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Abstract: Effective resistance to intellectual property theft, reverse engineering, and hardware Tro-

jan insertion in integrated circuit supply chains is increasingly essential, for which many solutions 

have been proposed. Accordingly, strong attacks are also designed in this field. One way to achieve 

the above goal is obfuscation. The hardware obfuscation method hides the primary function of the 

circuit and the normal Netlist from the attacker by adding several key gates in the original Netlist. 

The functionality circuit is correct only if the correct key is applied; otherwise, the circuit is obfus-

cated. In recent years, various obfuscation methods have been proposed. One is logic locking, the 

most prominent hardware protection technique since it can protect against untrusted items. Logic 

locking induces functional and structural changes to a design even before the layout generation. We 

secured the circuit against hardware Trojan insertion with a secure logic locking method based on 

the insertion of key gates in interference mode. We call our proposed method Secure Interference 

Logic Locking, SILL. SILL is based on minimum controllability in paths with maximum fan-out. In 

this method, we have reduced the number of key gates required for circuit obfuscation and created 

the maximum Hamming distance between normal and obscure outputs. In addition, the key gates 

are added to the circuit’s complete interference, and the AES algorithm is used to generate the key.  

Our proposed method, SILL, was simulated in the Vivado simulation environment; the algorithms 

used in this method were prepared in VHDL language and designed to allow parallel execution, 

then applied on the original Netlist of the ISCAS85 benchmark circuits. By analyzing and comparing 

the results of this simulation to recent works, the amount of hardware consumption has decreased 

(about 5% space consumption and about a 0.15-nanosecond time delay). Then, the SAT attack algo-

rithm was tested on ISCAS85 benchmark circuits that were obfuscated with SILL. The execution 

time of the attack in the second attempt was 0.24 nanoseconds longer compared to similar recent 

works, and it timed out in the fourth attempt. The resistance of our proposed method, having less 

hardware overhead and higher speed is more effective against SAT attacks than the existing con-

ventional methods. 
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1. Introduction 

Manufacturers are shifting to cheaper and faster production in response to the rising 

demand for electronics. To speed up design and reduce costs, unreliable, low-cost centers 

are responsible for building these components, leaving ICs vulnerable to enemies. One 

critical challenge in this field  is the insertion of hardware Trojans (HTS) in integrated cir-

cuits.  HTs refer to malicious modifications to circuits to leak secret information or change 

the performance or functionality of the design. These modifications are added maliciously 

to the original design by the attacker for specific purposes. A hardware Trojan consists of 

two parts, including a trigger and payload. It is activated by the trigger output signal 
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propagation toward the payload; the attacker controls this signal. Trojan insertion is per-

formed in several ways, including changing one or more bits of the bitstream configura-

tion for one or more look-up tables (LUTs), changing routing elements and flip flop (FF) 

contents, or inserting tiny pieces into the original design. 

Enemies try to hide Trojans so that traditional manufacturing tests would not be ca-

pable of detecting them. As a result, Trojan testing and detection mechanisms are costly 

and have a low success rate. The timely application of preventive techniques can help 

protect ICs against attacks by hardware Trojans. One way to prevent hardware Trojan 

insertion is hardware obfuscation. The circuit’s functionality becomes obscure for the at-

tacker using this method, and reverse engineering becomes difficult. One method of hard-

ware obfuscation is the logic locking of ICs. By inserting additional logic into the circuit, 

its functionality is in two states, normal and obfuscated. The correct key is activated in 

normal mode [1,2] if the correct key is available. 

Enemies try to insert HTs into the original circuit design so the circuit can be ex-

ploited away from the designer’s view and operate properly in its natural state. They 

change its functionality when they want to disrupt or abuse the circuit. As a result, they 

frequently use untested signals in normal test patterns. HTs are inserted into trivial or 

unused hardware spaces. In a nutshell, they use small, unused spaces and low testability 

signals. For this reason, conventional test patterns cannot detect hardware Trojans and 

require new and expensive test patterns. 

Timely use of preventive techniques can protect ICs against hardware Trojan attacks 

at a lower cost. One way to prevent hardware Trojan insertion is hardware obfuscation. 

Obfuscation techniques transform one design into another form that is still similar to the 

original executable design, while the new design is more resistant to enemies. Additional 

logic is inserted into the hardware to hide the original design’s structural and operation 

characteristics, preventing hardware Trojan insertion by untrusted factories. Key gates are 

inserted gates that use a key-based design for obfuscation. Obfuscated designs are those 

in which the design is obfuscated, and the user enters incorrect keys, resulting in incorrect 

output. 

In recent years, various methods for hardware obfuscation have been proposed, one 

of them being logic locking. In logic locking, by adding several key gates to the main 

Netlist of the circuit, the function of the circuit is locked to the attacker.  Various logic lock-

ing methods have been presented, and new attacks have been designed. Different logic 

locking techniques are defined as random, fault analysis-based, key interference-based, 

and one-way function-based logic locking [3,4]. 

In the fault-based logic locking method, the key gates are placed in the circuit loca-

tions obtained in the fault analysis. In interference logic locking, key gates are added to 

the circuit in a dependent manner. In one-way function-based logic locking, the key used 

in the key gates is generated using cryptographic functions or algorithm [3–7]. 

Fault-based logic locking is less used because it can be extracted by fault analysis 

tests and has little resistance to attacks. Locking logic randomly, while having low com-

plexity, because it adds key gates regardless of the circuit design, may be placed in the 

wrong places of the circuit. The interference logic locking method is more secure than the 

previous two methods because the keys are interdependent, and the attack successfully 

finds all the keys. Generating keys is one of the security challenges of logic locking meth-

ods. Key generation using cryptographic functions and algorithms can increase the level 

of security and complexity of attacks [3,4]. 

For criteria to calculate security, different logic locking methods are proposed. Crite-

ria such as output corruptibility, clique size, number of distinguishing input patterns (# 

of DIPs), percentage of key bits recovered, and execution time can be expressed to evalu-

ate the security level of logic locking methods. The amount of output corruption is the 

Hamming distance between the correct output and the output obtained when  an incorrect 

key is provided. The number of key gates that interfere with each other is called the clique 

size. Distinctive input patterns are special input patterns that contribute to the success of 
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key-pruning attacks such as SAT. The execution time of an attack can also be used to 

demonstrate the resilience of the logic locking technique against attack. Sometimes, cer-

tain attacks may achieve correct output by only finding a subset of key bits.  The success 

rate of these attacks is determined by the percentage of key bits that are correctly recov-

ered [7]. 

Today, the security of integrated circuits seems necessary to prevent the insertion of 

hardware Trojans. Papers [8–11] have presented methods to prevent the insertion of hard-

ware Trojans. They are examined in detail in Section 3. 

In references [8–11] hardware redundancy and delay are greater than usual. In this 

paper, our effort is to provide a method that can reduce the delay and hardware overhead 

while maintaining the positive features of the previous methods. 

The critical challenge of digital technologies is outsourcing production and manufac-

turing to foreign centers due to the need for quick and low-cost construction. Therefore, 

the security of the hardware is jeopardized. On the other hand, the integrated circuits have 

become small and fast; consuming space and high delay are not acceptable to secure them. 
Researchers should propose security solutions for hardware by reducing the overhead of 

consumed space and delay. 

This research is one with practical goals, facilitating the development of practical 

knowledge on the hardware security of integrated circuits to prevent the insertion of hard-

ware Trojans. This research is quantitative research in which the simulation tool is used. 

We used the descriptive method to validate simulation software on the Netlist of standard 

benchmark circuits. The things that make this research different from previous research 

in providing hardware security in the design stage for integrated circuit factories are as 

follows: 

 We considered the need for more hardware space for new integrated circuits to add 

the number of key gates. 

 We paid attention to the speed of today’s integrated circuits and considered the 

amount of imposed delay. 

 We reviewed new attacks and considered resistance against them. 

The remainder of the paper is structured as follows. Section 2 reviews relevant work 

in recent years. In Section 3, the primary purpose of the paper is stated, and the steps of 

the Secure Interference Logic Locking (SILL) method are described. Section 4 elaborates 

on the steps of implementing the proposed method. Section 5 compares our proposed 

method with similar methods presented in [10,11]. Finally, Section 6 concludes the paper. 

2. Background 

HTs are malicious circuits intentionally inserted into the system to change the per-

formance and functionality of the design. Sometimes, these changes are applied to the 

circuit to disclose essential and confidential information (sometimes, this malicious circuit 

is designed for information leakage without modifying the system specification). They are 

sometimes used to change the functionality of the original design. They are also some-

times utilized to gain control of the system, and the attacker’s purpose is sometimes to fail 

the circuit. Recently, various solutions have been proposed to detect and prevent hard-

ware Trojan insertion [10–12] 

It is challenging to test and detect malware due to its specific nature (malicious and 

intentional changes). On the other hand, the attacker must have enough information about 

the original design to make the most of it. Prevention techniques should consider these 

two points. So, the original design must be hidden from the attacker. 

It has a small unused space between normal operating cells. Enemies may use these 

small slots to insert HTs. Therefore, designers often try to fill unused spaces with non-

operating filter cells and drastically increase the circuit’s compression. On the other hand, 

malicious factors can quickly and easily identify the filled circuitry spaces and fill them 
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with a malicious circuit. Therefore, the filled space must be hidden to prevent HTs from 

being inserted with hardware Trojans. 

Another solution is to obfuscate the original design (circuit and design functionality) 

from an attacker’s point of view. Reverse engineering becomes complicated for the at-

tacker as the obfuscation becomes complex. In this technique, the design is obscure; there-

fore, the attacker cannot analyze the circuit to manipulate the design. By obfuscating the 

ICs, the circuit will function properly if the correct key is inserted. Moreover, eavesdrop-

ping may not be effective because the validity of the outputs depends on the correct key 

insertion, which is hidden from the attacker. Therefore, the correct functionality of the 

design is hidden from the attacker, who thus cannot disturb it. Various obfuscation meth-

ods have been proposed, including logic locking. 

2.1. Hardware Obfuscation Techniques 

Obfuscation is a powerful tool to hide circuit design from enemies. Hardware en-

cryption methods and obfuscation techniques hide communications between chips while 

keeping input/output signals secret. Furthermore, the functionality of the original design 

is hidden from the attacker by using logic locking methods. Obfuscation techniques are 

divided into the following three types [3,13–15]: 

 Combined Obfuscation 

It is a key gate logic-based obfuscation technique developed by the Chakraborty Re-

search Group in 2009, which many researchers later improved. The idea behind this tech-

nique is to apply additional logic to the original design. Additional logic key gates are 

XOR/XNOR and MUX. Operational obfuscation makes reverse engineering extremely 

challenging. Therefore, untrusted factories will need help to fully understand the design 

under construction, and it will be challenging to insert hidden HTs into the obfuscated 

design [1]. 

 Input Signal Obfuscation 

This method prevents enemies from gaining access to the input/output signals and 

altering or controlling them to activate the Trojan. Signals will be hashed, and circuit 

launch will only be possible if the design is obfuscated by implementing the wrong keys. 

They must use a coding method for their input to synchronize the operation of different 

circuit parts. Waxman et al. recommend using a uniform encryption method to make en-

crypted input data for the system as simple as possible [16]. 

Study [2], for example, presents the EOP solution for reducing these threats. EOP 

uses the flow encryption method to encrypt internal chip communications. Encryption 

and decryption are possible thanks to dedicated clock modules in this case. These modules 

ensure that the flow encryption is correctly synchronized while preventing manipulation. 

In addition, EOP employs a printed circuit board (PCB) level obfuscation method to pro-

tect the equipment from reverse engineering and introducing hardware Trojans (Figure 1). 

 



Electronics 2023, 12, 1107 5 of 30 
 

 

 

Figure 1. Data encryption and communication between chips [2]. 

 

Figure 1 depicts blocks of various colors. The blue blocks are encryption-capable cir-

cuit components, while the yellow blocks are obfuscated circuit components that can form 

secret encrypted communications with the blue blocks. The chips must support encryp-

tion (blue block), and the yellow blocks employ all obfuscation techniques to ensure hard-

ware security [2]. Because the circuit parts in the green blocks lack encryption capabilities, 

all communications must be normal. The encrypted communications are indicated by the 

dotted arrows, while the continuous arrows indicate normal communications. The circuit 

section with obfuscation and encrypted communications is, of course, the most secure. 

2.2. Logic Locking Techniques 

Combined logic locking is a method of hardware obfuscation. This method adds a 

group of key gates to the main design. The operation circuit will produce the correct out-

put when the correct key is pressed on the locked inputs. By controlling the key registers, 

the locking mechanism adds XOR and MUX gates to specific circuit paths (Figure 2). 

Study [4] presents an Anti-SAT attack approach. It complicates SAT attacks by increasing 

their key size, making them computationally infeasible. 
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Figure 2. Combined logic locks [4]. The figure depicts a general overview of logic locking tech-

niques, with a series of key gates and locked key inputs used to lock the circuit. The key input con-

nects to a memory on the chip to be IC locked. Hence, the only way to maintain proper performance 

is to configure the correct key in the chip memory. NOT (a,b), XOR (c), and Multiplexer (d,e) gates 

are examples of these gates [3]. 

This thesis must include an anti-manipulation chip protector (the AntiSAT) to pre-

vent internal signal searches in the memory of the key chip. 

Various studies have presented various methods for selecting appropriate key gate-

adding signals. Randomly adding key gates to the circuit (random logic locking), in loca-

tions in the test patterns with high error probability (fault analysis-based logic locking), 

or adding key gates to create interferences in the circuit (key interference-based logic lock-

ing) are some of these methods [3]. 

These methods are thoroughly described and compared in studies [5,17,18]. In addi-

tion, we summarize them in the following section. 

The XOR/XNOR keys are added to random locations to lock a design using the ran-

dom logic locking method. A random logic locking sample with two K1 and K2 key gates 

is shown in Figure 3a. The key gates are distributed evenly throughout using random 

logic locking. The random nature of this method is due to its lack of attention to the main 

circuit design while adding the key gates, making it vulnerable to attacks [3]. 

Logic locking based on fault analysis aims to eliminate chip black boxes. For specific 

patterns, random logic locking may produce correct outputs with incorrect keys, but fault 

analysis-based logic locking guarantees a maximum output corruption rate when incor-

rect keys are used. When using the wrong keys, output corruption is the difference be-

tween correct and incorrect outputs. 
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Figure 3. (a) Random logic locking, (b) fault analysis-based logic locking, (c) interference-based logic 

locking [18]. 

Fault analysis-based logic locking places key gates in high-fault-tolerance locations. 

The effects of incorrect keys will be the same as those of stuck-at faults in the key gate 

outputs. Therefore, fault analysis/simulation software can pinpoint the most efficient lo-

cation in any circuit. The fault analysis-based logic locking method is used to lock in Fig-

ure 3b. Because the key gates are often inserted back-to-back, the logic locking security is 

weakened because multiple correct key values are created [3,5,19]. 

Strong logic locking, also known as key interference-based logic locking, reduces vul-

nerability by maximizing key gate interferences. As the interference between key gates 

grows, the attacker is forced to examine several key combinations [5]. 

For example, consider Figure 3c. The K1 and K2 key gates, inserted using the key 

interference-based logic locking method, are included in this. K1 and K2 create interfer-

ence in the path of their main outputs, as can be seen. As a result, the attacker cannot 

determine the K1 or K2 sensitivity to an initial output. All keys must be available to restore 

normal circuit operation, and more than a single key will be required. 

The logic locking block considers two encryption blocks with different keys for func-

tion-based input. They will need more than one key for each input to obtain to the correct 

circuit output. By accepting more overhead, this method improves security. 

The g1 and g2 functions generate the K1 and K2 keys, respectively, while their AND 

function generates the final key, as shown in Figure 4a. The correct key is generated when 

two right keys enter the AND gate. However, to increase security, this method adds con-

siderable overhead. Two keys require four XOR gates, two g1 and g2 functions, two AND 

gates, and one NAND gate, as shown in Figure 4b. 
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Figure 4. Complementary logic locks [5]. 

Like AES, the one-way function-based logic locking (ORF) method generates its final 

key using fixed keys. A set of key inputs are connected to the ORF outputs in the locked 

circuit, as shown in Figure 5. The tamper-proof memory contains hidden keys for one-

way function inputs. When the logic locking transmits the key inputs into the ORF circuit, 

the attacker’s execution time increases dramatically. AES uses a fixed key and runs as a 

random simulation function. Two circuits (one-way function circuit and locked) must syn-

thesize to prevent attacks. Another feature of this fixed AES key is that input calculations 

based on its outputs are only possible when the key is known. Thus, determining the AES 

inputs and reverse engineering the design outputs becomes impossible [3,5,13]. 

 

Figure 5. One-way function logic locks [5]. 

2.3. Phase of Hardware Obfuscation 

To prevent the insertion of hardware-based Trojans, the hardware is obfuscated. In 

this method, several key gates are added to the Netlist of the normal circuit. If the correct 

key is entered, the circuit functions as usual; otherwise, the circuit is put in obfuscation 

mode. Hardware obfuscation is key-based [5,12,14–16,20]. 

In general, hardware obfuscation is realized in two main stages. In the first stage of 

hardware obfuscation, several items (described in the next paragraph) must be selected, 

which is called selection. In the second step, key gates are added to the circuit according 

to the items selected in the previous step, called insertion. 

In the selection stage, the first task is to select the number of key gates that can be 

added to the circuit. For this reason, the circuit hardware must be checked, and the num-

ber of key gates allowed by adding to it should be considered. The second task is to choose 
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the place to insert the key gates in the Netlist of the circuit. For this reason, the circuit 

hardware must be checked, and the signals and paths that provide the best protection of 

the Netlist circuit against the insertion of Trojans should be identified. In the end, the key 

generation method is selected. Whether the key is generated with random functions or 

using cryptographic algorithms is chosen depending on the cost and the expected level of 

security. 
In the insertion stage, key gates are added in selected locations with one of the meth-

ods (random, fault tolerance, interference, etc.) 5,6,11,19]. 

2.4. Convergence Degree 

The number of other gates with shared inputs and outputs used as another gate’s 

input determines a gate’s convergence degree (gates with the highest effect on the final 

circuit output). 

The proper key gate location selection criteria are gate convergence degrees. It calcu-

lates each gate’s convergence degree from the main and places the first key gate in the 

output of the gate with the highest convergence degree. We must calculate the conver-

gence degree of each gate if we consider the circuit from Figure 6 for the first key gate 

location decision making. The number above each gate indicates this value. Gate G3, for 

example, converges with gates G1 and G4. All other gates have a value of less than 2. 

Thus, gates G1 and G3 are potential candidates for the first key gate. By inserting the first 

key gate G1 or G3 input, the result is a group size of six, the same as when the first key 

gate is inserted in another location. From these two gates, the signal with the lowest test-

ability is chosen. The testability of G1 is low. 

 

Figure 6. Calculate the degree of convergence. 

The first location for inserting the key gate is the gate with the highest convergence 

degree. Based on the convergence degree, K1 is added as the first element in the set after 

selecting the first key gate. The next stage creates a dependency between the next key gate and 

the previous one, making the reverse engineering process more difficult. In Figure 7, both the 

G1 and G3 gates, for example, have a high convergence degree. It creates an interference 

pattern by combining the K2 and K3 key gates. This circuit can correctly calculate the y1 

and y2 outputs when all three keys are available.[13–17] 
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Figure 7. Insert key interference. 

2.5. Key Interference-Based Logic Locking 

Strong logic locking, also known as key interference-based logic locking, reduces vul-

nerability by maximizing key gate interferences. As the interference between key gates 

grows, the attacker is forced to examine several key combinations. 

The reference papers used for comparison with the proposed method in Section 5 are 

presented in this section, along with their benefits and drawbacks. 

Paper [8] evaluates multiple logic locking obfuscation methods to present a new 

method. The Random Logic Locking (RLL), Logic Cone Size-Based (LCSB), and Secure 

Logic Locking (SLL) methods are investigated in this study. The LCSB method calculates 

each gate’s fan-in/fan-out value as their cone size using Equation (1). For obfuscation, it 

chooses the gates with the largest cone sizes. 

p� = 0.5 × (
|FI�|

max(|FI�|)
+

|FO�|

max (|FO�|)
) (1)

Equation (1) calculates cone sizes [9]. 

The SLL method weights each group of keys after dividing them into groups. It gives 

the convergence keys a weight of 10, the dominant keys a weight of 5, and the isolated 

keys a weight of 0 (the key types are described). For all three methods,key gate insertion 

algorithmis used to present different key insertion methods (MUX, XOR) (random, SLL, 

LCSB). In this study, the key gates are not interdependent. SAT attacks will make it easy 

for the attacker to find the keys. 

Study [9] uses signal testability and fan-in/fan-out values to find the obfuscation can-

didate gates. It uses the AES-128 encryption algorithm to encrypt these gates after being 

selected. This study compares the AES encryption method to the MUX and XOR key gate 

insertion methods. The results show that AES has a higher level of security. This method 

has a high overhead and necessitates encryption chips, so it is not suitable for all inte-

grated circuits. 

The weighting method is used in the study [11]. The key inputs are not directly 

routed to the key gates in this method; instead, they are combined first in controller gates 

(i.e., each key input directly interferences with at least another key input). In Figure 6, for 

example, the attacker must control K2 to propagate K1 using CG1 or vice versa, whereas 

the same is true for propagating K1 or K3 using CG2 (they must control K3 and K1, re-

spectively). They must control all gate input keys to propagate each key bit using each 

controller gate. The number of controller gates used for key propagation determines the 

circuit’s security and complexity. 
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As shown in Figure 8, the method used in this paper is resistant to SAT attacks, but 

it has a space overhead due to the use of controller gates alongside key gates with signif-

icant delay. 

 

Figure 8. Key gate actuation with weighted logic locking [11] 

The main challenge of integrated circuits arises from the outsourcing of their manu-

facturing to unreliable factories. Meanwhile, intellectual property theft of the IP core, re-

verse engineering, and insertion of hardware Trojans all threaten the security of integrated 

circuits. In recent years, researchers have paid particular attention to the hardware secu-

rity of integrated circuits in the design phase. On the other hand, according to technolog-

ical development, circuits have become small and fast. Therefore, there is not enough 

space and time to keep them safe. This article focuses on reducing consumed space over-

head and delay while providing a secure method for designing integrated circuits. 

3. Prior Work and Motivation 

In recent years, hardware Trojan countermeasures for integrated circuits have been 

proposed. The most critical challenge in this regard is that they face failure by SAT attacks. 

This section discusses a detailed review of recent studies on preventing the insertion of 

hardware Trojans in integrated circuits using the logic locking method. 

The previous section demonstrates how logic locking is a trust-based integrated cir-

cuit design method. Different techniques for obfuscation with the help of logic locking 

techniques are used in studies [8,9,11], all of which create significant overhead to increase 

security. 

The paper [10] proposed a technique called “Prob-Lock” that can be applied to com-

binational and sequential circuits through a critical selection process. They used a filtering 

process to select the best location of key gates based on various constraints. Each step in 

the filtering process generates a subset of nodes for each constraint. The first filter, called 

the most extended path constraint, separates the subset of nodes on the longest paths in 

the circuit network list. The next constraint creates a subset of nodes connected to low-

dependency wires. The output wire of a gate is considered low-dependent if the input 

wires to that gate have little effect on the output value. The critical path constraint is the 

same as the longest path. However, instead of considering logical depth, they look at tim-

ing information. This restriction is necessary because adding gates on the critical path can 

break the circuit’s performance or change the timing characteristics. They removed the 
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nodes on the critical path from the set of nodes that moved to this constraint. The resulting 

subset leads to the nodes on the longest non-critical path. 

The high security of producing keys using the AES encryption algorithm was demon-

strated in [10]. Other research has demonstrated the high security of key generation using 

encryption algorithms similar to the ORF (one-way function-based) method. To obfuscate 

combination circuits, we used key interference-based logic locking and the AES encryp-

tion algorithm to generate keys. 

While having the maximum Hamming distance between the normal and obfuscated 

outputs, our proposed method has lower overhead and delay than other methods [9–11]. 

Hence, it can provide an acceptable level of protection against Trojan insertions for inte-

grated circuits. In the following, we give a detailed description of our method, which we 

call SILL. 

The method described in Section 2.3 has a shortcoming, as the output may not nec-

essarily be affected when a wrong key is applied. This method may be due to the insertion 

of gates at random locations in the design. The proposed method was designed to replace 

the random insertion of key gates with insertion based on a fault impact factor or by ac-

tuating the probability of gates [7,21]. 

Because of the hardware Trojans, this method uses signals from these circuits, known 

as rare signals, which cannot be tested using standard testability methods. These signals 

could be more controllable, and attackers target signals with low controllability. By in-

creasing the security of these signals, we can reduce Trojan attacks and prevent attacker 

access. Because these key gates can be placed in a more dependent (interfering) manner, 

finding all of them could result in proper circuit performance, making the reverse engi-

neering process more difficult. To achieve higher design security, the difference between 

obfuscated circuit output and main circuit output must be as large as possible, forcing the 

attacker to try as many times as possible to find the correct performance (analysis). Find-

ing the path that creates the most obfuscation possible is necessary to increase security 

[22–25]. 

In paper [26], the authors examined state-of-the-art and up-to-date papers related to 

hardware obfuscation by logic locking, in which the logical lock’s application, feasibility, 

and efficiency were considered. They are evaluated and classified according to the follow-

ing criteria: effectiveness, lock effect at different levels of abstraction, threat model defini-

tion, flexibility against physical attacks, manipulation, and their application in machine 

learning. The authors of the paper argued that as the security and power of existing logic 

locking techniques are constantly evolving through sophisticated logical and physical at-

tacks, they are questioned as rapidly as anti-locking approaches evolve. 

1. Primitive: These approaches include EPIC, also known as random logic locking 

(RLL), strong (interference-based) logic locking (SLL), and fault-based logic locking 

(FLL). 

2. Point function: This was the first attempt against the Boolean satisfiability (SAT) at-

tack, which can prune the key space by ruling out incorrect keys in a fast convergence 

approach, including (i) a small set of input patterns and (ii) observable at a tiny set 

of POs7. 

3. Cyclic: Cyclic logic locking will add key gates that control the possibility of add-

ing/removing combinational cycles into the circuit. 

4. LUT/routing: Some logic locking techniques benefit from the full configurability of 

look-up tables (LUTs). 

5. Scan-based locking/blocking: These approaches, which provide access to the internal 

parts of the circuit for test purposes, are almost inevitable in new modern ICs. 

6. Timing-based: These methods lock the behavioral properties of the circuit, such as 

timing. For example, DLL [6] introduces a custom tunable delay and logic gate. 

7. EFPGA-based: Some recent studies have investigated a coarse-grained form of logic 

locking in which redaction by the usage of embedded FPGA (EFPGA) is conducted 

at the SoC level. 
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8. High-level RTL/HLS: These logic locking techniques have been implemented at the 

gate level (or even at the transistor/layout level). They may need to be more capable 

of targeting all semantic information (defined and described at a higher level, includ-

ing high-level locking before synthesis/transition and compound locking (high level 

+ gate level)). 

This paper provides a brief overview of defensive and offensive logistics activities. 

This paper examines the main advantages and disadvantages of all the logic locking tech-

niques presented so far and can help all researchers, IP vendors, and SoC designers inter-

ested in logic locking to move quickly and identify the most advanced technologies. 

The research presented in [27,28] investigated different methods of key gate insertion 

based on its location. The author of this research divided the logic lock methods based on 

key insertion into the following four groups: 

 FIC: Focusing on the fan-in cone of primary outputs 

Due to the nature of SAT attacks that operate on a structure-like binary decision tree, 

deepening the search and branching for the SAT solver increases the complexity signifi-

cantly. 

 HSC: Focusing on higher skew gates in FIC. 

Controllability can be defined as the effort/difficulty metric to control the logic value 

of a wire in a circuit. Therefore, cells with lower controllability are better candidates for 

locking. 
 MFO-HSC: Focusing on gates with minimum fan-out. 

The development of FIC is indeed suitable, but the probability of having a fan-in cone 

without a common gate with other fan-in cones is almost zero. Therefore, paying attention 

to fan-outs with a common gate at the input is necessary. 

 MO-HSC: Focusing on gates with the most negligible impact on Pos. 

Based on observations in MFO-HSC, some gates have more than one output fan, but 

they affect only one output. To have the most significant Hamming distance between the 

normal output and the obfuscated output, the gates that have the most negligible effect 

on the original output are removed from the list of candidates. 

This research that has been conducted in recent years affirms our goal to find the 

most efficient way of logic locking. At the same time, they emphasized that wires with 

low controllability and paths with maximum fan-in are also suitable for locking. 
The primary purpose of the thesis in Ref. [28] is to provide a new method for logic 

locking. Unlike almost all previous logic locking solutions that rely on XOR-based locking, 

they investigated and evaluated non-XOR-based logic locking solutions, including LUT 

and MUX-based solutions. They first introduce LUT-Lock as a logical LUT-based locking 

technique that relies on some heuristic placement strategies. Then, they introduce Full-

Lock as a new MUX-based logic lock solution. They show how MUX-based routing blocks 

can generate SAT-hard samples while the overhead is significantly lower than the LUT-

based locking solution. They comprehensively evaluated LUT-based locking solutions in 

terms of LUT size, the number of LUTs, and replacement strategy. Their experimental 

results demonstrate a high overhead rate in this group of techniques. They also introduced 

Full-Lock as a new routing-based locking solution, which builds SAT-hard instances at 

lower overhead compared to LUT-based locking solutions. Then, they introduced a more 

advanced routing-based locking technique called InterLock, which functions by embed-

ding logic within the routing block. 

The authors of the thesis in Ref. [29] introduced a more advanced routing-based lock-

ing technique called InterLock, which functions by embedding logic within the routing 

block. They used logic locking for security against hardware Trojan insertion in sequential 

and non-sequential circuits. We only refer to its combined part. 

In the paper [29], it is shown that the use of various hardware obfuscation techniques 

is an effective way to prevent SAT attacks. The methods investigated in this work provide 
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different resistance levels to SAT attacks. Random gate placement and ORF (one-way ran-

dom function to be used for key generation) insertion provides the highest security, some-

times increasing the attack time from a fraction of a second to several days. Meanwhile, 

they say that each type of implementation and the number of key gates added have a 

different amount of overhead to a different level of security provided. They compared the 

methods presented in the thesis, such as random, SSL, etc. When using ORF, the overhead 

of the key generation algorithm itself must be considered in addition to the obfuscation 

overhead. The overhead is one gate per key bit for all logic locking methods discussed. 

Their tests showed that the attacks lasted up to five days with the methods they used. 

References [27–29] are all works conducted in the past two years. They have provided 

solutions that are highly resistant to SAT attacks. We have also presented a solution that, 

in addition to using the optimal number of gates for logic locking, is comparable in re-

sistance to SAT attacks. 
Research [7] presents a comprehensive review of recent research in the field of logic 

locking. At the same time, it examines logic lock attacks and finally states the 

strengths/vulnerabilities of existing logic lock techniques. The authors of this research, 

while expressing the security vulnerabilities of the hardware in its supply chain, have 

considered locking the Netlist logic as one of the prevention methods.  They gave the fol-

lowing criteria for the security of the logic locking techniques : 

Output corruptibility : The amount of output corruption is the Hamming distance 

between the correct output and the output obtained when an incorrect key is provided. A 

Hamming distance of 50% is desirable because it maximizes ambiguity for an attacker. 

Clique size: The number of key gates that interfere with each other is called the Clique 

size. By finding a single key bit without knowing the values of other key bits, primary 

outputs cannot be accessed. The circuit clique size is the number of key gates that make 

up the largest cluster in a clique. 

The number of distinguishing input patterns (# of DIPs): Distinctive input patterns 

are special input patterns that contribute to the success of key-pruning attacks such as 

SAT. 

Percentage of key bits recovered: Sometimes, specific attacks may achieve correct 

output by only finding a subset of key bits.  The success rate of these attacks is determined 

by the percentage of key bits that are correctly recovered. 

Execution time: The execution time of an attack can also be used to demonstrate the 

resilience of the logic locking technique against attack. The criteria presented in this paper 

can be used to check SILL’s security level. 
Paper [3] explains that today, machine learning (ML) has achieved significant success 

in various research fields and academic and industrial communities. Hardware security 

researchers also use it against hardware Trojan (HT) attacks. This paper described ad-

vanced applications of ML-based approaches in HT defense studies. They identified rele-

vant achievements, challenges, and potential problems facing current research. The pri-

mary purpose of this paper is to show the latest developments in the application of ML-

based techniques in HT defense sectors to provide a general understanding and a hand-

book for those who want to engage in HT defense research. 

Ref. [30] pointed out the dangers of outsourcing the manufacturing of integrated cir-

cuits, including hardware Trojans. Various approaches have been developed to detect and 

identify them based on conventional methods with machine learning. The testing and di-

agnosis of integrated circuits after the hardware Trojan are complicated. In the paper, they 

present a comprehensive review of research devoted to countermeasures against HTs em-

bedded in ICs. The overall work of the article is divided into four main categories: (a) 

conventional HT detection approaches, (b) machine learning for external HT actions, (c) 

design for security, and (d) runtime monitoring. 

Physical solid unclonable function (PUF) is a promising solution for device authenti-

cation in resource-constrained applications but is vulnerable to machine learning at-

tacks.[22] 
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Ref. [31] proposed a new obfuscation technique for robust PUFs, called random set-

based obfuscation (RSO). Genuinely random numbers were used for poof outputs for se-

curity against hardware Trojans. ML attacks become more difficult as the collection was 

updated. Experimental results show its advantages in solid resistance to ML attacks and 

low hardware overhead. 

In Ref. [32], by using artificial intelligence in the car and recognition with the help of 

dimensional (3D) images, the cognitive abilities of vehicles were improved, allowing them 

to recognize traffic signs, pedestrians, and obstacles to increase the intelligence of this 

transportation system. This idea could be used to detect hardware Trojans in the primary 

network Netlist and other security risks. 

In Ref. [33], machine learning and artificial intelligence are used for general anomaly 

detection methods, with small differences that are hard to discover. In the paper, they 

proposed a memory-enhanced autoencoder approach to detect anomalies in IoT data. 

They used small anomalies that are difficult to detect and are similar to hardware Trojans 

in integrated circuits. 

With the current research, we realized that machine learning is more helpful in de-

tecting hardware Trojans. It is used to prevent the insertion of hardware Trojans, which is 

the subject of this discussion, only when it is based on PUF, such as in article [31]. Of 

course, the purpose of our article is to prevent the insertion of hardware Trojans. 

In this section, we have described different types of logic locking techniques estab-

lished in recent years. By examining the advantages and disadvantages of each of the re-

cent works in this field, it can be understood that all of them have tried to provide a 

method to prevent the insertion of hardware Trojans resistant to new attacks by reducing 

the hardware overhead method. While the secure design of integrated circuits is necessary 

against vulnerabilities such as hardware Trojans, hardware overhead is also reduced.  Re-

cently, integrated circuits have become smaller and faster, so they do not accept extra free 

space and high delay to create security. This paper provides a secure design against hard-

ware Trojans with less hardware overhead than before. 

4. Proposed Method for Secure Combinational Circuit (SILL) 

Intellectual property theft of IP, reverse engineering, and insertion of hardware Tro-

jans in the supply chain of integrated circuits are the challenges of today’s digital world 

for which many solutions have been proposed. Accordingly, strong attacks are also de-

signed in this field. This paper proposes a method called SILL to solve these challenges. 

The following features and how to design and implement SILL are described in detail. At 

the beginning of the design, it is necessary to identify the attackers’ threat model using 

the features of Trojan-based attacks. In this threat model, the attacker has full access to the 

obscure Netlist and has no basic knowledge of the internal functionality of the basic plan. 

More precisely, the attacker needs to learn about the hierarchy of modules, synthesis 

steps, or gates and signals. 

If the design is wholly secured by one of the obfuscation methods, the attacker’s goal 

is to find the main Netlist to insert the Trojans, which is possible only if the attacker can 

see the correct keys. The attacker must remove the design from the obfuscation and obtain 

the gate-level score list using various tools. Therefore, it is necessary to create obfuscation 

so that it is difficult and time-consuming for the attacker to initially access the Netlist and 

detect the circuit’s operation. 

The major challenge of digital technologies is outsourcing production and manufac-

turing to foreign centers due to the need for quick and low-cost construction. Therefore, 

the security of the hardware is jeopardized. On the other hand, the integrated circuits have 

become small and fast; consuming space and high delay are not acceptable to secure them. 
Researchers should propose security solutions for hardware by reducing the overhead of 

consumed space and delay. 

Our proposed method to prevent the insertion of hardware Trojans in the design 

stage of integrated circuits has taken into account the following three factors: 
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1. Reducing the consumption space. We considered the lack of hardware space for new 

integrated circuits to add the number of key gates. 

To reduce the number of key gates added to the circuit, we identified critical signals 

and paths and only added key gates to them. 

2. Delay reduction. We paid attention to the speed of today’s integrated circuits and 

considered the amount of imposed delay. 

To reduce the delay, we designed the logic part added to the circuit to execute it in 

parallel. As a result, increasing the number of key gates is relatively quick. 

3. Proper resistance against SAT attacks. We added key gates in such a way that the 

complexity of SAT attacks was high. 

When the key gates are added to the interference method, the complexity of the SAT 

sentences is equal to the sum of the sentences of the geometric progression, which is more 

than 2n. 

The steps of this method to achieve factors 1–3 above are described below. 

As we have mentioned,  the Trojan inserted signals with low controllability. There-

fore, we chose signals with low controllability for obfuscation. We aimed to have the max-

imum Hamming distance between the obfuscated and original outputs. Consequently, 

the most significant fan-out paths were selected. Finally, a key gate was added to signals 

with low controllability in paths with the highest fan-out. 

For this purpose, Algorithm 1’s controllability of all circuit signals has been calcu-

lated and sorted in descending order. Then, Algorithm 2 was used to find the critical paths 

with the highest fan-out. Finally, in the critical paths, signals with low controllability for 

the locking were selected, and the key gates were added to the Netlist of the circuit, com-

pletely interfering with Algorithm 3. Algorithms 1–3 are described below. It should be 

noted that the keys are generated in a one-way method with the AES algorithm. 

As can be seen in Figure 9, SILL is implemented and implemented in four stages, 

which are key generation, finding signals with minimum controllability, finding paths 

with maximum fan-out, adding key gates in places with low controllability in paths with 

high fan-out in interference, applying these four steps to the main circuit Netlist and cre-

ating an obfuscation Netlist. 

 

Figure 9. Our proposed method. 

This method selects the locations of key gates using two conditions: low controllabil-

ity and high fan-out. For this purpose, using Algorithm 1, the controllability of all signals 

of the main Netlist of the circuit is calculated and arranged in descending order. Then, 

using Algorithm 2, the number of fan-outs for all circuit paths from the primary inputs to 

the main outputs is calculated and arranged in descending order. Finally, signals with low 
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controllability in paths with high fan-out are blocked by interference with the help of Al-

gorithm 3. In the following, Algorithms 1–3 and the effect of each on the results of circuit 

obfuscation are described in detail. 

Algorithm 1: comput combinational controllability 

Input:] 

Output:cclist{ 

For all PIs,set cc0(i) = cc1(i) = 1; 

For all other nods n, set cc0(n) = cc1(n) = ∞; 

Working from PIs to POs, use cc0,cc1 equation to map logic gate  iterate until the con-

trollability numbers stabilize in the feedback loop; 

For any fanout stems z with branches z1,z2,…,zn,cc0(z1) = cc0(z2) = … = cc0(z), cc1(z1) = 

cc1(z2) = … = cc1(z); 

For i = 1 to neltistsize, do 

  {swapped = false; 

If cc0(i) > cc0(i + 1) then  

swapped (cc(i), cc(i + 1)); 

        swapped = true;} } 

The results of Algorithm 1 make it impossible to access the signals targeted by the 

hardware Trojan attacker. In addition to making it more difficult for hardware Trojan at-

tackers, this reduces the number of key gates required for locking logic, resulting in hard-

ware overhead. 

Algorithm 2: calculated gate input size 

Input: ] 

Output: SNlist 

Function: calculate the fan-out size  

Assign size number(SN) 0 to all PI; 

for any  input that is shared with multiple Gates, for every Gate  SN = SN + 1;  

a label that Gate with the maximum IS of its inputs; 

For i = 1 to the number of gates, do 

  {swapped = false; 

If SN(i) > SN(i + 1) then  

swapped (SN(i),SN(i + 1)); 

         swapped = true;} } 

In the outputs of Algorithm 2, the most effective signal in the output was identified. 

At this stage, we aim to maximize the Hamming distance between the main output and 

the obscure output. For this purpose, using Algorithm 2, we identify the paths that most 

impact the output. These paths are the most significant branches in the circuit Netlist. 

Algorithm 3: key_Gate insertion 

Input:], CClist, SNlist, keysize 

Output:keygatelocationlist,obfuselist 

{  first key_Gate insert from the first Gate in SNlist; 
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    Add the new key_Gate to keygatelocations; 

    Construct key graph: 

       For i=2 to keysize, do{ 

         Foundnon_mutable = false; 

         For each Gate in ] do{ 

           I ����� ∉ keygatelocation, then 

               Edgetype = {}; 

             For each key_Gatek in the key at the location, do 

                Edgetypek = find Edgetype(Gatej, key_Gatek); 

               } 

           If every Edge ꞓ Edgetypes is non_mutable, then{ 

              Select the first signs from CClist that is inputs of Gatej; 

              Insert a key_Gate at this input of Gate; 

              Add the new key_Gate to keygatelocations; 

             } 

       Foundnon_mutable = true; 

       Break;} 

                                    If  Foundnon_mutable == false then{  

                                         Select a Gatek _ location from SNlist; 

                                         Insert the first signsl from CClist that is input 

Gatek; 

                                         Insert a key_Gate to keygatelocations;} 

                                      Update key graph }} 

By using Algorithms 1–3, the hardware overhead (space consumption, delay) has 

been reduced compared to similar tasks. Therefore, this method can be used to obfuscate 

hardware that did not have enough space for the previous methods, or the delay of that 

method would be a problem for them. Its resistance level against SAT attacks was 

checked. For this purpose, we tested the SAT attack on the obfuscation circuit with the 

help of SILL against the SAT attack algorithm. The attack execution time in the second 

attempt was longer compared to similar tasks, and the attack timed out in the fourth at-

tempt. 
Therefore, this method can be used for hardware obfuscation circuits requiring a 

higher level of security than previous methods. 

5. Implementation of Our Proposed Method (SILL), the Level of Resistance to Attacks 

In addition to explaining how to implement our method, this section tests its re-

sistance level against SAT attacks. 

5.1. Implementation of Our Method (SILL) 

In this section, SILL described in the previous section is explained in detail, as out-

lined in Figure 9. 

As shown in Figure 10, our method is based on three steps. We explain all the steps 

in detail below. It should be noted that the circuits on which we implemented our method 

are from validated and well-known ISCAS85 benchmark circuits, c499 and c432. We used 

the VHDL programming language and then performed the simulation in the Vivado en-

vironment so that both the consumption space and the execution time were clear. The 
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algorithm was executed in parallel, so increasing the number of key gates at runtime had 

little effect. Our prevention method against hardware Trojan insertion in the design phase 

is called Secure Interference Logic Locking (SILL). 

 

Figure 10. Steps of implementing the proposed technique (SILL). 

In the first step, to reduce the number of key gates inserted into the main Netlist of 

the circuit, we found signals from the circuit suitable for its insertion due to the nature of 

the hardware Trojan. These signals had low controllability. With the help of Algorithm 1, 

this allows the controllability of all circuit signals to be calculated and arranged in de-

scending order. 

In the second step, to have the most significant Hamming distance between the main 

output of the circuit and its obscure output, the paths that have the most significant impact 

on the output of the circuit, which are the paths with the largest fan-out, are selected. 

Algorithm 2 calculates the number of branches of circuit paths and sorts them in descend-

ing order. Among them, the one with the maximum branching is chosen for obfuscation. 

These two algorithms reduce the number of key gates inserted into the circuit and 

increase the Hamming distance between the normal and obscure output. 
In the third stage of implementation, to have the necessary resistance against current 

attacks such as SAT attack, using Algorithm 3, key gates are inserted into selected signals 

from the outputs of Algorithms 1 and 2 based on the key interference method. Therefore, 

the attacker needs to find all the keys for the attack to be successful. Because the keys are 

dependent on each other, two by two, the complexity of the SAT function will be geomet-

rically exponential. 

To understand the performance of our proposed method, we implemented the algo-

rithms on circuit c499 from the benchmark ISCAS85 and show the outputs below. 

To better understand the stages of this method, we implemented the algorithms on the 

c499 circuit (with the following specifications). This circuit’s diagram is shown in Figure 10. 
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Figure 11 depicts a circuit with two modules, TopLevel c499 and Correction. The pri-

mary 111 circuit inputs with a 41-bit structure are R, IC, and ID. The S and ID signals are 

the primary 112 internal signals with a 40-bit structure. Finally, the OD signals, which 

have a 32-bit structure, are the primary 113 output. 

 

Figure 11. Circuit diagram c499 [34]. 

We optimally added the number of used key gates to reduce hardware overhead. 

Therefore, the first attempt in the first step is to identify the target signals of the attacker. 

Low observable/controllable points in the main design are one type of potential unsecured 

site for hardware attacks and the insertion of a functional Trojan, as discussed in Section 

3. With Algorithm 1, low controllability signals are found. Because of the large size of the 

c499 and the difficulty of converting the application code into VHDL code, this algorithm 

uses 200 clock pulses to sort the array. It can be accomplished with just one clock pulse, 

but the resulting circuit is so large that it can be implemented only on high-level FPGAs. 

The output of the first algorithm was sorted as follows, taking into account the circuit 

signals and VHDL: ������������ = { � = 25. � = 12. � = 12. � = 12. � = 11. �� = 7. � =

4. �� = 3. �� = 2. �� = 2}��� = {� = 59. � = 49. � = 487. � = 11. ⋯ }. 

Signal controllability of zero and one has been stored in the CC0 and CC1 arrays, 

respectively. In both arrays, this method selects the signal with the highest value. The U 

and E signals are the most appropriate options in this output. As a result, their OR func-

tion produces the most valuable gate. In this stage, the designer can choose unsecured 

points based on the attacker’s goal. 

The first attempt in the first step is to identify the circuit input paths that are the most 

critical and practical. The most effective paths are those with the highest fan-in/fan-out 

values. The fan-in/fan-outs of the circuit, as mentioned in Section 3, have the highest de-

gree of convergence. To reduce the number of key gates and optimize the circuit overhead, 

Algorithm 1 recognizes rare signals in high convergence paths. 

Algorithm 2 calculates the convergence degree of the circuit’s gates and finds the best 

possible path. The use of Algorithm 2 on the c499 circuit and the analysis of the results 

reveal that the NOT gates (the U gate inputs) are the circuit’s most critical path. The S 

signals are best for circuit obfuscation because they have the lowest controllability factor. 

Then, the designer can choose the unsecured points based on the critical paths rele-

vant to their goal. Based on the circuit’s nature, this stage calculates the maximum number 

of possible key gates (number of input pins and others). According to the output from 

Algorithm 2, this stage adds key gates for rare signals in critical paths in an interfering 

manner. This stage can run in parallel with the circuit and is unaffected by the number of 

additional gates, allowing as many gates as possible to be added without incurring over-

head or delay. 

Finally, Algorithm 3 adds the key gates to the circuit in an interfering manner. 
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Algorithm 3 selects high convergence gates (from the SN list) and low controllable 

signals to add the key gates with the highest obfuscation (from the cyclist). 

This stage takes the outputs from the previous two stages and analyzes the number 

of possible circuit keys before adding the key gates in an interfering manner. We added 

32, 64, and 128 key gates to the c499 circuit and calculated its outputs to compare this 

method with other studies [10,26,34–36]. 

The c499 circuit output of Algorithms 1–3, as well as their implementation in the Vi-

vado 2018.2 environment, are examined in this study. It created a test bench for this pur-

pose, saving the outputs in the format below rather than displaying them in ISIM. 
In this section, we simulated the proposed method (SILL) on the ISCAS85 benchmark 

in the Vivado environment. In the next step, we check its resistance against SAT attack. 

5.2. Implementation of SAT Attack on the Obfuscated Circuit of SILL 

In this section, we check the resistance of our proposed method against SAT attacks. 

For this purpose, we rewrote the SAT attack algorithm in Algorithm 4 and applied it 

to our obfuscated circuit. It is necessary to explain the logic of this algorithm. 

The main goal of SAT attacks is to reveal the correct key using a few carefully selected 

inputs and their correct outputs observed from an activated functional chip. These partic-

ular input/output pairs distinguish input/output (I/O) pairs. Each distinguishing I/O pair can 

identify a subset of wrong key combinations, and together, they guarantee that only the cor-

rect key can be consistent with these correct I/O pairs. This implies that a key that matches 

the inputs to the outputs for all the distinguishing I/O pairs must be correct. The crux of 

the SAT attack is to find this set of distinguishing I/O pairs by solving a sequence of SAT 

formulas. 

Definition 1. (Wrong key combination): 

Consider the logic function � = �(�, �) 

The set of key combinations WKi, which results in an incorrect output of the logic circuit (i.e., 

Yi≠fi (Xi, K), ∀K∈WKi), is called the set of wrong key combinations identified by the I/O pair (Xi, 

Yi). In terms of SAT formula, it can be represented as C (Xi, K, Yi) =False, ∀K∈WKi. 

Definition 2. (Distinguishing input/output pair): 

As noted above, SAT attacks shall iteratively solve a set of SAT formulas. Each iteration shall 

find a correct I/O pair to identify a subset of wrong key combinations until none remain. An I/O 

pair at the i-th iteration is distinguishing (��
�,  ��

�). It can identify a “unique” subset of wrong key 

combinations. The previous i-1 cannot identify distinguishing I/O pairs (i.e., WKi⊄(), where WKi 

is the set of wrong key combinations identified by the distinguishing I/O pair at the i-th iteration). 

The crux of the SAT attack algorithm relies on finding the distinguishing I/O pairs 

iteratively to identify unique wrong key combinations (see Definition 2) until no more can 

be found. At this point, all distinguishing I/O pairs identify all wrong key combinations, 

thereby unlocking the circuit. The correct key is that which satisfies the following SAT 

formula G: ��� ��� formula G: G: =⋀���
� C (��

�, �, ��
�) (1) (��

�,  ��
�) is the distinguishing I/O 

pair from the i-th iteration, and λ is the total number of iterations. It finds a key K that 

satisfies the correct functionality for all the identified distinguishing I/O pairs. It must be 

the correct key since no other distinguishing I/O pairs exist (see Definition 2). 

Take the XOR/XNOR-based locked circuit in Figure 3c as an example. At the first 

iteration, h I/O pair (��
�,  ��

�)= (00,10) is a distinguishing I/O pair because it can rule out 

wrong key combinations K= (01), (10), and (11), as these key combinations will result in 

incorrect outputs (y1y2) = (11), (00), and (01), respectively. Since this single I/O observation 

has already ruled out all incorrect key combinations, we have revealed the correct key K 

= (00). 
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A small number of correct I/O pairs (compared to all possible I/O pairs) is usually 

enough to infer the correct key. As a result, SAT attacks are efficient because they require 

only a few iterations to find the distinguishing I/O pairs. 

In this section, the SAT attack algorithm is presented. As noted above, the central 

theme of the SAT attack algorithm is to iteratively find distinguishing I/O pairs until no 

new ones can be found. Because they find distinguishing I/O pairs, the SAT attack algo-

rithm iteratively formulates an SAT formula that SAT solvers can solve. The SAT formula 

Fi at the i-th iteration is as follows: 

Fione (C (X1, K1, Y1) ∧C (X1, K2, Y2) and1≠Y)o ne∧ (⋀���
�����C (��

�, ��, ��
�))) (2)

In Formula (2), C (X, K, Y) is the SA formula (CNF form one for a locked circuit on 

end) and (�{�…���}
� , �{�…���}

� ) , (Xd {1…i−1}, Yd {1…i−1}) represent the distinguishing I/O pairs 

found in previous i − 1 iterations. If satisfiable, an assignment for variables X, K1, K2, Y1, 

and Y2 will be generated. The first line in Formula (2) evaluates the circuit functionality 

for a specific X = ��
� at two different key values, K1 and K2, so the outputs are different 

(see Y1≠Y2). It guarantees that the input X = ��
� can identify two keys (K1 and K2), which 

produce different outputs, meaning that at least one must be wrong. It is not enough to 

call X = ��
� a distinguishing input because the previous iteration may have found another 

input assignment that could have differentiated between K1 and K2. According to Defini-

tion 2, a distinguishing input in the i-th iteration must find “unique” wrong key combina-

tions not identified by the previous i − 1 distinguishing I/O pairs. The SAT clauses check 

this condition in the second line. In the second line, ��
� is the distinguishing input iden-

tified in the previous j-th iteration, and ��
� is the correct output. This correct output is 

known from the activated functional chip obtained from the open market. The second line 

guarantees that the keys K1 and K2, which result in “different” outputs in line 1 of this 

formula, produce the “correct” outputs for all previous distinguishing I/O pairs. Hence, 

in this iteration, we identified at least one incorrect key combination that previous itera-

tions could not. Therefore, according to Definition 2, the input XDi (obtained from the SAT 

solver) and the corresponding “correct” output ��
� = eval (��

�) obtained from the activated 

chip represent the i-th distinguishing I/O pair. 

The key gates in our method have been added to the circuit in an interfering manner. 

Therefore, an attacker must know the first key to find the second key and the first and 

second keys to find the third key. Therefore, in the last round, all the previous keys must 

be known, which is more complicated than the 2n. 

Algorithm 4: SAT Attack Algorithm 

Input C, eval obfuscated; 

i = 1; 

Gi = true; 

Fi = c (x, k1, y1) ∧c (x, k2, y2) ∧(y1≠y2); 

While SAT[Fi] do 

XDi = SAT-assignment [Fi]; 

YDi = eval (XDi); 

Gi+1 = Gi∧c(XDi, ki, YDi); 

Fi+1 = Fi∧(⋀���
�����

C(��
�, ��, ��

�)); 

I = I + 1; 

End while 

Kc = SAT-assignmentk(Gi); 

The SAT attack algorithm is shown in Algorithm 4. First, this algorithm solves line 

one of Formula (2), and as iterations progress, it adds the clauses in line two of Formula 

(2). It stops when the resulting SAT formula is unsatisfiable, indicating that no further 
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distinguishing I/O pairs exist. The correct key is obtained by finding a key value that sat-

isfies the correct I/O behavior of all the distinguishing I/O pairs. This algorithm is guaran-

teed to find the correct key. 

In addition to reducing the hardware space, our proposed method also reduced the 

delay. At the same time, it created a maximum Hamming distance for the outputs and it 

had a high resistance to SAT attacks. 

Our proposed method has indeed reduced hardware overhead compared to similar 

methods. However, it still creates hardware overhead and could be more efficient for 

hardware with limited free space or real-time applications. At the same time, this method 

is at the gate level, suitable for SOC and ASIC, and cannot be used in FPGA circuits. 

6. Analysis of Results 

This section has two parts: the amount of overhead (space consumption and delay) 

and the resistance level against SAT attacks. 

In the first part, we implemented Algorithms 1–3 with VHDL language in the Vivado 

simulation environment on the ISCAS85 benchmark circuit netlist and obtained the ob-

fuscation Netlist for them. According to Tables 1–3, we made some adjustments to derive 

the space consumption and delay in detail, analyzed the results, and compared them with 

similar works. In the second part, we tested the obfuscated Netlist of the first part with 

Algorithm 4, which simulates the SAT attack, and we calculated the execution time of SAT 

attack and compared it with similar cases. 

Table 1. Device utilization summary (estimated values). 

Logic Utilization Used Runtime 

Number of slice registers 4510 

164.012000Us 

Number of slice LUTs 18,047 

Number of fully used LUT-FF pairs 4021 

Number of bonded IOBs 15,694 

Number of BUFG/BUFGCTRLs 4 

Table 2. Consumption of space overhead in the proposed method (SILL). 

Logic Utilization Used (c499) 
Used (c499 Obfusca-

tion) 

Percentage of Differ-

ence 

Number of slice registers 4510 4621 1.02% 

Number of slice LUTs 18,047 18,352 1.01% 

Number of fully used LUT-FF 

pairs 
4021 4038 1.002% 

Number of bonded IOBs 15,694 15,694 0% 

Number of 

BUFG/BUFGCTRLs 
4 4 0% 

Table 3. Delay in the proposed method (SILL). 

Circuit c499 c499 Obfuscation Delay % 

Runtime (us) 164.012000Us 164.018000uS 0.03 

# of clock pulse 200 202 0.01 

6.1. Analysis of Implementation SILL Results and Comparison of Hardware Overhead and Delay 

We implemented all SILL steps described in Section 5.1 in the VHDL language in the 

Vivado Simulation environment on the ISCAS85 benchmark circuits and compared the 

obtained results with similar works presented in papers [18–20]. The analysis of the results 

is presented below in figures 12–14. 
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Figure 12. Comparing the Hamming distance of the proposed method (SILL) with other methods. 

 

Figure 13. Comparison of overhead consumption of the proposed method (SILL) with three similar 

methods. 

 

Figure 14. Comparison of the proposed method delay (SILL) with two similar methods. 
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The code execution time (in microseconds) and the space are reported in the test 

bench file. 

test complete—Run time:164.012000Us 

 

OD: 00011111001101111000001111111111 

 

E: 00000000000000000000000000000000 

 

The output for calculating the hardware space consumption is shown in the second 

column of Table 1, and the execution time is shown in the third column. The numerical 

differences between the normal and obfuscated values indicate the method’s overhead 

value. 

By randomly numbering the k0–k47 keys and comparing their outputs, the Ham-

ming distance between the obfuscated and main outputs was calculated. The outcomes 

are displayed below. 

test complete—Run time:164.012000uS 

 

OD:00011111001101111000001111111111, K = 

1111111111111111111111111111111111111111111111 

 

OD:11100000110010000111110000000000, k = 

00000000000000000000000000000000000000000000000 

 

 

As the results demonstrate, the highest Hamming distance of 50% occurs when all 

keys are incorrect. 

The proposed method was compared with other methods [9–11]. The comparison 

criteria were space consumption overhead, obfuscation value (Hamming distance), and 

delay in obfuscated output. 

Random and fault analysis methods were compared in a previous study [9]. These 

two methods have also been compared to our proposed method. AES-128-bit encryption 

blocks were used in [10], while [11] ensured key gate interference with a series of gates. 

By adding more than 32 keys to the c499 circuit, these studies presented two obfus-

cation methods (random and fault analysis). Since only 32 key gates are added, the pro-

posed method can achieve a Hamming distance of 20% and a Hamming distance of 50% 

by adding 50. These data are depicted in the graph below. 

Instead of using a single key input to control each key gate, the proposed technique 

uses multiple key inputs (as shown in [9,10]). This method reduces the possibility of key 

discovery and increases the system’s security against sensitivity attacks by weighing key 

gates. 

In SILL, with the help of Algorithm 2, we found the paths with the most significant 

impact on the output. We obscured signals with the least controllability in those routes. 

Therefore, we created the maximum Hamming distance between the normal output and 

the obfuscated output. The chart below shows the results of SILL implementation and its 

comparison with similar methods. 

Figure12: The possibility of creating a 50% Hamming distance between the obfus-

cated and normal outputs by adding key gates. It occurs because the most critical (effec-

tive) path is selected for key gate insertion. SILL adds key gates for rare signals in critical 

paths, creating the highest possible Hemming distance, as figure 12 shows. 

The output implementation is set up so the results can be reported, as shown in Table 1. 

The following space consumption overhead results were obtained by comparing the nor-

mal and obfuscated circuit outputs. 
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The implementation outputs are stored in the second column of Table 1 for hardware 

space consumption calculations, as shown in Table 2. The obfuscated values are in the 

third column, while the normal c499 space consumption overhead is in the second col-

umn. The overhead percentage is shown in the fourth column. The overhead percentage 

of this SILL algorithm is 1%. 

The following results show how the proposed method compares to study designs 

[8,11]. 

The random method [8] has a higher space consumption overhead than the other 

methods, as shown in Figure13. The proposed method (SILL) has a higher overhead than 

the weighting and non-weighing methods in [11], which confirms our descriptions in Sec-

tion 3. Multiple factors are used in the SILL method to optimize logic locking. The first 

step selects low controllability signals. The next step is to focus on paths with the highest 

degree of convergence. The final step is to use circuit placement to control the key inter-

ferences, eliminating the need for extra gates. The overhead of the proposed SILL method 

is significantly lower. However, Ref. [11] uses controller gates to control the key interfer-

ences, significantly increasing the overhead. Our method performs parallel logic locking, 

and the number of additional key gates does not cause delays. Our method achieves the 

maximum Hamming distance. 

Using SILL, with Algorithms 1 and 2, we obfuscated the signals with the least con-

trollability in the paths with the greatest impact on the output. Therefore, we were able to 

reduce the number of key gates that needed to be added to the circuit. At the same time, 

because these gates were added in the target locations of the hardware Trojan attackers, 

we have provided proper security. The chart below shows the results of SILL implemen-

tation and its comparison with similar methods. 

As can be seen in figure 13, our proposed method has created a hardware overhead 

that is less than 5% of other similar methods. 

The normal c499 execution times are shown in the second column of Table 3. The 

obfuscated values are shown in the third column. These figures were derived from the 

information in the last column of Table 1. The percentage delay is shown in the fourth 

column. Because this application’s parallel execution-based coding changes, adding new 

key gates does not increase the delay value; thus, by adding 32 key gates, our proposed 

method can achieve a significantly higher security level than other methods. 

The algorithms used in the SILL method are of the type that provides the possibility 

of parallel execution. Therefore, parallel execution alongside the circuit is a crucial SILL 

feature, as shown in figure 14. The execution time is kept the same by increasing the num-

ber of key gates. Because of the controller gates, Ref. [11] takes a long time to complete. 

The above criteria are space overhead, delay, and the Hamming distance between 

normal and obfuscated outputs. Because we inserted key gates in input signal gates with 

high branches and selected signals with the lowest controllability, our proposed SILL 

method has an optimized number of key gates and relatively low overhead. Because our 

algorithm runs parallel with the logic locking execution and uses the gates to insert new 

key gates, no extra controller gates are required to control key gate interference. It signif-

icantly reduces our delay compared to other methods. Finally, we used controllable NOT 

gates created by XOR gates. Our proposed SILL method effectively inserts key gates in 

critical paths, resulting in the greatest possible Hamming distance. Our method is highly 

resistant to common hardware Trojan insertion methods such as SAT, and maximizes the 

Hamming distance and reduces overhead and delay. 

6.2. Analysis and Comparison of the Results of the SAT Attack on SILL 

We simulated SILL in the Vivado environment on the ISCAS85 benchmark circuits 

to produce the obfuscation circuit. At this stage, we tested the obfuscation circuit in Sec-

tion 5.1 with Algorithm 4, the simulated SAT attack, and the results were obtained. We 

compared it with the results of similar works in papers [27,28] in Table 4. 
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Table 4. Average SAT attack break time (seconds) on ISCAS85 and c432 benchmarks. 

Round Fixed Key [27] Fixed Plaintext [27] Full Lock [28] 
SILL (Our Proposed 

Method) 

2 0.2870 0.2190 1.5068 1.7458 

4 1.1700 0.6200 Timeout Timeout 

6 1.6349 0.4774 Timeout Timeout 

8 2.9352 Timeout Timeout Timeout 

10 1.6600 Timeout Timeout Timeout 

To prove our claim that the proposed method is highly resistant to SAT attacks, con-

sidering the nature of our method that all keys are interdependent, we have defined the 

SAT function and presented the SAT algorithm corresponding to Algorithm 4. The at-

tacker must find all the correct keys to access the normal Netlist and its correct operation. 

On the other hand, because interference key gates are inserted in our proposed method, 

all keys depend on each other. To find the second key, an attacker must try to find both 

the first and second keys. In other words, the number of attempts required to find the 

second key is 2� + 2�, and the number of attempts to find the third key is 2� + 2�+2�. If 

the number of inserted keys is N, the following formula is used to determine the required 

amount of efoneort: 

2� + 2� + ⋯ + 2��� + 2�  (3)

As can be observed in Formula (3), the complexity of the SAT attack is a geometric 

series whose summation of sentences for that key is equal to: 

 �� =
�(����)

���
 =  

�(����)

���
= 2��� − 2  (4)

By checking the outputs of Algorithm 4 on our obfuscated method, we saw that For-

mula (4) was confirmed, and the algorithm failed in the third round. The execution time 

of the algorithm on our obfuscated circuit on ISCAS85 benchmarks [33] is collected in the 

table below. 

An important point to consider when checking the resistance level of the circuit 

against SAT attacks is the success time of this kind of attack. The SAT attack execution 

times with two methods from [32] and one method from [33], as well as our proposed 

method (SILL), are shown in Table 4. The time related to the SILL method is the longest; 

it timed out in round 2. 

In other words, our proposed method is much more resistant to SAT attacks than the 

methods used in [32,33], and in round 2, it requires more time for the attack to be success-

ful. In round 2 onwards, the attack is also unsuccessful. In our method, adding the number 

of key gates is optimal and reduces the hardware overhead. Because Algorithms 1–3 can 

parallel execution, increasing the number of bits of the key generates a balanced delay and 

reduces the time delay and overhead. Given these advantages, according to Table 4, our al-

gorithm provides adequate security against SAT attacks. 

The simulation results of Algorithms 1–4 on ISCAS85 benchmark circuits showed 

that compared to previous similar works, SILL had reduced the space consumption over-

head by about 5% and the delay by about 0.15 nanoseconds. Therefore, the hardware that 

did not have enough space and time for the previous methods can be obfuscated with 

SILL. 

7. Conclusions 

The insertion of hardware Trojans is one of the challenges of today’s integrated cir-

cuit manufacturers. On the other hand, due to the nature of hardware Trojans, circuit test-

ing during the construction phase to find hardware Trojans is a difficult, time-consuming, 
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and expensive task. Therefore, the low-cost way to deal with hardware Trojans is to pre-

vent them from being inserted into integrated circuits. The main goal of this paper was to 

propose a secure method to prevent the insertion of hardware Trojans with minimal hard-

ware overhead. 

In this paper, we proposed a new secure method (SIIL), a probability-based logic 

locking technique that uses a filtering process to determine the location of inserted key 

gates. To reduce hardware overhead, we used two constraints (low controllability and 

maximum branch) to narrow the set of nodes in a Netlist to be used for insertion. As a 

result, the number of key gates required to prevent the insertion of hardware Trojans was 

reduced, because only signals that hardware Trojan attackers target were obfuscated. 

We acted based on low controllability and produced the maximum change in the 

primary output. We calculated the controllability of all circuit signals and candidates with 

low controllability for obfuscation. Then, we chose the paths with the most significant 

impacts on the primary output (i.e., the paths with the most branching). To reduce the 

delay, we designed the algorithms used in SILL to execute them in parallel. 

Finally, signals with low controllability were obscured in paths with maximum 

branching. To provide maximum security and resistance against SAT attacks, we added 

key gates to the circuit in an interfering manner. We also used the one-way method to 

generate the keys. The algorithm used for this purpose was the AES algorithm. 

We implemented SIIL in the Vivado environment. For this purpose, we wrote Algo-

rithms 1–3 in VHDL language and implemented them on the ISCAS85 benchmark circuits. 

We checked the results of the implementation of our method on the circuit c4499, c432, 

and c3388 families of ISCAS85 benchmarks. We wrote Algorithm 1 such that it runs in 

parallel and does not significantly increase the execution time by increasing the number 

of key gates. Therefore, we created a lower delay by having the same number of key gates 

as the methods presented in [26]. Since only signals with low controllability are obfuscated 

in paths with the maximum branches, our method yielded lower hardware overhead than 

the methods presented in [9,26]. Since the paths with the most branches have the most 

significant impact on the primary output of the circuit, we then chose these paths for ob-

fuscation. In our proposed method, we measured the distance between the normal output 

and the obfuscated output of the circuit (i.e., the Hamming distance). A comparison of 

this distance with the distances reported in similar works [9,10] showed that our method 

produced the maximum Hamming distance. 

We calculated the resistance of our obfuscated SIIL circuit against SAT attacks. For 

this reason, we implemented the SAT algorithm on the obfuscation circuit using the SIIL 

method and obtained its success time to find the key values. Until the second round, more 

time was spent to successfully find the key values in our method than similar methods in 

other articles [32,33], and the attack failed in round 4.  Since the SIIL method is based on 

obfuscation using a logic lock, it reduces the hardware overhead (delay and space con-

sumption) while exhibiting high resistance against SAT attacks, defeating such attacks in 

round 4. 
The paper [7] proposes criteria to calculate security and different logic locking meth-

ods. Criteria such as output corruptibility, clique size, number of distinguishing input 

patterns (# of DIPs), percentage of key bits recovered, and execution time can be expressed 

to evaluate the security level of logic locking methods. The amount of output corruption 

is the Hamming distance between the correct output and the output obtained when an 

incorrect key is provided. The number of key gates that interfere with each other is called 

the clique size. Distinctive input patterns are special input patterns that contribute to the 

success of key-pruning attacks such as SAT. The execution time of an attack can also be 

used to demonstrate the resilience of the logic locking technique against attack. Some-

times, certain attacks may achieve correct output by only finding a subset of key bits.  The 

success rate of these attacks is determined by the percentage of key bits that are correctly 

recovered. We also evaluated our proposed method with these criteria. As explained in 

the previous paragraph, SILL produced the most significant Hamming distance, covering 
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the maximum output corruptibility. Moreover, the key gates are added to the Netlist of 

the circuit in a complete interference way, which leads to supporting two evaluation cri-

teria, namely the maximum clique size and the highest percentage of key bits recovered. 

Finally, by analyzing the results of the implementation of SILL against the SAT attack, our 

method also meets the criterion of long attack execution time. Only the criterion of the 

number of distinct input patterns has yet to be considered, and it is necessary to pay at-

tention to this limitation in our future works. 
In this paper, we presented a new method using SIIL logic locking interference to 

prevent the insertion of hardware Trojans. Analyzing the results, SILL implementation 

reduced the hardware overhead by about 2% and the delay by about 0.15 (ns) compared 

to similar methods. We tested SILL against SAT attack and measured how long it took the 

attack to find the key value successfully. By analyzing the simulation results of this attack, 

we reached an increase in the execution time of the attack by about 0.23 nanoseconds com-

pared to similar methods in other articles [27,28]. 

Our proposed method (SILL) reduced the hardware overhead while maintaining its 

quality. With the parallel implementation of the algorithms used in SILL, the delay was 

reduced. In addition, the resistance against known attacks such as SAT increased. 
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