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Abstract: This paper studies the global asymptotic regulation problem for a class of lower-triangular
nonlinear systems with actuator failures and limited delays. New integral controllers consisting of an
integral dynamic are constructed to make all system states bounded and asymptotically convergent
to zero. First, an integral dynamic is constructed and a novel state transformation is introduced,
which ensures that the involved systems with actuator failures are converted into a class of auxiliary
nonlinear systems without actuator failures. Second, by introducing the static high-gain technique,
the problem of designing integral controllers for auxiliary nonlinear systems is converted into that of
designing the gain parameter and determining the limit of the actuator delay. At last, with the help of
the Lyapunov stability theorem, the gain parameter and the limit of the actuator delay are determined,
and the stabilization of the auxiliary nonlinear systems yields the global asymptotic regulation of
the involved systems. A physical system example is given to demonstrate the effectiveness of the
proposed integral controllers.

Keywords: time-delay systems; actuator failures; feedback regulation; integral control; static
high-gain technique

1. Introduction

In decades, asymptotic control problems for nonlinear systems have attracted con-
tinued attention [1,2], and as an important research branch, great achievements have also
been reported for lower-triangular nonlinear systems such as stabilization control [3–5],
regulation control [6,7], tracking control [8–10], and consensus [11,12].

As we all know, the control signals are applied to practical systems through actuators,
and the normal operation of actuators is one of the key factors for guaranteeing system
stability. The results mentioned above considered the control problems with the normal
operation of actuators. However, in practice, actuators may experience gradual or abrupt
failures/faults during system operation, which may lead to a system with bad perfor-
mance or even instability [13,14]. Therefore, appropriate compensation mechanisms for
actuators to ensure their normal operation are of both theoretical and practical importance.
To this end, passive methods [15] and many active methods such as fault diagnosis [16],
pseudo-inverse method [17], and sliding mode control [18] were proposed to compensate
for the actuator failures. Moreover, adaptive failure/fault compensations [19,20] were also
proposed recently for the control of lower-triangular nonlinear systems by the backstep-
ping method.

On the other hand, time delay is another primary source of instability and performance
degradation, and it makes practical systems hard to control [21–23]. To this end, some
important results have been obtained for the control of lower-triangular nonlinear systems
with time delays, see [24] and the references therein. Specifically, the stabilization problems
were considered for lower-triangular nonlinear systems with state delay [11,25,26] and
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output delay [27]. Recently, [28] investigated the global stabilization problem for lower-
triangular nonlinear systems with input delay by the backsteeping method, and it has been
shown that the considered input delay is limited. Moreover, in practice, the actuator may
be affected by delays and failures simultaneously, which makes practical systems more
difficult to control, and as far as we know, there are no results on the control of such systems
with actuator failures and delays.

Partly inspired by [29,30] and in this paper, we will address this challenging prob-
lem for a class of lower-triangular nonlinear systems with actuator failures and delays
simultaneously. First, we will address a unified control strategy for constructing integral
controllers to globally and asymptotically regulate the involved systems for the first time,
which is obviously different [28] from solving the stabilization control without actuator
failures or [29,30] dealing with the regulation control without time delays. Second, a novel
state transformation containing a static high-gain parameter is introduced to convert the
involved systems with actuator failures into a class of auxiliary nonlinear systems without
actuator failures. Under the transformation, the gain parameter is chosen, the limit of the
actuator delay is determined, and an integral controller is constructed with a rigorous sta-
bility analysis to achieve the globally asymptotic regulation of the involved systems, which
is different from fault diagnosis [16], the pseudo-inverse method [17], the sliding-mode
control [18], and the adaptive compensation mechanism [19] for tackling actuator failures.

2. Preliminaries

In this paper, we consider the following time-delay nonlinear system with actuator
failures:{

ẋi(t) = xi+1(t− τi+1) + fi(t, x(t), x(t− d), u(t− τ1)), i = 1, 2, . . . , n− 1,

ẋn(t) = u(t− τ1) + fn(t, x(t), x(t− d), u(t− τ1)),
(1)

where x(t) = (x1(t), . . . , xn(t))T ∈ Rn is the system state and u(t) ∈ R is the system
input. For i = 1, . . . , n, the real constants di ≥ 0 and τi ≥ 0 represent the time delays and
x(t− d) = (x1(t− d1), . . . , xn(t− dn))T denotes the delayed state. The initial state xi(θ) =
χi(θ) ∈ C(−[max{di, τi}, 0],R), and fi(·) is a continuous function with fi(0, 0, 0, 0) = 0.

Assumption 1. For i = 1, . . . , n, there exist known constants ci such that

| fi(·)| ≤
i

∑
j=1

cj(|xj(t)|+ |xj(t− dj)|). (2)

Assumption 2. The actuator of interest is modeled as follows:

u(t) = v(t) + v̄, (3)

where v(t) is the input of actuator to be designed and v̄ is an unknown bias fault.

Remark 1. It can be seen that system (1) satisfying Assumption 1 is dominated by a lower-
triangular model with a known constant growth rate, which was originally studied in [31]. Since
then, system (1) satisfying Assumption 1 has been studied widely [32–34]. Moreover, in practice,
the actuators may encounter failures, and system (1) satisfying Assumption 2 indicates that the
actuator has bias faults. Therefore, it is reasonable to consider the global asymptotic regulation
problem for system (1) satisfying Assumptions 1 and 2.

With the above preliminaries, the problem to be studied is to propose a control strategy
to globally asymptotically regulate system (1) under Assumptions 1 and 2.
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3. Main Results

In this section, we will solve the global asymptotic regulation of system (1) by the
static high-gain technique.

Theorem 1. Under Assumptions 1 and 2, there are positive constants ai, i = 1, . . . , n + 1 and r
such that system (1) can be globally asymptotically regulated via a state feedback integral controller
of the form, v(t) = −rn+1

(
a1x0(t) + a2

x1(t)
r

+ · · ·+ an+1
xn(t)

rn

)
,

ẋ0(t) = x1(t).
(4)

Proof. Partly inspired by our previous works [29], we introduce the new state transforma-
tion as follows: 

ζ1(t) = x0(t)−
v̄

a1r2n+1 ,

ζi(t) =
xi−1(t)

ri−1 , i = 2, . . . , n + 1
(5)

for system (1), where ζ(t) = (ζ1(t), . . . , ζn+1(t))T , and a1 and r ≥ 1 will be determined
later, then system (1) is converted into

ζ̇1(t) = rζ2(t− τ0),

ζ̇i(t) = rζi+1(t− τi) +
fi−1(·)
ri−1 , i = 2, . . . , n,

ζ̇n+1(t) =
v(t− τ1)

rn +
v̄
rn +

fn(·)
rn(t)

,

(6)

where τ0 = 0. It follows from (3) and (5) that the desired controller (4) for system (1) can be
rewritten as follows:

v(t) =− rn+1
(

a1

(
ζ1(t) +

v̄
r2n+1a1

)
+ a2ζ2(t) + · · ·+ an+1ζn+1(t)

)
=− rn+1(a1ζ1(t) + · · ·+ an+1ζn+1(t))−

v̄
rn ,

(7)

and then the dynamics of system (6) under controller (7) can be further rewritten as the
following compact form:

ζ̇(t) = rAζ(t) + Ψ + rΦ, (8)

where A = Ξ− FKa with Ξ being an (n + 1)× (n + 1) matrix of term εij satisfying εij = 1
if i = 1, . . . , n, j = i + 1 and εij = 0 if j 6= i + 1, F = (0 0 · · · 0 1)T , Ka = (a1, . . . , an+1)

with ai > 0 being the coefficients of the Hurwitz polynomial q(s) = sn+1 + an+1sn + · · ·+
a2s+ a1 [35], Ψ = (ψ1, . . . , ψn+1)

T = (0, f1(·)/r, . . . , fn(·)/rn)T and Φ = (φ1, . . . , φn+1)
T =(

ζ2(t− τ0)− ζ2(t), ζ3(t− τ2)− ζ3(t), . . . , ζn+1(t− τn)− ζn+1(t), (v(t− τ1)− v(t))/rn+1)T .
Thus, the problem of designing a state feedback integral controller for system (1) has

been converted into that of designing the gain parameter r and determining the limit of the
actuator delay such that system (8) is globally asymptotically stable.

Choose the following Lyapunov function candidate for system (8),

V1 = ζ(t)T Pζ(t), (9)

where the positive definite matrix P satisfying PA + AT P ≤ −I. Taking the derivative of
V1 along system (8), we have
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V̇1 =rζ(t)T(AT P + PA)ζ(t) + 2ζ(t)T PΨ + 2rζ(t)T PΦ

≤− r
n+1

∑
i=1

ζ2
i (t) + 2ζ(t)T PΨ + 2rζ(t)T PΦ.

(10)

Next, we will give the estimate of the terms 2ζ(t)T PΨ and 2rζ(t)T PΦ, respectively. When
t ≥ τ̄ + d̄, where

τ̄ = max
1≤i≤n

{τi}, d̄ = max
1≤i≤n

{di}, (11)

it follows from (2) and r ≥ 1 that ψ1 = 0, and for i = 2, . . . , n + 1, we have

|ψi| =
| fi−1(·)|

ri−1

≤ 1
ri−1

i−1

∑
j=1

cj(|xj(t)|+ |xj(t− dj)|)

≤ 1
ri−1

i−1

∑
j=1

cj(rj|ζ j+1(t)|+ rj|ζ j+1(t− dj)|)

≤
i

∑
j=2

cj−1(|ζ j(t)|+ |ζ j(t− dj)|),

(12)

which indicates

2ζ(t)T PΨ ≤ ρ1

n+1

∑
i=1

ζ2
i (t) + ρ2

n+1

∑
i=1

ζ2
i (t− di), (13)

where ρi, i = 1, 2 are known positive constants independent of τ̄ and d̄.
Then, for i = 2, . . . , n− 1, we have

|φi| = |ζi+1(t− τi)− ζi+1(t)| =
∣∣∣∣− ∫ t

t−τi

ζ̇i+1(s)ds
∣∣∣∣, (14)

and it follows from (6), (12) and (14) that we have

|φi| ≤r
∫ t

t−2τ̄
|ζi+2(s)|ds +

i+1

∑
j=2

cj−1

∫ t

t−τi

|ζ j(s)|ds

+
i+1

∑
j=2

cj−1

∫ t

t−τi

|ζ j(s− dj)|ds

≤
√

2τ̄r
(∫ t

t−2τ̄
ζ2

i+2(s)ds
) 1

2

+
√

τ̄
i+1

∑
j=2

cj−1

(∫ t

t−τ̄
ζ2

j (s)ds
) 1

2

+
√

τ̄
i+1

∑
j=2

cj−1

(∫ t

t−τ̄
ζ2

j (s− dj)ds
) 1

2

(15)

and
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|φn| ≤
√

2τ̄r
n+1

∑
j=1

aj

(∫ t

t−2τ̄
ζ2

j (s)ds
) 1

2

+
√

τ̄
n+1

∑
j=2

cj−1

(∫ t

t−τ̄
ζ2

j (s)ds
) 1

2

+
√

τ̄
n+1

∑
j=2

cj−1

(∫ t

t−τ̄
ζ2

j (s− dj)ds
) 1

2
.

(16)

Furthermore, it follows from (6), (7), (12) and (15) that we can easily have

|v(t− τ1)− v(t)|
rn+1 =

1
rn+1

∣∣∣∣∫ t

t−τ1

v̇(s)ds
∣∣∣∣, (17)

which indicates

|v(t− τ1)− v(t)|
rn+1

≤
√

2τ̄r
n+1

∑
j=1

(
an+1 +

aj−1

aj

)
aj

(∫ t

t−2τ̄
ζ2

j (s)ds
) 1

2

+
√

τ̄
n+1

∑
j=1

aj

j

∑
h=1

ch−1

(∫ t

t−τ̄
ζ2

h(s)ds
) 1

2

+
√

τ̄
n+1

∑
j=1

aj

j

∑
h=1

ch−1

(∫ t

t−τ̄
ζ2

h(s− dh)ds
) 1

2

(18)

with a0 = 0. Thus, it follows from (15), (16) and (18) that we have

2rζ(t)T PΦ

≤ τ̄r2
n+1

∑
i=1

ζ2
i (t) + ρ3

n+1

∑
i=1

∫ t

t−2τ̄
ζ2

i (s)ds

+ ρ4

n+1

∑
i=1

∫ t

t−τ̄
ζ2

i (s)ds + ρ5

n+1

∑
i=1

∫ t

t−τ̄
ζ2

i (s− di)ds,

(19)

where ρi, i = 3, 4, 5 are known positive constants independent of τ̄ and d̄.
Now, we choose the Lyapunov functional

V = V1 + V2 + V3 + V4 + V5 + V6, (20)

where 

V2 =(ρ2 + τ̄ρ5)
n+1

∑
i=1

∫ t

t−di

ζ2
i (s)ds,

V3 =ρ3

n+1

∑
i=1

∫ t

t−2τ̄

∫ t

s
ζ2

i (µ)dµds,

V4 =ρ4

n+1

∑
i=1

∫ t

t−τ̄

∫ t

s
ζ2

i (µ)dµds,

V5 =ρ5

n+1

∑
i=1

∫ t

t−τ̄

∫ t

s
ζ2

i (µ− di)dµds,

(21)

and then, taking the derivative of V along system (8) and from (10), (13) and (19), we have
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V̇ ≤− r
n+1

∑
i=1

ζ2
i (t) + ρ1

n+1

∑
i=1

ζ2
i (t) + τ̄r2

n+1

∑
i=1

ζ2
i (t)

+ (ρ2 + τ̄ρ5)
n+1

∑
i=1

ζ2
i (t) + 2τ̄ρ3

n+1

∑
i=1

ζ2
i (t)

+ τ̄ρ4

n+1

∑
i=1

ζ2
i (t)

≤− r
n+1

∑
i=1

ζ2
i (t) + (τ̄r2 + τ̄ρ6 + ρ7)

n+1

∑
i=1

ζ2
i (t)

(22)

with ρ6 = ρ3 + ρ4 + ρ5 and ρ7 = ρ1 + ρ2.
Now, choose the gain parameter r and the allowable actuator delay as follows:

r ≥ ρ6 + ρ7 + 1, τ̄ ≤ 1
2r

, (23)

which makes (22) satisfy

V̇ ≤ −
n+1

∑
i=1

ζ2
i (t). (24)

It follows from (24) and the Lyapunov–Krasovskii theorem that system (8) is globally
asymptotically stable, i.e., ζi(t) → 0 as t → +∞ for i = 1, . . . , n + 1. It should be noted
that system (8) is equivalent to system (1) with integral controller (4), and it follows from
the state transformation (5) and (23) that x0(t) → v̄

a1r2n+1 and xi(t) → 0 as t → +∞ for
i = 1, . . . , n, which indicates that system (1) with large delays in the state, a limited delay
in the input, and actuator failure is globally asymptotically regulated via the integral
controller (4) with r determined in (23).

Remark 2. It should be noted that the proposed integral-control method has the limitation for the
considered fault sizes. Firstly, the proposed integral-control method can deal with the actuator
failures satisfying Assumption 2, which indicates that the actuator has bias faults. However, the
proposed integral-control method cannot deal with the partial loss of effectiveness of the actuators.
Secondly, in Assumption 2, the actuator of interest is modeled as follows u(t) = v(t) + v̄ t ∈
[0,+∞), where the unknown bias fault v̄ must be an unknown constant. Moreover, the proposed
integral-control method can also deal with the case that uj(t) = v(t) + v̄j, t ∈ [tj−1, tj], j =
1, 2, . . ., where v̄j is the unknown bias fault and t0 = 0, t1, . . . , tj, . . . are unknown time series. In
this case, we can introduce the following state transformation as follows:

ζ1(t) = x0(t)−
v̄j

a1r2n+1 ,

ζi(t) =
xi−1(t)

ri−1 , i = 2, . . . , n + 1, t ∈ [tj−1, tj], j = 1, 2, . . . ,
(25)

for system (1). Then, it follows from (25) and the proof of Theorem 1 that system (1) can be globally
asymptotically regulated via the state feedback integral controller (4).

Remark 3. As we all know, many practical control systems are designed to be asymptotically
stable. However, due to the influence of external disturbances, actuator failures, time delays, etc.,
the asymptotically stable control is hard to achieve. Therefore, the regulation control, as one of the
basic problems of control systems, can make system states bounded and asymptotically convergent
to zero via feedback controllers, which has attracted the continuous attention of scholars. In this
paper, we aim to design new integral controllers to achieve the global asymptotic regulation problem
for a class of lower-triangular nonlinear systems with actuator failures and limited delays.



Electronics 2023, 12, 1127 7 of 10

4. A Simulation Example

In this section, the state feedback integral controller is applied to a controlled pen-
dulum model [36] when considering delays in the state and input, and actuator failures,
whose model can be described as follows:

mlθ̈(t) + klθ̇(t) + mgsinθ(t− d1) = u(t− τ1), (26)

where θ(t) is the acute angle between the rod and the vertical axis; θ̇(t) is the angular
velocity of the rod; u(t) is the actuator control voltage with a bias fault v̄; d1 and τ1 are the
system time delays; m and l are the mass of the bob and the length of the rod, respectively;
g is the acceleration of gravity; and k is an constant representing the frictional coefficient.

It follows the transformation x1(t) = mlθ(t) and x2(t) = mlθ̇(t) that system (26) can
be converted as follows:

ẋ1(t) = x2(t),

ẋ2(t) = u(t− τ1)−mgsin
(

x1(t− d1)

ml

)
− k

m
x2(t).

(27)

It is obvious that system (27) satisfies Assumption 1. By Theorem 1, there is a state feedback
integral controller v(t) = −r3

(
a1x0(t) + a2

x1(t)
r

+ a3
x2(t)

r2

)
,

ẋ0(t) = x1(t)
(28)

that globally asymptotically regulates system (27) if the actuator delay is limited and has a
bias fault.

In the simulation, we firstly consider the case where the time delays are d1 = 0.5 and
τ1 = 0.1; the bias fault is v̄ = 20; and the parameters are m = 0.25, l = 4, k = 0.25, g = 10.
Therefore, the Hurwitz polynomial coefficients are chosen as a1 = 2, a2 = 5 and a3 = 4 [35],
and the control gain is chosen as r = 2. Figures 1 and 2 show the effectiveness of the integral
controller (28) when the initial state (x0(s), x1(s), x2(s)) = (0,−2, 1) for s ∈ [−0.5, 0]. It can
be clearly observed from Figures 1 and 2 that the states x1(t) and x2(t) are bounded and
asymptotically convergent to zero, the integral state x0(t) is bounded and asymptotically
convergent to v̄

a1r5 , and the state of controller (28) is bounded and asymptotically convergent to

− v̄
r2 . Similar results can also be obtained from Figures 3 and 4, where the parameters d1, τ1, and

v̄ are reselected as d1 = 0.4, τ1 = 0.1, and v̄ = 100 with the same values of other parameters.

0 5 10 15
Time(s)

-3

-2

-1

0

1

2

3

4

5

6

7

Figure 1. Trajectories of the states of system (27).
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Figure 2. Trajectories of the state of controller (28).
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Figure 3. Trajectories of the states of system (27).
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Figure 4. Trajectories of the state of controller (28).

5. Conclusions and Future Works

This paper has constructed integral controllers to globally and asymptotically regulate
a class of time-delay lower-triangular nonlinear systems with actuator failures. First, by
introducing an integral dynamic and a new state transformation, the involved systems
with actuator failures are transformed into a class of auxiliary nonlinear systems without
actuator failures. Second, the static high-gain technique is applied to achieve the global
stabilization of the auxiliary nonlinear systems, which indicates the global regulation of the
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involved systems. Future potential works aim to design output feedback controllers for the
involved systems.
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