S depend on inputs creating the set
X(sm) ⊆ X with NIm elements. To find the number, G, of additional variables bg ∈ B, it is
necessary to use the following formula [20]:

G = max(NI1, . . . , NIM). (20)

As follows from Table 1, the existing sets X(sm) ⊆ X have the following cardinality
numbers: NI1 = NI2 = NI4 = 3, NI5 = NI6 = 2, and NI3 = 0. Using (20) gives G = 3 and
B = {b1, b2, b3}.

Thus, there is SL = 5 and RMB = 3. Using (19) gives |X(bg)| = SL − RMB = 2. Thus,
the IR should be executed in a way so that the relation |X(bg)| = 2 holds for the maximum
possible number of sets X(bg). Using the proposed approach gives the distribution of
inputs shown in Table 2.

Electronics 2023, 12, 1133 11 of 31

Table 2. Table of RI for FSM A1.

B \ S S1 S2 S3 S4 S5 S6

b1 x1 x4 - x1 - -

b2 x2 x5 - x7 x7 -

b3 x3 x6 - x8 - x3

Step 3. States sm ∈ S should be encoded in a way that minimizes the numbers of
literals in SBF (6). We denote by symbol S(bg) a set of states in which FSM inputs xl ∈ X
are replaced by the additional variable bg ∈ B. To optimize SBF (6), we propose placing
the codes of states sm ∈ S(bg) in the same rows of an RMB- dimensional Karnaugh map. If
an input xl ∈ X is replaced by a variable bg ∈ B for states sm, si ∈ S(bg), then we propose
placing these states into adjusted cells of the map. To optimize the SOP of bg ∈ B, we can
use three types of insignificant assignments. They are the following: (1) the states with
unconditional transitions; (2) the states which do not belong to a particular set S(bg); and
(3) the combinations of state variables which are not used as state codes. For the discussed
example, the Karnaugh map (Figure 5) includes the state codes.

T1T2

T3 00 01 11 10

0

1

s1 s4 s2∗

s3 s5 ∗s6

Figure 5. Outcome of state maximum binary state assignment.

Let us explain how this map was created. There are the sets S(b1) = {s1, s2, s4} and
X(b1) = {x1, x4}. As follows from Figure 5, these states are placed in the same row of the
map. For states s1 and s4, the same input x1 is replaced. So, these states have adjacent
codes 000 and 010. The code 001 (state s3) can be thought of as insignificant because the
transition from this state is unconditional. The code 011 (state s5) can be thought of as
insignificant because there is no input symbol in the row b1 (the transaction from this state
is unconditional). To optimize the term depended on s2, we can use state assignments 110
(no state), 111 (the symbol “–” in the row b1) and 101 (no state). As a result, the following
Boolean equation is obtained: b1 = x1T1 + x4T1.

Step 4. Using the approach discussed above, we can obtain the following SBF:

b1 = x1(A1 ∨ A4) ∨ x4 A2 = x1T1 ∨ x4T1;

b2 = x2 A1 ∨ x5 A2 ∨ x7(A4 ∨ A5) =

= x2T1 T2 ∨ x7T2; (21)

b3 = x3(A3 ∨ A6) ∨ x2 A2 ∨ x8 A4 =

= x3T1 T2T3 ∨ x3T1T2 ∨ x2T1T2 ∨ x8x3T2 T3.

The analysis of SBF (21) shows that the circuits implemented into its equations have four
LUTs. The circuit for b1 includes a single LUT, as does the circuit for b2. The two-level
circuit generating b3 includes two LUTs. Thus, in the discussed case, there are four LUTs
and two have their levels in the circuit of LB.

Step 5. We use the approach proposed in the paper [18] to create the partition πS.
Using the method [18] gives the following sets: πS = {S1, S2}, S1 = {s1, s2, s4} and
S2 = {s3, s5, s6}. Thus, K = 2.

Step 6. As follows from analysis of classes Sk ∈ πS, each class includes Mk = 3
states. Using (12) and (13) gives the following: R1 = R2 = 2, RS = 4, V1 = {v1, v2},
V2 = {v3, v4} and V = {v1, . . . , v4}. It is known that the partial state codes do not affect

Electronics 2023, 12, 1133 12 of 31

the number of LUTs in the circuits of LBk [18]. Thus, we can assign them in the trivial
way: codes are assigned as the subscript grows and corresponds to the decimal number
of the step to which the code C(sm) is assigned. This approach gives the following codes:
C(s1) = C(s3) = 01, C(s2) = C(s5) = 10, and C(s4) = C(s6) = 11.

Step 7. As follows from Table 1, during the operation of the FSM A1, the following
COs are generated: Y1 = {}, Y2 = {y1, y7}, Y3 = {y2}, Y4 = {y1, y2}, Y5 = {y3, y6},
Y6 = {y1, y3, y7}, Y7 = {y4, y9}, Y8 = {y4, y5}, Y9 = {y5, y8}, Y10 = {y6, y8, y9}. Thus,
there are Q = 10 collections of outputs generated during the interstate transitions of FSM
A1. Using (9) gives RCO = 4 and the set Z = {z1, . . . , z4}.

The encoding is executed in such a way as to reduce the total number of literals in
SOPs (11). This can be carried out using, for example, the approach from the work [44].
One of the possible outcomes is shown in (Figure 6).

z1z2

z3z4 00 01 11 10

00

01

11

10

Y1 Y2 Y7∗

Y3 Y4 Y8∗

Y5 Y6 Y10∗

∗ ∗ ∗Y9

Figure 6. Codes of output collections.

Step 8. Using codes K(Yq) and insignificant input assignments [1], we can obtain the
following SBF:

y1 = Y2 ∨Y4Y6 = z1z2;

y2 = Y3 ∨Y4 = z1z4;

y3 = Y5 ∨Y6 = z1z3;

y4 = Y7 ∨Y8 = z1z3;

y5 = Y8 ∨Y9 = z1z4;

y6 = Y5 ∨Y10 = z2z3; (22)

y7 = Y2 ∨Y6 = z2z4;

y8 = Y9 ∨Y10 = z1z3;

y9 = Y7 ∨Y10 = z1z4.

The SBF (22) represents the circuit of block LY. Thus, it corresponds to SBF (11). The
maximum number of literals in the SOPs of (11) is determined as N× RCO. In the discussed
case, this number is equal to 9 × 4 = 36. The SBF (22) contains 18 literals. Thus, using the
approach [44] allows a reduction in the number of literals by a factor of 2.0 compared to
its maximum possible value. Each literal corresponds to the interconnection between the
blocks LTZ and LY. Thus, reducing the number of literals results in reducing the number of
interconnections. This is a positive factor because interconnections significantly influence
the chip area used, power consumption and performance.

Step 9. To create a table of LBk, it is necessary to use the STT rows representing
transitions from states sm ∈ Sk. For example, to create a table representing LB1, we should
choose the rows 1–8 and 10–13 of Table 1. The column Xh should be replaced by the
column B1

h. This column includes the conjunctions of variables bg ∈ B corresponding the
conjunctions of replaced inputs xl ∈ X. The column Yh is replaced by the column Z1

h. This
column includes the variables zr ∈ Z equal to 1 in the codes K(Yq) of COs shown the
corresponding rows of STT.

Electronics 2023, 12, 1133 13 of 31

In addition, this table includes the columns C(sC) (the partial code of the current state),
K(sT) (the MBC of the next state), and D1

h (IMFs equal to 1 to load the code K(sT) into RG).
In the discussed case, this table contains H1 = 12 rows (Table 3).

For example, the second row of Table 3 is created in the following manner. This row
is constructed using the second row of Table 1. This row describes the transition 〈s1, s2〉
executed when the following relation takes place: x1x2 = 1. During this transition, the
CO Y2 = {y4, y4} is produced. From the outcome of step 6, we have the code C(s1) = 01.
This code should be placed in the column C(sC). Using the Karnaugh map (Figure 5) gives
state code K(sT) = 100. This code should be placed in the column K(sT). It determines
existence of the symbol D1 in the column D1

h(h = 2) of Table 3. As follows from the column
s1 of Table 2, the input x1 is represented by b1 and the input x2 is replaced by the variable
b2. Thus, the conjunction x1x2 is replaced by the conjunction b1b2 written in the column
B1

h(h = 1) of Table 3.

Table 3. Table of block LB1.

Sc C(Sc) ST K(ST) B1
h Z1

h D1
h h

s1 01 s1 000 b1 - - 1
s2 100 b1b2 z2 D1 2
s5 011 b1 b2b3 z4 D2D3 3
s3 001 b1 b2 b3 z2z4 D3 4

s2 10 s2 100 b1 z3 D1 5
s4 010 b1b2 z2z3 D2 6
s6 111 b1 b2b3 z1 D1D2D3 7
s5 011 b1 b2 b3 z1z4 D2D3 8

s4 11 s4 010 b1 z1z3 D2 9
s6 111 b1b2 z4 D1D2D3 10
s1 000 b1 b2b3 - - 11
s2 100 b1 b2 b3 z1 D1 12

A similar approach is used to create all the rows of Tables 3 (block LB1) and 4
(block LB2). These tables represent SBFs (15) and (16). There are examples of some SOPs
shown below:

z1
1 = v1v2b1 b2 ∨ v1v2b1 ∨ v1v2b2 b3;

D1
3 = v1v2b1 b2 ∨ v1v2b1 b2 ∨ v1v2b1b2. (23)

z2
1 = v3v4 ∨ v3v4b2 ∨ v3v4b3;

D2
3 = v3v4 ∨ v3v4. (24)

Step 10. The table of block LTZ includes the following columns: “Function” (the
column includes symbols Dr ∈ D and zr ∈ Z), LB1, LB2. If a PBF is generated by the
block LBk (k ∈ {0, 1, . . . , K}), then the intersection of the row with this function and the
column LBk is marked by 1. Otherwise, this intersection contains zero. The block LTZ is
represented by Table 5.

Electronics 2023, 12, 1133 14 of 31

Table 4. Table of block LB2.

Sc C(Sc) ST K(ST) B2
h Z2

h D2
h h

s3 01 s6 111 1 z1z2z3z4 D1D2D3 1

s5 10 s6 111 b1 z3 D1D2D3 2
s3 001 b2 z2z4 D3 3

s6 11 s4 010 b3 z2z4 D2 4
s6 000 b3 z1z7 - 5

To fill the columns LB1 and LB2, we use Tables 3 and 4, respectively. In the discussed
case, Table 5 determines SBFs (17) and (18). For example, the following disjunctions may
be derived from Table 5:

z1 = z1
1 ∨ z2

1;

D3 = D1
3 ∨ D2

3. (25)

Step 11. The block LV converts MBC codes K(sm) into the partial state codes C(sm).
The conversion is executed for all states. The table of LV includes the columns sm, K(sm),
C(sm), Vm. If there is vr = 1 for a particular code C(sm), then there is the symbol vr in the
column Vm (Table 6).

Table 5. Table of LTZ.

Function LB1 LB2

D1 1 1

D2 1 1

D3 1 1

z1 1 1

z2 1 1

z3 1 1

z4 1 1

Table 6. Table of block LV.

Sm K(Sm) C(Sm) Vm

s1 000 0100 v2

s2 100 1000 v1

s3 001 0001 v4

s4 010 1100 v1v2

s5 011 0010 v3

s6 111 0011 v3v4

Using Table 6, it is possible to create SBF (14) represented by its perfect SOPs. To
minimize these SOPs, we can create a multi-functional Karnaugh map, as shown in Figure
7.

Electronics 2023, 12, 1133 15 of 31

T1T2

T3 00 01 11 10

0

1

v2 v1v2 v1∗

v4 v3 ∗v3v4

Figure 7. Multi-functional map of LV.

This Karnaugh map is created using the codes from Figure 5. In Figure 7, the symbols
of states sm ∈ S are replaced by symbols of additional variables vr ∈ V. This is performed
in the following way: if a particular cell of Figure 5 includes a state sm ∈ Sk, then the
symbols vr ∈ Vk are rewritten into the corresponding cell of Figure 7. Using Figure 7 gives
the following SBF, which determines the contents of LUTs from the block LV:

v1 = A2 ∨ A4 = T1T3 ∨ T2T3;

v2 = A1 ∨ A4 = T1 ∨ T3;

v3 = A5 ∨ A6 = T2T3; (26)

v4 = A3 ∨ A6 = T2T3 ∨ T1T3.

Step 12. Using the obtained SOPs, we can estimate how many LUTs it is necessary to
implement in the circuit of MPTY(A1). As follows from SBF (21), condition (19) holds for
SOP functions b1, b2 ∈ B. Thus, each of these functions is implemented using a single LUT
with SL = 5. There are six literals in the SOP b3 ∈ B. Thus, this SOP should be decomposed.
As a result, the corresponding circuit includes two LUTs connected in series. Due to this,
the circuit of LB includes four LUTs and has two levels of logic (Figure 8).

LUT1

x1 x4

b1

T1

LUT2

x1 x5
T1 T2

LUT3

x2 x8
T1T2T3

x7

LUT4

f1
x3

T1 T2 T3

b2

b3

T

Figure 8. Circuit of block LB for Mealy FSM MPTY(A1).

Each of the blocks LB1, LB2 (the second level of logic) and LTZ (the third level of
logic) have circuits with seven LUTs. Each of these circuits is single-level. The fourth level
consists of circuits for blocks LY (nine LUTs) and LV (four LUTs).

Thus, the resulting circuit has five levels and includes 38 LUTs. Our analysis of Mealy
FSM MPY(A1) shows the following. There are the same LUT counts for the circuits of
the blocks LB and LY of equivalent MPY and MPTY FSMs. Thus, in the discussed case,
these blocks include 4 + 9 = 13 LUTs. There are RMB + G = 6 literals in the SOPs of
SBFs (7) and (10). Using LUTs with five inputs leads to the functional decomposition of
these SOPs. As the result, there are three LUTs in a two-level circuit implementing any
function from SBFs (7) and (10). There are RMB + RCO = 7 functions generated by the LTZ
of Mealy FSM MPY(A1). Thus, there are 21 LUTs in this circuit. This calculation gives 34
LUTs in the circuit of Mealy FSM MPY(A1). The circuit has five levels of LUTs.

Thus, there is the same number of levels in the circuits of FSMs MPY(A1) and
MPTY(A1). However, the circuit of Mealy FSM MPY(A1) includes fewer LUTs. It is
possible to obtain the same LUT count for both circuits if we change the approach for the
encoding of states and COs [16]. However, we do not discuss this approach in our current
paper.

Electronics 2023, 12, 1133 16 of 31

Our example is rather simple. It is necessary to compare equivalent FSMs based on
various approaches using some benchmarks with a wide range of characteristics. Such a
comparison is given in the next Section. This comparison is executed for FPGAs produced
by AMD Xilinx. Due to this, the industrial package Vivado [39] is applied to fulfil all the
necessary steps of technology mapping [7,26,45].

6. Experimental Results

To compare the LUT-based circuits produced by our proposed method with circuits
obtained using some known design methods, we use 48 benchmarks creating the library
LGSsynth93 [31]. These benchmarks have a wide diapason of their main characteristics such
as: the numbers of transitions, internal states, input variables, output functions, collections
of FSM outputs. The benchmarks are represented by STTs in the format KISS2. The choice
of this library is based on the fact that a lot of FSM designers use it to compare their results
with main characteristics of known FSM circuits [27,36,37,46–48]. The characteristics of the
benchmark FSMs could be found, for example, in our previous articles. Due to this, we do
not show them in our current paper.

To conduct the experiments, we use the Virtex-7 VC709 platform (xc7vx690tffg1761-2) [49]
based on FPGA chip xc7vx690tffg1761-2 (AMD Xilinx). The CLBs of this chip include LUTs
with six address inputs. To obtain the FSM circuits, we use an industrial package Vivado
v2019.1 (64-bit) [39] produced by AMD Xilinx. To process the benchmarks, we use their
VHDL-based models. To transform the KISS2-based benchmarks files into VHDL codes, the
CAD tool K2F [50] is applied.

For each benchmark, we use Vivado reports to find the LUT counts and performance
(the values of cycle time and maximum operating frequency). We compare the proposed
FSM model with four different FSM models. Three of these models are P FSMs based on:
(1) Auto of Vivado (P Mealy FSMs with MBCs); (2) One-hot of Vivado (one-hot-based P
Mealy FSMs); (3) JEDI (P Mealy FSMs with MBCs). As the fourth model, we investigate the
MPY Mealy FSMs.

In our research, we take into account the fact that FSMs are not stand-alone units.
To achieve the stability of the outputs, we use an additional synchronous register. In the
cases of P FSMS, the inputs are loaded into this register. Thus, it consists of L flip-flops.
Obviously, to implement this register, it is necessary to use L additional LUTs. In the
cases of both MPY and MPTY FSMs, this register keeps the codes of COs. Thus, it has
RCO flip-flops and does not require additional LUTs. In addition, it does not require the
additional synchronization pulse. This simplifies the synchronization circuit compared
with equivalent P FSMs.

The results of experiments [16,17] show that practically all the characteristics of LUT-
based FSM circuits strongly depend on the relation between the values of L + RMB, on the
one hand, and SL, on the other hand. In experiments, we use Virtex-7 FPGAs for which
SL = 6. We divided the set of benchmarks by classes of complexity (CC). If the symbol
CCP (P = 1, 2, . . .) means a class number, then the benchmarks belonging to a certain class
is determined by the expression

CCP = d(L + RMB)/SLe − 1. (27)

For the library used, there are five classes of complexity (CC0-CC4). In each of the
following tables, the benchmarks belonging to a certain class are shown in the column
“Class of complexity”. The class CC0 includes trivial FSMs. The class CC1 includes simple
FSMs. The class CC2 includes average FSMs. The class CC3 includes big FSMs. Finally, the
class CC4 includes very big FSMs.

Tables 7–16 contain the results of the experiments conducted. Table 7 includes the
numbers of LUTs necessary to implement the electrical circuit for a given benchmark. All
benchmarks are represented in this table. Table 8 contains the LUT counts for classes
CC0–CC1. Table 9 contains the LUT counts for classes CC2–CC4. The negative influence
of the number of FSM inputs is shown in Table 10. Table 11 contains the values of the

Electronics 2023, 12, 1133 17 of 31

minimum cycle times for each benchmark. The data for these tables are taken from the
Vivado reports. In addition, we show cycle times separately for classes CC0–CC1 (Table 12)
and CC2–CC4 (Table 13). The values of the maximum operating frequencies are shown in
Table 14. These values are obtained in a simple way using data from Table 11. In addition,
we show the frequencies separately for classes CC0–CC1 (Table 15) and CC2–CC4 (Table
16).

Each table is organized in the same manner. The first column includes the benchmarks’
names, the row “Total” and the row “Percentage”. The names of the investigated methods
are shown in the next five columns. The classes of complexity are shown in the last column.
In the row “Total” are shown the results of the summation of values for a particular column.
Finally, the row “Percentage” includes the percentage of the summarized characteristics of
various FSM circuits in relation to the summarized characteristics of MPTY FSMs. We start
the discussion of the results starting with Table 7.

As follows from Table 8, as compared to other investigated methods, the circuits of
MPTY-based FSMs consist of the minimum number of LUTs. There is the following gain:
(1) 56.99% compared to Auto-based FSMs; (2) 79.13% compared to One-hot –based FSMs;
(3) 33.13% compared to JEDI-based FSMs; and (4) 8.98% compared to MPY-based FSMs.
In second place in terms of gain are MPY-based FSMs. We think this gain is associated
with two factors. First, for rather complex FSMs, SD-based circuits always have fewer
LUTs than for equivalent FD-based FSMs [9]. Second, there are an additional L LUTs in the
circuits of FD-based FSMs required to stabilize their operation. In the case of both MPY-
and MPTY-based FSMs, the stabilization is achieved by registering the codes of COs. To
produce these codes, LUTs of LTZ are used. The outputs of these LUTs are connected with
RCO flip-flops creating the additional register. Thus, there is no need for additional LUTs.
Of course, the gain is also associated with replacing FSM inputs with additional variables.
We think that this diminishes the number of partial functions compared to equivalent
FD-based FSMs.

It is interesting to show how the gain is changed with the change in FSM complexity.
Using Table 7, we created two additional tables. Table 9 shows LUT counts for trivial
and simple FSMs. Table 9 contains information about LUT counts for average, big and
very big FSMs.

Analysis of Table 8 shows that the proposed approach provides the same LUT counts
as for equivalent MPY FSMs. All P-based models require more LUTs. Our approach gives
the following gain: (1) 24.89% compared to Auto-based FSMs; (2) 56.11% compared to
One-hot—based FSMs; and (3) 9.61% compared to JEDI-based FSMs. We think that this
gain is connected to the different stabilization methods used in SD- and FD-based FSMs.
The input register of FD-based FSMs requires more LUTs than the output register of SD-
based FSMs. However, both MPY- and MPTY-based FSMs require more LUTs for trivial
FSMs (the complexity class CC0). We think this has a very simple explanation. Namely,
for trivial FSMs, the condition (5) holds. Thus, there is no need to apply the SD-based
methods. However, these methods are always used during the synthesis of both MPY- and
MPTY-based FSMs. In this case, it is necessary to implement circuits of blocks LB and LY. It
is the presence of these absolutely redundant blocks that determines the marked loss of
SD-based methods.

The next phenomenon comes from Table 8: for the class CC0, the circuits of equivalent
MPY- and MPTY-based FSMs have equal amounts of LUTs. We think this is connected with
the fact that the partition πS consists of one class. Due to this, there is no need to use the
blocks LB1–LBK. This means that MPTY FSMs turn into MPY FSMs. Obviously, these FSM
circuits should have equal values for all the other characteristics. This, once again, indicates
that it is advisable to use different FSM models for different conditions. Thus, it makes no
sense to apply SD-based methods when condition (5) is met.

Electronics 2023, 12, 1133 18 of 31

Table 7. Experimental results (the LUT counts).

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

bbara 21 21 14 12 12 CC1

bbsse 40 44 31 14 14 CC1

bbtas 7 7 7 9 9 CC0

beecount 22 22 17 13 13 CC1

cse 47 73 43 18 18 CC1

dk14 19 30 13 12 12 CC1

dk15 18 19 15 11 11 CC1

dk16 17 36 14 14 14 CC1

dk17 7 14 7 9 9 CC0

dk27 4 6 5 8 8 CC0

dk512 11 11 10 14 14 CC0

donfile 33 33 26 21 21 CC1

ex1 79 83 62 28 24 CC2

ex2 11 11 10 11 11 CC1

ex3 11 11 11 16 16 CC0

ex4 21 19 18 12 12 CC1

ex5 11 11 11 15 15 CC0

ex6 29 41 27 21 21 CC1

ex7 6 7 6 10 10 CC1

keyb 50 68 47 28 28 CC1

kirkman 54 70 51 28 22 CC2

lion 4 7 4 10 10 CC0

lion9 8 13 7 12 12 CC0

mark1 28 28 25 22 22 CC1

mc 7 10 7 12 12 CC0

modulo12 8 8 8 11 11 CC0

opus 33 33 27 20 20 CC1

planet 138 138 95 76 68 CC2

planet1 138 138 95 76 68 CC2

pma 102 102 94 74 62 CC2

s1 73 107 69 52 48 CC2

s1488 132 139 116 86 79 CC2

s1494 134 140 118 92 83 CC2

s1a 57 89 51 42 35 CC2

s208 23 42 21 20 18 CC2

s27 10 22 10 12 12 CC1

s386 33 46 29 31 31 CC1

s420 29 50 28 24 20 CC4

Electronics 2023, 12, 1133 19 of 31

Table 7. Cont.

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

s510 67 67 51 42 36 CC4

s820 13 13 13 14 14 CC1

s832 106 100 86 70 62 CC4

s840 98 97 80 68 56 CC4

sand 143 143 125 99 83 CC3

shiftreg 3 7 3 8 8 CC0

sse 40 44 37 38 38 CC1

styr 102 129 90 81 79 CC2

tma 52 46 46 41 36 CC2

Total 2099 2395 1780 1457 1337

Percentage,% 156.99 179.13 133.13 108.98 100.00

Now, we are going to discuss the temporal characteristics of FSM circuits. First of all,
we show the negative influence of input register. In all P-based FSMs, the stabilization of
operation is achieved due to loading FSM inputs into the additional register. Thus, this
approach leads to the use of L additional LUTs and flip-flops. Obviously, the cycle time
increases due to the presence of the chain < input-LUTs–flip-flops–LUTs of LB>. In addition,
this increases the consumed power. We explored how the number of inputs affects the time
and power characteristics of resulting circuits. This information is shown in Table 10.

As follows from Table 10, the number of inputs significantly affects the timing and
energy characteristics of LUT-based FSM circuits. The more inputs the FSM has, the greater
their negative impact. In the case of the investigated SD-based FSMs, the stabilization
is achieved due to the registering codes of COs. In this case, the number of additional
flip-flops is equal to RCO. Moreover, there is no need for additional LUTs because the codes
of COs are generated by the LUTs of LTZ. As follows, for the studied benchmarks, the
following relation holds: RCO � L . The validity of this relation determines the gain in
time characteristics obtained due to the transition from FD-based FSMs to SD-based FSMs.
This gain is shown in Table 11.

As follows from Table 11, the SD-based FSMs have the best values of cycle time.
Our proposed method produces FSM circuits which are a bit slower than the circuits of
MPY-based FSMs (the average loss is 0.76%). However, our method has the following
average gain compared to other FSMs: (1) 70.65% compared to Auto-based FSMs; (2) 71.08%
compared to One-hot-based FSMs; and (3) 62.13% compared to JEDI-based FSMs. This gain
for the SD-based FSMs is explained by the difference in the methods used for stabilizing
the FSM outputs, as discussed before.

To show the influence of FSM complexity, we create two additional tables. Table 12
includes information about the cycle times for trivial and simple FSMs. Table 13 includes
information about the cycle times for average, big and very big FSMs.

Electronics 2023, 12, 1133 20 of 31

Table 8. Experimental results (the LUT counts for classes CC0-CC1).

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

bbara 21 21 14 12 12 CC1

bbsse 40 44 31 14 14 CC1

bbtas 7 7 7 9 9 CC0

beecount 22 22 17 13 13 CC1

cse 47 73 43 18 18 CC1

dk14 19 30 13 12 12 CC1

dk15 18 19 15 11 11 CC1

dk16 17 36 14 14 14 CC1

dk17 7 14 7 9 9 CC0

dk27 4 6 5 8 8 CC0

dk512 11 11 10 14 14 CC0

donfile 33 33 26 21 21 CC1

ex2 11 11 10 11 11 CC1

ex3 11 11 11 16 16 CC0

ex4 21 19 18 12 12 CC1

ex5 11 11 11 15 15 CC0

ex6 29 41 27 21 21 CC1

ex7 6 7 6 10 10 CC1

keyb 50 68 47 28 28 CC1

lion 4 7 4 10 10 CC0

lion9 8 13 7 12 12 CC0

mark1 28 28 25 22 22 CC1

mc 7 10 7 12 12 CC0

modulo12 8 8 8 11 11 CC0

opus 33 33 27 20 20 CC1

s27 10 22 10 12 12 CC1

s386 33 46 29 31 31 CC1

s820 13 13 13 14 14 CC1

shiftreg 3 7 3 8 8 CC0

sse 40 44 37 38 38 CC1

Total 572 715 502 458 458

Percentage,% 124.89 156.11 109.61 100.00 100.00

Electronics 2023, 12, 1133 21 of 31

Table 9. Experimental results (the LUT counts for classes CC2-CC4).

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

ex1 79 83 62 28 24 CC2

kirkman 54 70 51 28 22 CC2

planet 138 138 95 76 68 CC2

planet1 138 138 95 76 68 CC2

pma 102 102 94 74 62 CC2

s1 73 107 69 52 48 CC2

s1488 132 139 116 86 79 CC2

s1494 134 140 118 92 83 CC2

s1a 57 89 51 42 35 CC2

s208 23 42 21 20 18 CC2

s420 29 50 28 24 20 CC4

s510 67 67 51 42 36 CC4

s832 106 100 86 70 62 CC4

s840 98 97 80 68 56 CC4

sand 143 143 125 99 83 CC3

styr 102 129 90 81 79 CC2

tma 52 46 46 41 36 CC2

Total 1527 1680 1278 999 879

Percentage,% 173.72 191.13 145.39 113.65 100.00

Table 10. Influence of input register on cycle time and consumed power.

L Power [W] Data Path Delay [ns]

1 0.356 3.471

2 0.367 3.599

3 0.380 3.603

4 0.392 3.640

5 0.406 3.667

6 0.418 3.688

7 0.431 3.729

8 0.448 3.793

9 0.462 3.800

10 0.477 3.705

11 0.491 3.767

12 0.511 3.898

18 0.608 4.112

19 0.623 4.113

As follows from Table 12, the time characteristics are equal for SD-based trivial and
simple FSMs. They have the following gain: (1) 65.63% compared with both Auto- and
One-hot—based FSMs and (2) 59.60% compared with JEDI-based FSMs. The reasons for
this situation are as discussed before.

Electronics 2023, 12, 1133 22 of 31

Table 11. Experimental results (the cycle time, nanoseconds).

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

bbara 8.811 8.811 8.352 5.214 5.214 CC1

bbsse 10.096 9.642 9.213 5.226 5.226 CC1

bbtas 8.497 8.497 8.451 5.308 5.308 CC0

beecount 9.605 9.605 8.941 5.373 5.373 CC1

cse 10.558 9.840 9.343 5.453 5.453 CC1

dk14 8.821 9.395 8.762 5.839 5.839 CC1

dk15 8.797 8.998 8.735 5.219 5.219 CC1

dk16 9.491 9.320 8.672 5.245 5.245 CC1

dk17 8.617 9.587 8.617 5.400 5.400 CC0

dk27 8.325 8.424 8.369 5.195 5.195 CC0

dk512 8.566 8.566 8.477 4.119 4.119 CC0

donfile 9.033 9.034 8.509 5.168 5.168 CC1

ex1 10.425 10.955 9.454 5.821 5.741 CC2

ex2 8.635 8.635 8.596 5.624 5.624 CC1

ex3 8.731 8.731 8.707 5.931 5.931 CC0

ex4 9.214 9.315 8.874 5.481 5.481 CC1

ex5 9.147 9.147 9.119 5.425 5.425 CC0

ex6 9.564 9.772 9.330 5.369 5.369 CC1

ex7 8.598 8.578 8.584 5.200 5.200 CC1

keyb 10.121 10.699 9.666 5.265 5.265 CC1

kirkman 10.971 10.392 10.280 5.612 5.482 CC2

lion 8.539 8.501 8.541 6.062 6.062 CC0

lion9 8.470 8.998 8.444 5.270 5.270 CC0

mark1 9.825 9.825 9.343 6.395 6.395 CC1

mc 8.688 8.719 8.682 6.099 6.099 CC0

modulo12 8.302 8.302 8.299 5.928 5.928 CC0

opus 9.684 9.684 9.275 5.322 5.322 CC1

planet 11.264 11.264 9.073 6.018 5.878 CC2

planet1 11.264 11.264 9.073 6.018 5.834 CC2

pma 10.634 10.634 9.681 6.101 6.101 CC2

s1 10.623 11.154 10.156 5.830 5.707 CC2

s1488 11.013 11.372 10.155 6.432 6.206 CC2

s1494 10.487 10.654 9.878 5.723 5.511 CC2

s1a 10.313 9.462 9.704 5.689 5.511 CC2

s208 9.503 9.434 9.361 6.125 5.835 CC2

s27 8.672 8.862 8.662 6.387 6.387 CC1

s386 9.676 9.494 9.311 6.164 6.164 CC1

s420 9.864 9.780 9.755 5.868 6.028 CC4

s510 9.742 9.742 9.155 5.324 5.834 CC4

s820 10.691 10.641 9.775 5.726 5.726 CC1

s832 10.975 10.638 9.866 6.724 6.401 CC4

Electronics 2023, 12, 1133 23 of 31

Table 11. Cont.

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

s840 9.195 9.228 9.158 6.232 5.882 CC4

sand 12.390 12.390 11.652 7.221 7.087 CC3

shiftreg 8.302 7.265 7.091 5.564 5.564 CC0

sse 10.096 9.642 9.455 5.561 5.561 CC1

styr 11.067 11.497 10.666 5.921 5.719 CC2

tma 9.831 10.495 9.821 5.702 5.596 CC2

Total 453.73 454.88 431.08 267.89 265.88

Percentage,% 170.65 171.08 162.13 100.76 100.00

As follows from Table 13, starting from the complexity CC2, our approach wins in
performance. There is the following gain: (1) 78.93% compared with Auto-based FSMs;
(2) 79.72% compared with One-hot-based FSMs; (3) 66.3% compared with JEDI-based
FSMs and (4) 2.0% compared with equivalent MPY FSMs. We think that the superiority of
SD-based FSMs is due to the fact that they generate fewer partial Boolean functions. Due to
this, their circuits have fewer logic levels and interconnections. In turn, they are faster.

The slight superiority of MPTY FSMs (2%) in relation to MPY FSMs is due to the fact
that MPTY FSMs have fewer interconnections. This is connected with different approaches
of stabilization. Since interconnections significantly affect the timing characteristics, our
approach produces faster circuits for FSMs from the classes CC2-CC4. Apparently, equiva-
lent SD-based FSMs have the same number of logic levels (the number of series-connected
LUTs). Thus, with respect to the other methods under study, the performance of MPTY
FSMs improves as their complexity increases.

We did not obtain the values of maximum operating frequencies from Vivado reports.
However, we calculated them using the values of cycle times. The frequency comparison is
represented by Table 14.

As follows from Table 14, on average, the circuits of MPTY-based FSMs are faster in
relation to all other models. There is the following gain: (1) 58.79% compared to Auto-based
FSMs; (2) 58.7% compared to One-hot-based FSMs; (3) 61.65% compared to JEDI-based
FSMs; and (4) 0.64% compared to MPY-based FSMs. Obviously, the reasons for this gain
are the same as the ones discussed for the time of cycles. We will not repeat them.

Naturally, the change in the gain in frequency has the same tendencies as the change
in the gain in cycle time. This statement is justified by information from Tables 15 and 16.

It should be noted that the gain in operating frequency for our method begins to
appear from the complexity CC2. At the same time, the gain grows in the process of the
transition to the highest categories of complexity.

Thus, if FSMs belong to the classes CC0-CC1, then equivalent MPTY and MPY FSMs
have the same values of LUT counts, cycle time and maximum operating frequency. For
more complex FSMs, MPTY FSMs require fewer LUTs than for equivalent MPY FSMs. In
addition, for FSMs from classes CC0-CC1, both models have the same values of temporal
characteristics. However, as the complexity increases, the temporal characteristics of the
MPTY FSMs gradually become slightly better than they are for equivalent MPY FSMs. This
gain is rather small; however, the very fact that a decrease in the number of LUTs does not
lead to performance degradation is important. The results of the experiments allow us to
draw the following conclusion: MPTY FSMs can replace MPY FSMs for average, big and
very big sequential devices. For a more visual assessment of the results, we built a diagram
(Figure 9). This diagram shows a comparison of percentages for the main characteristics of
the studied methods.

Electronics 2023, 12, 1133 24 of 31

Table 12. Cycle times for classes CC0-CC1 (nanoseconds).

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

bbara 8.811 8.811 8.352 5.214 5.214 CC1

bbsse 10.096 9.642 9.213 5.226 5.226 CC1

bbtas 8.497 8.497 8.451 5.308 5.308 CC0

beecount 9.605 9.605 8.941 5.373 5.373 CC1

cse 10.558 9.840 9.343 5.453 5.453 CC1

dk14 8.821 9.395 8.762 5.839 5.839 CC1

dk15 8.797 8.998 8.735 5.219 5.219 CC1

dk16 9.491 9.320 8.672 5.245 5.245 CC1

dk17 8.617 9.587 8.617 5.400 5.400 CC0

dk27 8.325 8.424 8.369 5.195 5.195 CC0

dk512 8.566 8.566 8.477 4.119 4.119 CC0

donfile 9.033 9.034 8.509 5.168 5.168 CC1

ex2 8.635 8.635 8.596 5.624 5.624 CC1

ex3 8.731 8.731 8.707 5.931 5.931 CC0

ex4 9.214 9.315 8.874 5.481 5.481 CC1

ex5 9.147 9.147 9.119 5.425 5.425 CC0

ex6 9.564 9.772 9.330 5.369 5.369 CC1

ex7 8.598 8.578 8.584 5.200 5.200 CC1

keyb 10.121 10.699 9.666 5.265 5.265 CC1

lion 8.539 8.501 8.541 6.062 6.062 CC0

lion9 8.470 8.998 8.444 5.270 5.270 CC0

mark1 9.825 9.825 9.343 6.395 6.395 CC1

mc 8.688 8.719 8.682 6.099 6.099 CC0

modulo12 8.302 8.302 8.299 5.928 5.928 CC0

opus 9.684 9.684 9.275 5.322 5.322 CC1

s27 8.672 8.862 8.662 6.387 6.387 CC1

s386 9.676 9.494 9.311 6.164 6.164 CC1

s820 10.691 10.641 9.775 5.726 5.726 CC1

shiftreg 8.302 7.265 7.091 5.564 5.564 CC0

sse 10.096 9.642 9.455 5.561 5.561 CC1

Total 274.17 274.53 264.20 165.53 165.53

Percentage,% 165.63 165.85 159.60 100.00 100.00

To construct charts (Figure 9), we used tables in which the results are shown for
all benchmarks, and not for their individual categories. To show the results for LUT counts,
we used Table 7. The times of cycles are taken from Table 11. At last, the results for the
values of maximum operating frequencies are derived from Table 14. It clearly follows from
Figure 9 that the proposed method allows the improvement in the spatial characteristics of
circuits (without the degradation of temporal characteristics).

Electronics 2023, 12, 1133 25 of 31

Table 13. Cycle times for classes CC2-CC4 (nanoseconds).

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

ex1 10.425 10.955 9.454 5.821 5.741 CC2

kirkman 10.971 10.392 10.280 5.612 5.482 CC2

planet 11.264 11.264 9.073 6.018 5.878 CC2

planet1 11.264 11.264 9.073 6.018 5.834 CC2

pma 10.634 10.634 9.681 6.101 6.101 CC2

s1 10.623 11.154 10.156 5.830 5.707 CC2

s1488 11.013 11.372 10.155 6.432 6.206 CC2

s1494 10.487 10.654 9.878 5.723 5.511 CC2

s1a 10.313 9.462 9.704 5.689 5.511 CC2

s208 9.503 9.434 9.361 6.125 5.835 CC2

s420 9.864 9.780 9.755 5.868 6.028 CC4

s510 9.742 9.742 9.155 5.324 5.834 CC4

s832 10.975 10.638 9.866 6.724 6.401 CC4

s840 9.195 9.228 9.158 6.232 5.882 CC4

sand 12.390 12.390 11.652 7.221 7.087 CC3

styr 11.067 11.497 10.666 5.921 5.719 CC2

tma 9.831 10.495 9.821 5.702 5.596 CC2

Total 179.56 180.36 166.89 102.36 100.35

Percentage,% 178.93 179.72 166.30 102.00 100.00

Table 14. Experimental results (the maximum operating frequency, MHz).

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

bbara 113.496 113.496 119.727 191.809 191.809 CC1

bbsse 99.049 103.713 108.539 191.342 191.342 CC1

bbtas 117.687 117.687 118.336 188.389 188.389 CC0

beecount 104.112 104.112 111.839 186.111 186.111 CC1

cse 94.713 101.626 107.03 183.399 183.399 CC1

dk14 113.364 106.439 114.134 171.26 171.26 CC1

dk15 113.675 111.137 114.487 191.626 191.626 CC1

dk16 105.362 107.294 115.316 190.654 190.654 CC1

dk17 116.049 104.308 116.049 185.192 185.192 CC0

dk27 120.122 118.709 119.494 192.487 192.487 CC0

dk512 116.74 116.74 117.963 242.792 242.792 CC0

donfile 110.706 110.696 117.517 193.504 193.504 CC1

ex1 95.922 91.281 105.777 171.796 174.19 CC2

ex2 115.808 115.808 116.34 177.799 177.799 CC1

ex3 114.536 114.536 114.846 168.594 168.594 CC0

ex4 108.53 107.352 112.69 182.443 182.443 CC1

ex5 109.327 109.327 109.661 184.328 184.328 CC0

ex6 104.556 102.333 107.183 186.268 186.268 CC1

Electronics 2023, 12, 1133 26 of 31

Table 14. Cont.

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

ex7 116.306 116.576 116.495 192.304 192.304 CC1

keyb 98.806 93.466 103.453 189.921 189.921 CC1

kirkman 91.148 96.232 97.272 178.181 182.406 CC2

lion 117.11 117.634 117.083 164.969 164.969 CC0

lion9 118.065 111.136 118.421 189.756 189.756 CC0

mark1 101.781 101.781 107.032 156.361 156.361 CC1

mc 115.102 114.694 115.174 163.958 163.958 CC0

modulo12 120.454 120.454 120.498 168.696 168.696 CC0

opus 103.265 103.265 107.818 187.911 187.911 CC1

planet 88.777 88.777 110.222 166.182 170.14 CC2

planet1 88.777 88.777 110.222 166.159 171.417 CC2

pma 94.039 94.039 103.293 163.902 163.902 CC2

s1 94.134 89.653 98.465 171.535 175.215 CC2

s1488 90.8 87.934 98.472 155.481 161.143 CC2

s1494 95.357 93.861 101.236 174.744 181.467 CC2

s1a 96.963 105.687 103.048 175.776 181.467 CC2

s208 105.231 106 106.825 163.266 171.38 CC2

s27 115.314 112.842 115.449 156.566 156.566 CC1

s386 103.348 105.329 107.401 162.231 162.231 CC1

s420 101.378 102.249 102.514 170.42 165.897 CC4

s510 102.648 102.648 109.226 187.816 171.398 CC4

s820 93.537 93.975 102.3 174.643 174.643 CC1

s832 91.117 94.001 101.354 148.725 156.231 CC4

s840 108.755 108.364 109.196 160.471 170.02 CC4

sand 80.711 80.711 85.821 138.478 141.096 CC3

shiftreg 120.454 137.645 141.028 179.726 179.726 CC0

sse 99.049 103.713 105.76 179.809 179.809 CC1

styr 90.359 86.979 93.754 168.899 174.865 CC2

tma 101.719 95.284 101.819 175.381 178.703 CC2

Total 4918.26 4910.3 5157.58 8312.06 8365.78

Percentage,% 58.79 58.7 61.65 99.36 100

Table 15. Experimental results (the frequencies for classes CC0-CC1, MHz).

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

bbara 113.496 113.496 119.727 191.809 191.809 CC1

bbsse 99.049 103.713 108.539 191.342 191.342 CC1

bbtas 117.687 117.687 118.336 188.389 188.389 CC0

beecount 104.112 104.112 111.839 186.111 186.111 CC1

cse 94.713 101.626 107.030 183.399 183.399 CC1

dk14 113.364 106.439 114.134 171.260 171.260 CC1

Electronics 2023, 12, 1133 27 of 31

Table 15. Cont.

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

dk15 113.675 111.137 114.487 191.626 191.626 CC1

dk16 105.362 107.294 115.316 190.654 190.654 CC1

dk17 116.049 104.308 116.049 185.192 185.192 CC0

dk27 120.122 118.709 119.494 192.487 192.487 CC0

dk512 116.740 116.740 117.963 242.792 242.792 CC0

donfile 110.706 110.696 117.517 193.504 193.504 CC1

ex2 115.808 115.808 116.340 177.799 177.799 CC1

ex3 114.536 114.536 114.846 168.594 168.594 CC0

ex4 108.530 107.352 112.690 182.443 182.443 CC1

ex5 109.327 109.327 109.661 184.328 184.328 CC0

ex6 104.556 102.333 107.183 186.268 186.268 CC1

ex7 116.306 116.576 116.495 192.304 192.304 CC1

keyb 98.806 93.466 103.453 189.921 189.921 CC1

lion 117.110 117.634 117.083 164.969 164.969 CC0

lion9 118.065 111.136 118.421 189.756 189.756 CC0

mark1 101.781 101.781 107.032 156.361 156.361 CC1

mc 115.102 114.694 115.174 163.958 163.958 CC0

modulo12 120.454 120.454 120.498 168.696 168.696 CC0

opus 103.265 103.265 107.818 187.911 187.911 CC1

s27 115.314 112.842 115.449 156.566 156.566 CC1

s386 103.348 105.329 107.401 162.231 162.231 CC1

s820 93.537 93.975 102.300 174.643 174.643 CC1

shiftreg 120.454 137.645 141.028 179.726 179.726 CC0

sse 99.049 103.713 105.760 179.809 179.809 CC1

Total 3300.42 3297.82 3419.06 5474.85 5474.85

Percentage,% 60.28 60.24 62.45 100.00 100.00

Table 16. Experimental results (the frequencies for classes CC2-CC4 MHz).

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

ex1 95.922 91.281 105.777 171.796 174.190 CC2

kirkman 91.148 96.232 97.272 178.181 182.406 CC2

planet 88.777 88.777 110.222 166.182 170.140 CC2

planet1 88.777 88.777 110.222 166.159 171.417 CC2

pma 94.039 94.039 103.293 163.902 163.902 CC2

s1 94.134 89.653 98.465 171.535 175.215 CC2

s1488 90.800 87.934 98.472 155.481 161.143 CC2

s1494 95.357 93.861 101.236 174.744 181.467 CC2

s1a 96.963 105.687 103.048 175.776 181.467 CC2

s208 105.231 106.000 106.825 163.266 171.380 CC2

s420 101.378 102.249 102.514 170.420 165.897 CC4

Electronics 2023, 12, 1133 28 of 31

Table 16. Cont.

Benchmark Auto One-Hot JEDI MPY MPTY Class of Complexity

s510 102.648 102.648 109.226 187.816 171.398 CC4

s832 91.117 94.001 101.354 148.725 156.231 CC4

s840 108.755 108.364 109.196 160.471 170.020 CC4

sand 80.711 80.711 85.821 138.478 141.096 CC3

styr 90.359 86.979 93.754 168.899 174.865 CC2

tma 101.719 95.284 101.819 175.381 178.703 CC2

Total 1617.83 1612.48 1738.51 2837.21 2890.94

Percentage,% 55.96 55.78 60.14 98.14 100.00

156.99

170.65

58.79

179.13

171.08

58.70

133.13

162.13

61.65

108.98

100.76 99.36100.00 100.00 100.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

LUT counts Cycle time Frequency

Experimental results (total percentage comparison)

Auto One-Hot JEDI MPY MPтY

Figure 9. Comparison of percentages for the main characteristics of the studied methods.

7. Conclusions

Modern FPGAs are widely used in digital design [2].These chips are very powerful:
today, a single chip may implement a circuit with very complicated blocks [4]. Being
universal, these chips have a significant drawback: they include a huge number of LUT
elements with an extremely small number of inputs [3,4]. This phenomenon leads to
the need to use extremely sophisticated methods for optimizing the FSM-based logic
circuits. It is this shortcoming that necessitates the use of various methods of functional
decomposition to obtain the resulting circuit. As a result of functional decomposition, the
implemented circuits are multi-level. These circuits are slower and less energy efficient
than the equivalent single-level solutions.

The use of structural decomposition methods allows the improvement in the main
characteristics of multi-level FSM circuits [9]. The analysis of the work [9] leads to the
conclusion that in the vast majority of cases, the SD-based FSM circuits are significantly
better than their FD-based counterparts. In the paper [17], the decrease in LUT counts
is achieved due to joint use of such SD-based methods as the replacement of inputs and
encoding of output collections. As follows from [17], this approach allows the obtaining of

Electronics 2023, 12, 1133 29 of 31

MPY FSMs, whose circuits have better characteristics compared with equivalent FD-based
circuits.

To reduce the LUT count in the circuits of MPY-based FSMs, we propose to replace
the maximum binary state codes with extended state codes. The proposed approach
is based on using twofold state assignment [18]. As follows from the experiments, the
proposed approach reduces LUT counts without the degradation of temporal characteristics
as compared to equivalent MPY-based FSMs. We hope the proposed method can be used
in FPGA-based designs.

Author Contributions: Conceptualization, A.B., L.T., M.M. and K.K.; Methodology, A.B., L.T., M.M.
and K.K.; Software, A.B., L.T., M.M. and K.K.; Validation, A.B., L.T., M.M. and K.K.; Formal analysis,
A.B., L.T., M.M. and K.K.; Investigation, A.B., L.T., M.M. and K.K.; Writing—original draft preparation,
A.B., L.T., M.M. and K.K.; Supervision, A.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CLB configurable logic block
CO collection of outputs
DST direct structure table
FD functional decomposition
FPGA field-programmable gate array
FSM finite state machine
IMF input memory function
LUT look-up table
RG state-code register
SBF system of Boolean functions
SD structural decomposition
STG state-transition graph
STT state-transition table

References
1. De Micheli, G. Synthesis and Optimization of Digital Circuits; McGraw–Hill: New York, NY, USA, 1994; p. 578.
2. Baranov, S. High-Level Synthesis of Digital Systems: For Data-Path and Control Dominated Systems; Amazon: Seattle, WA, USA, 2018;

p. 207.
3. Trimberg, S.M. Three ages of FPGA: A Retrospective on the First Thirty Years of FPGA Technology. IEEE Proc. 2015, 103, 318–331.
4. Ruiz-Rosero, J.; Ramirez-Gonzalez, G.; Khanna, R. Field Programmable Gate Array Applications—A Scientometric Review.

Computation 2019, 7, 63. https://doi.org/10.3390/computation7040063.
5. Grout, I. Digital systems design with FPGAs and CPLDs; Elsevier Science: Amsterdam, The Netherlands, 2011.
6. Trimberger, S.M. Field-Programmable Gate Array Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany,

2012.
7. Kubica, M.; Opara, A.; Kania, D. Technology Mapping for LUT-Based FPGA; Lecture Notes in Electrical Engineering; Springer:

Cham, Switzerland, 2021; p. 216.
8. Ling, A.; Singh, D.P.; Brown, S.D. FPGA Technology Mapping: A Study of Optimality. In Proceedings of the 42nd Annual Design

Automation Conference, Anaheim, CA, USA, 13–17 June 2005; Association for Computing Machinery: New York, NY, USA, 2005;
pp. 427–432. https://doi.org/10.1145/1065579.1065693.

9. Barkalov, A.; Titarenko, L.; Krzywicki, K. Structural Decomposition in FSM Design: Roots, Evolution, Current State—A Review.
Electronics 2021, 10, 1174. https://doi.org/10.3390/electronics10101174.

10. Chapman, K. Multiplexer Design Techniques for Datapath Performance with Minimized Routing Resources; Xilinx All Programmable:
Santa Clara, CA, USA, 2014; pp. 1–32.

11. Kubica, M.; Opara, A.; Kania, D. Logic Synthesis Strategy Oriented to Low Power Optimization. Appl. Sci. 2021, 11, 8797.
https://doi.org/10.3390/app11198797.

Electronics 2023, 12, 1133 30 of 31

12. Sasao, T.; Mishchenko, A. LUTMIN : FPGA Logic Synthesis with MUX-Based and Cascade Realizations. In Proceedings of the
International Workshop on Logic Synthesis, Berkeley, California, July 31 - August 2, 2009 pp. 310 –316.

13. Gazi, O.; Arli, A.C. State Machines Using VHDL: FPGA Implementation of Serial Communication and Display Protocols; Springer:
Berlin/Heidelberg, Germany, 2021; p. 326. https://doi.org/10.1007/978-3-030-61698-4.

14. Kubica, M.; Kania, D.; Kulisz, J. A Technology Mapping of FSMs Based on a Graph of Excitations and Outputs. IEEE Access 2019,
7, 16123–16131. https://doi.org/10.1109/ACCESS.2019.2895206.

15. Zgheib, G.; Ouaiss, I. Enhanced Technology Mapping for FPGAs with Exploration of Cell Configurations. J. Circuits Syst. Comput.
2015, 24, 1550039. https://doi.org/10.1142/S0218126615500395.

16. Barkalov, A.; Titarenko, L.; Krzywicki, K. Using a Double-Core Structure to Reduce the LUT Count in FPGA-Based Mealy FSMs.
Electronics 2022, 11, 3089. https://doi.org/10.3390/electronics11193089.

17. Barkalov, A.; Titarenko, L.; Krzywicki, K. Reducing LUT Count for FPGA-Based Mealy FSMs. Appl. Sci. 2020, 10, 5115.
https://doi.org/10.3390/app10155115.

18. Barkalov, A.; Titarenko, L.; Mielcarek, K. Hardware reduction for LUT-based Mealy FSMs. Int. J. Appl. Math. Comput. Sci. 2018,
28, 595–607. https://doi.org/10.2478/amcs-2018-0046.

19. AMD Xilinx FPGAs. Available online: https://www.xilinx.com/products/silicon-devices/fpga.html (accessed on 31 January
2023).

20. Baranov, S. Logic Synthesis of Control Automata; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; p. 312.
21. Kubica, M.; Kania, D. Technology Mapping of FSM Oriented to LUT-Based FPGA. Appl. Sci. 2020, 10, 3926. https://doi.org/10.33

90/app10113926.
22. Jóźwiak, L.; Ślusarczyk, A.; Chojnacki, A. Fast and compact sequential circuits for the FPGA-based reconfigurable systems. J.

Syst. Archit. 2003, 49, 227–246. https://doi.org/10.1016/S1383-7621(03)00070-5.
23. Islam, M.M.; Hossain, M.S.; Shahjalal, M.; Hasan, M.K.; Jang, Y.M. Area-Time Efficient Hardware Implementation of Modular Mul-

tiplication for Elliptic Curve Cryptography. IEEE Access 2020, 8, 73898–73906. https://doi.org/10.1109/ACCESS.2020.2988379.
24. Mishchenko, A.; Brayton, R.; Jiang, J.H.R.; Jang, S. Scalable Don’t-Care-Based Logic Optimization and Resynthesis. ACM Trans.

Reconfig. Technol. Syst. 2011, 4, 1–23. https://doi.org/10.1145/2068716.2068720.
25. Senhadji-Navarro, R.; Garcia-Vargas, I. Mapping Arbitrary Logic Functions onto Carry Chains in FPGAs. Electronics 2022, 11, 27.

https://doi.org/10.3390/electronics11010027.
26. Kubica, M.; Kania, D. Technology mapping oriented to adaptive logic modules. Bull. Pol. Acad. Sci. Tech. Sci. 2019, 67, 947–956.
27. El-Maleh, A.H. A Probabilistic Tabu Search State Assignment Algorithm for Area and Power Optimization of Sequential Circuits.

Arab. J. Sci. Eng. 2020, 45, 6273–6285.
28. Salauyou, V.; Ostapczuk, M. State Assignment of Finite-State Machines by Using the Values of Output Variables. In Theory and

Applications of Dependable Computer Systems, Proceedings of the Fifteenth International Conference on Dependability of Computer Systems
DepCoS-RELCOMEX, Brunow, Poland, 29 June–3 July 2020; Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J.,
Eds.; Springer: Cham, Switzerland, 2020; Volume 1173, pp. 543–553.

29. Sentowich, E.; Singh, K.; L.Lavango.; Moon, C.; Murgai, R.; Saldanha, A.; Savoj, H.; Stephan, P.R.; Bryton, R.K.; Sangiovanni-
Vincentelli, A.L. SIS: A System for Sequential Circuit Synthesis; Technical Report; University of California, Berkely: Berkely, CA, USA,
1992.

30. Tatalov, E. Synthesis of Compositional Microprogram Control Units for Programmable Devices. Master’s Thesis, Donetsk
National Technical University, Donetsk, Ukraine, 2011.

31. McElvain, K. LGSynth93 Benchmark; Mentor Graphics: Wilsonville, OR, USA, 1993.
32. Skliarova, I.; Sklyarov, V.; Sudnitson, A. Design of FPGA-Based Circuits Using Hierarchical Finite State Machines; TUT Press:

Tallinn, Estonia, 2012.
33. Khatri, S.P.; Gulati, K. Advanced Techniques in Logic Synthesis, Optimizations and Applications; Springer: New York, NY, USA, 2011.
34. Das, N.; Panchanathan, A. ReSET: A Reconfigurable State Encoding Technique for FSM to achieve Security and Hardware

optimality. Microprocess. Microsyst. 2020, 77, 103196. https://doi.org/10.1016/j.micpro.2020.103196.
35. Tao, Y.; Zhang, Y.; Qinyu, W.; Jian, C. MPGA: An Evolutionary State Assignment for Dynamic and Leakage Power reduction at

FSM synthesis. IET Comput. Digit. Tech. 2018, 12, 111–120. https://doi.org/10.1049/iet-cdt.2016.0199.
36. El-Maleh, A.H. A probabilistic pairwise swap search state assignment algorithm for sequential circuit optimization. Integration

2017, 56, 32–43. /https://doi.org/10.1016/j.vlsi.2016.08.001.
37. Mishchenko, A.; Chatterjee, S.; Brayton, R.K. Improvements to Technology Mapping for LUT-Based FPGAs. IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 2007, 26, 240–253. https://doi.org/10.1109/TCAD.2006.887925.
38. ABC System. Available online: https://people.eecs.berkeley.edu/~alanmi/abc/ (accessed on 31 January 2023).
39. Vivado Design Suite User Guide: Synthesis. UG901 (v2019.1). Available online: https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf (accessed on 31 January 2023).
40. Xilinx Vitis. Available online: https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html (accessed on 31 January

2023).
41. Quartus Prime. Available online: https://www.intel.pl/content/www/pl/pl/software/programmable/quartus-prime/

overview.html (accessed on 31 January 2023).

https://www.xilinx.com/products/silicon-devices/fpga.html
https://people.eecs.berkeley.edu/~alanmi/abc/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug901-vivado-synthesis.pdf
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.intel.pl/content/www/pl/pl/software/programmable/quartus-prime/ overview.html
https://www.intel.pl/content/www/pl/pl/software/programmable/quartus-prime/ overview.html

Electronics 2023, 12, 1133 31 of 31

42. Gajski, D.; Gerstlauer, A.; Abdi, S.; Schirner, G. Embedded System Design: Modeling, Synthesis and Verification; Springer:
New York, NY, USA, 2009; p. 352. https://doi.org/10.1007/978-1-4419-0504-8.

43. Baranov, S. Finite State Machines and Algorithmic State Machines: Fast and Simple Design of Complex Finite State Machines; Amazon:
Seattle, WA, USA, 2018; p. 185.

44. Achasova, S. Synthesis Algorithms for Automata with PLAs; M: Soviet Radio: Russia, Moscow, 1987. (In Russian)
45. Soloviev, V. Architecture of the FILM of the Firm Xilinx: CPLD and FPGA of the 7th Series; Hot-line Telecom:; Moscow, Russia, 2016;

p. 392. (In Russian)
46. Czerwinski, R.; Kania, D. Finite State Machine Logic Synthesis for Complex Programmable Logic Devices; Lecture Notes in Electrical

Engineering; Springer: Berlin/Heidelberg, Germany, 2013; p. 231.
47. Benini, L.; Bogliolo, A.; Micheli, G. A survey of design techniques for system-level dynamic power management. IEEE Trans Very

Large Scale Integr. (VLSI) Syst. 2000, 8, 299–316. https://doi.org/10.1109/92.845896.
48. De Micheli, G.; Brayton, R.K.; Sangiovanni-Vincentelli, A. Optimal State Assignment for Finite State Machines. IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 2006, 4, 269–285. https://doi.org/10.1109/TCAD.1985.1270123.
49. VC709 Evaluation Board for the Virtex-7 FPGA User Guide; UG887 (v1.6); Xilinx, Inc: San Jose, CA, USA, 2019.
50. Barkalov, A.; Titarenko, L.; Mielcarek, K.; Chmielewski, S. Logic Synthesis for FPGA-Based Control Units—Structural Decom-

position in Logic Design; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2020; Volume 636.
https://doi.org/10.1007/978-3-030-38295-7.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Peculiarities of LUT-Based Mealy FSM Design
	Brief Analysis of Related Works
	Main Idea of Proposed Method
	Example of Synthesis of MPTY Mealy FSM Logic Circuit
	Experimental Results
	Conclusions
	References

