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Abstract: A state transition algorithm (STA) is a metaheuristic method for global optimization. How-
ever, due to the insufficient utilization of historical information, it still suffers from slow convergence
speed and low solution accuracy on specific problems in the later stages. This paper proposes a
hybrid STA based on Nelder–Mead (NM) simplex search and quadratic interpolation (QI). In the
exploration stage, NM simplex search utilizes the historical information of STA to generate promising
solutions. In the exploitation stage, QI utilizes the historical information to enhance the local search
capacity. The proposed method uses an eagle strategy to maximize the efficiency and stability. The
proposed method successfully combines the merits of the three distinct approaches: the powerful
exploration capacity of STA, the fast convergence speed of NM simplex search and the strong exploita-
tion capacity of QI. The hybrid STA is evaluated using 15 benchmark functions with dimensions of 20,
30, 50 and 100. Moreover, the results are statistically analyzed using the Wilcoxon signed-rank sum
test. In addition, the applicability of the hybrid STA to solve real-world problems is assessed using
the wireless sensor network localization problem. Compared with six state-of-the-art metaheuristic
methods, the experimental results demonstrate the superiority and effectiveness of the proposed
method.

Keywords: state transition algorithm; Nelder–Mead simplex search; quadratic interpolation;
wireless sensor network localization

1. Introduction

With the increasing complexity of practical problems, global optimization plays a sig-
nificant role in many real-world applications, including engineering design, manufacturing
system, economics, physical science, machine learning and other related fields [1]. Due to
the difficulty and inefficiency in finding the global extremum using traditional optimization
methods, metaheuristics can be a practical and elegant method to provide a satisfactory
solution to practical engineering optimization problems [2].

Metaheuristic methods have been classified into different literary categories, such as
evolutionary-based algorithms, swarm-based algorithms, physics-based algorithms and
hybrid algorithms. Evolutionary-based methods originate from the theory of evolution,
such as genetic algorithms [3] and differential evolution [4]. In recent years, there have
been many effective and competitive evolutionary-based algorithms, including QANA [5]
and DMDE [6]. Swarm-based algorithms emulate the collective decision-making of various
social groups. Particle swarm optimization (PSO) [7–9] is an excellent classical swarm-based
algorithm.

PSO has many attractive advantages, such as its simple implementation and fewer
controlling parameters. Thus, it is widely applied in feature selection, wireless communi-
cations, image processing, electrical power systems and other fields [10]. Physics-based
algorithms are inspired by the laws of natural physics. Simulated annealing [11], gravita-
tional search algorithm (GSA) [12] and artificial electric field optimization [13] are classical
and popular physics-based methods. Furthermore, hybrid algorithms combine several
methods to obtain better results.
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The state transition algorithm (STA) [14,15] is a novel metaheuristic method for global
optimization that was proposed in recent years. Different from many popular population-
based metaheuristic methods, such as PSO and artificial bee colony (ABC) [16,17], STA is
an individual-based metaheuristic method. The basic idea of STA is to regard a solution as
a state, and the update of a solution can be considered as a state transition.

When solving an optimization problem, state transformation operators of STA are
adopted alternately, and then the candidate solution set is generated by a sampling tech-
nique. Finally, the incumbent best solution is updated by a selection criterion. Due to the
local and global search capabilities of the state transformation operators of STA, it has been
successfully applied in many engineering problems, such as PID controller design [18,19],
image segmentation [20], nonlinear system identification [21], feature selection [22,23],
wind power forecasting [24,25] and other industrial applications [26–29].

Recently, a modified STA, named parameter optimized state transition algorithm
(POSTA), was proposed in [30]. Based on a statistical study, POSTA provides a parameter
selection mechanism to select the optimal parameters for the expansion operator, rotation
operator and axesion operator in STA. Using appropriate operator parameters, POSTA has
better solution accuracy and stronger global exploration ability than does STA. However,
the historical information in POSTA is not sufficiently utilized. As a result, POSTA still
suffers from slow convergence speed and low solution accuracy on specific problems in the
later stage when facing complex high-dimensional global optimization problems.

To speed up the convergence during the whole search process in STA, Nelder–Mead
(NM) simplex search [31,32] was introduced. NM simplex search is a classical direct search
method with a fast convergence speed. The NM simplex is a geometric figure consisting
of n + 1 vertices in n-dimensional space, which is able to store the information of n + 1
historical solutions in STA.

The operators in the NM method consist of a sequence of distinct geometric transfor-
mations (reflection, contraction . . . ), which is able to utilize the historical information in
STA. For decades, combining NM simplex search with metaheuristic methods has been
a potential way to speed up the convergence [33,34]. However, few existing studies have
used NM simplex search as a way to utilize the historical information. In this paper, a
hybrid method is proposed by applying NM simplex search to make use of the historical
information in STA.

To further improve the solution accuracy in later stages of the search, a quadratic
interpolation (QI) strategy is also introduced in the hybrid STA. QI is a classical local search
method and is widely used [35–38]. In QI, three known points are used as the search agents
to generate a quadratic curve. The generated curve is seen as an approximate shape of
the target function. To make full use of the historical information in later stages of the
search, three historical solutions of STA are selected as the QI search agents to generate
a new analytical solution with low computing cost. To a certain extent, QI can efficiently
strengthen the exploitation capacity of STA.

In summary, to make full use of the historical information in STA in different stages
of search, a hybrid STA based on NM simplex search and QI is proposed in this study.
Compared to STA, the hybrid STA overcomes the shortcoming of low convergence speed in
the later stage of the search and has a perfect performance in both benchmark functions and
practical problems. The main contributions of this paper can be summarized as follows:

(1) An efficient hybrid STA is proposed that successfully combines the merits of three
distinct methods: the wide exploration capacity of STA, the fast convergence speed of NM
simplex search and the strong exploitation capacity of QI.

(2) NM simplex search is adopted innovatively to utilize historical information for a
faster convergence speed.

(3) The superiority and the effectiveness of the hybrid STA are verified by comparing
six competitive metaheuristic methods with the STA family on 15 benchmarks and the
wireless sensor network localization problem.
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The remainder of the article is organized as follows. In Section 2, the algorithmic
background of STA, NM simplex search and QI is reviewed. In Section 3, the proposed
hybrid STA based on NM simplex search and QI is presented in detail. In Section 4, the
proposed method is compared with six competitive metaheuristic methods and the STA
family on 15 benchmark functions to demonstrate its efficiency and stability. In Section 5,
hybrid STA is applied in the wireless sensor network localization problem to illustrate its
ability to solve engineering problems.

2. Background
2.1. Brief Review of STA

STA is a novel metaheuristic method for global optimization. In STA, a solution can
be regarded as a state, and the update of a solution can be seen as a state transition. In
STA, based on state space representation, the general form of generating a solution is
described as:

sk+1 = Aksk + Bkuk (1)

where sk and sk+1 are the current best state and the next state; Ak and Bk are state transition
matrices, which can be to construct operators of the optimization algorithm; and uk is a
function of sk and the historical states.

2.1.1. State Transformation Operators

(1) Rotation transformation

sk+1 = sk + α
1

n‖sk‖2
Rrsk (2)

where α is a positive parameter named the rotation factor; Rr ∈ RD×D stands for a random
matrix, and all its elements are distributed in the range of [−1,1]; and ‖ · ‖2 is the Euclidean-
norm of a vector. The rotation transformation is capable of generating candidate solutions
in a hypersphere with a maximum radius of α and is designed for local searches.

(2) Translation transformation

sk+1 = sk + βRt
sk − sk−1

‖sk − sk−1‖2
(3)

where β is a positive constant named the translation factor; and Rt ∈ R stands for a random
variable, and all its elements belong to the range of [0,1]. The translation transformation
has the function of searching along a line from xk−1 to xk at the starting point xk with the
maximum length of β.

(3) Expansion transformation

sk+1 = sk + γResk (4)

where γ is a positive parameter named the expansion factor; and Re ∈ RD×D is a random
diagonal matrix with its entries obeying the standard normal distribution. The expansion
transformation is able to search for solutions in the entire search space and is designed to
strengthen the capacity of global searches.

(4) Axesion transformation

sk+1 = sk + δRask (5)

where δ is a positive parameter named the axesion factor; and Ra ∈ RD×D is a random
diagonal matrix with its entries obeying the Gaussian distribution and only one random
position with a nonzero value. The axesion transformation is designed to strengthen the
single-dimensional search.
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2.1.2. Parameter Selection Mechanism

According to a statistical study [30], the parameter of STA is a crucial factor for the
performance. To simplify the selection of the parameter, the candidate values for all
transformation factors are taken from the set Ω = {1, 1× 10−1, 1× 10−2, 1× 10−3, 1× 10−4,
1× 10−5, 1× 10−6, 1× 10−7, 1× 10−8}. Then, the value that leads to the optimal objective
function value is chosen as the optimal value for further search. If the optimal parameter is
denoted as ã∗, the following formula represents the parameter selection. In Equation (7),
α, γ, δ, 1

n‖sk‖2
Rrsk, Resk and Rask are parameters and variables in state transformation

operators, and these are explained in detail in Section 2.1.1.

ã∗ = arg min
ãk∈Ω

f
(
sk + ãkd̃k

)
(6)

1
n‖sk‖2

Rrsk

Resk
Rask

⇒ d̃k,
α
γ
δ

⇒ ãk. (7)

2.1.3. Algorithm Procedure

To make full use of the optimal parameter, the selected optimal value is kept for a
period of time that is denoted as Tp. Specifically, the detailed procedures of the STA are
as follows Algorithm 1:

Algorithm 1 Pseudocode of the STA
1: repeat
2: Best← expansion_w(objfun, Best, SE, Ω)
3: Best← rotation_w(objfun, Best, SE, Ω)
4: Best← axesion_w(objfun, Best, SE, Ω)
5: until certain criterion is met

where objfun indicates the objective function, SE indicates the number of candidate solutions
in the candidate solution set and Best indicates the current best solution. rotation_w(·) in
the above pseudocode is given a detailed explanation Algorithm 2:

Algorithm 2 Pseudocode of rotation_w(·)
1: [Best,α]← update_α(objfun, Best, SE, Ω)
2: for each i ∈ [1, Tp] do
3: Best← rotation(objfun, Best, SE, Ω)
4: end for

where rotation(·) represents the invocation of the rotation operator and update_α(·) repre-
sents the selection of optimal value for rotation factor α. The parameter selection for the
expansion factor and axesion factor are similar to that for rotation factor. More details of
STA can be found in [30].

2.2. Nelder–Mead Simplex Search

Nelder–Mead simplex search is a popular direct search method [39] with a fast con-
vergence speed. The idea of NM simplex search focuses on a changeable simplex that
approaches and approximates the optimum. For a D-dimensional function, it first initializes
a simplex with D + 1 vertices and iteratively replace the worst vertex with a better one.

As shown in Figure 1, The new vertices in this process are generated by five geometric
transformations, namely reflection, expansion, outside contraction, inside contraction and
shrinkage. The detailed steps in NM simplex search are as follows:
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Figure 1. The geometric transformations in an NM simplex search.

Step 0: Initialization. Starting from an original point x0 in D-dimensional space, the
first simplex is generated by creating tiny perturbations in each dimension of x0 with a rate
of 0.25%. Specifically, the remaining D vertices are generated as:

xi = x0 + τiei (8)

τi =

{
0.05, if (x0)i 6= 0
0.00025, if (x0)i = 0

(9)
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where i = 1, . . . , D + 1, (x0)i is the component of x0 in the i-th dimension and ei is the unit
vector in the i-th dimension.

Step 1: Sorting. The vertices xi, i = 1, . . . , D + 1 are sorted and relabeled so that the
function values are:

f (x1) ≤ f (x2) ≤ . . . ≤ f (xD+1) (10)

Step 2: Reflection. Compute the reflection vertex xr as:

xr = xc + η(xc − xD+1) (11)

where xc =
(

∑D
i=1 xi

)
/D and η is the reflection coefficient. If f (x1) ≤ f (xr) < f (xD), then

replace xD+1 with xr.
Step 3: Expansion. If f (xr) < f (x1), then compute the expansion vertex xe as:

xe = xc + λ(xr − xc) (12)

where λ is the expansion coefficient. If f (xe) < f (xr), then replace xD+1 with xe, else
with xr.

Step 4: Outside Contraction (OC). If f (xD) ≤ f (xr) < f (xD+1), then compute the
OC vertex xoc as:

xoc = xc + µ(xr − xc) (13)

where µ is the contraction coefficient. If f (xoc) ≤ f (xr), then replace xD+1 with xoc, else go
to step 6.

Step 5: Inside Contraction (IC). If f (xr) ≥ f (xD+1), then compute the IC vertex xic as:

xic = xc − µ(xr − xc) (14)

where µ is the contraction coefficient. If f (xic) < f (xD+1), then replace xD+1 with xic, else
go to step 6.

Step 6: Shrinkage. For 2 ≤ i ≤ D + 1, compute the vertex xi as:

xi = x1 + ν(xi − x1) (15)

where ν is the shrinkage coefficient.
Step 7: If the termination condition is satisfied, then stop, else go to step 1.

2.3. Quadratic Interpolation

QI is an analytical local search method that utilizes a parabola to fit the shape of the
objective function. This method is capable of strengthening the exploitation capacity. In
QI, three known points are used as the QI search agents to generate a quadratic curve, the
generated quadratic curve is used as the approximate shape of the objective function, and
the extreme point of the quadratic function can be used to approximate the optima of the
objective function [40]. Theoretically, when the the QI search agents are close enough to
the global minimum, the shape of the objective function can be well-approximated by the
generated quadratic curve.

xQI
d = 0.5

[
(xbest

d )2 − (xb
d)

2
]

f (xa) +
[
(xa

d)
2 − (xbest

d )2
]

f
(

xb
)
+
[
(xb

d)
2 − (xa

d)
2
]

f
(

xbest
)

(
xbest

d − xb
d
)

f (xa) +
(

xa
d − xbest

d
)

f
(
xb
)
+
(

xb
d − xa

d
)

f
(
xbest

) , d = 1, 2, . . . , D (16)

For a D-dimensional problem, three QI search agents (xa, xb and xbest) are selected to
generate a new solution xQI . Suppose that

xa = (xa
1, xa

2, . . . , xa
D),

xb =
(

xb
1, xb

2, . . . , xb
D

)
,
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xbest =
(

xbest
1 , xbest

2 , . . . , xbest
D

)
are the three distinct search agents; then, the new solution

xQI =
(

xQI
1 , xQI

2 , . . . , xQI
D

)
can be calculated by using Equation (16), where f (xa), f

(
xb
)

and f
(

xbest
)

are the fitness
values of the three search agents, respectively. As a strong local search method, QI is
capable of strengthening the exploitation capacity but could easily lead to a local minimum.
Therefore, QI should only be invoked in a later stage of the search.

3. Proposed Hybrid Method
3.1. NM-STA

In traditional STA, the historical information is not utilized sufficiently. As shown in
Figures 2a and 3a, the historical information is utilized by a translation operator. However,
only the latest two historical solutions are collected, and only a linear search is applied to
utilize the information. This inefficiency leads to the low convergence speed of STA on
specific problems.
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Figure 2. Comparison in utilizing history information.

In past decades, combining NM simplex search with metaheuristic methods has been
a popular way to speed up convergence. The general combination strategies between
NM simplex search and metaheuristic methods can be summarized into two types: the
staged pipelining type combination and the eagle strategy type combination [41]. In the
first type, NM simplex search is applied to the superior individuals in the population [42].
In the second type, NM simplex search is applied in the exploitation stage as a local search
method [33,43]. However, none of the existing combinations have seen NM simplex search
as a way to utilize the information of historical solutions.

In this section, a hybrid STA with NM simplex search (NM-STA) is proposed. In NM-
STA, a historical information mechanism based on NM simplex search is proposed to make
use of the historical information. In the proposed mechanism, the historical information is
collected based on a collection strategy, stored in the NM simplex and then utilized by the
NM geometric transformations. The detailed historical information mechanism in NM-STA
is illustrated as follows.
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Figure 3. Comparison in collecting and utilizing historical information.

3.1.1. The Historical Information Set

In NM-STA, a historical information set called H is used to store the historical solutions
generated by the state transformation operators. H has the capacity to store the coordinates
of D + 1 vertices in D-dimensional space. Therefore, H can be seen as an NM simplex.
For a D-dimensional problem, H is capable of storing the information of D + 1 historical
solutions.

The historical information contained in H is more sufficient than that in the translation
operator. As shown in Figures 2 and 3, H contains information about a set of old solutions
and a set of current solutions, but only an old solution and a current solution are considered
in the translation operator.

3.1.2. Utilization of the Historical Information

In NM-STA, the NM geometric transformations are applied for utilization. As shown
in Figure 1, the operators in the NM method consist of a sequence of distinct geometric
transformations, which are more comprehensive than the linear transformation in the
translation operator. As a result, NM-STA is able to utilize the historical information more
comprehensively as shown in Figures 2 and 3.

The detailed steps of utilizing historical information in NM-STA are illustrated in
Algorithm 3. When Algorithm 3 is invoked, H is input as the initial simplex. After that, the
NM geometric transformations are applied to the initialized simplex. In the inner iterations,
the NM geometric transformations are run D + 1 times.



Electronics 2023, 12, 994 9 of 26

Algorithm 3 Utilize historical information based on NM geometric transformations

Input: Updated historical information set H
Output: New historical information set H, Best

1: initial simplex← H
2: for each i ∈ [1, D + 1] do
3: NM geometric transformations
4: end for
5: H← new simplex
6: Best← best solution in H

Considering that each iteration of NM geometric transformations approximately
produces a new vertex, running D + 1 times approximately produces a new simplex with
D + 1 new vertices. Therefore, a new simplex with D + 1 new vertices is generated, and
they are then stored in H. As shown in Figure 3b, the new H contains D + 1 new solutions,
and the top solution in H is denoted as Best. Best is then sent to the state transformation
operators as the input of the current best solution.

3.1.3. Collection of Historical Information

An appropriate collection strategy of historical information is proposed to provide
more promising input for utilization. Overall, the historical information is collected based
on the collection strategy, stored in H and utilized by the NM geometric transformations.
The utilization of historical information in NM-STA is illustrated in Algorithm 3. If an invo-
cation of utilization is terminated, then the historical information needs to be re-collected
before next utilization. Therefore, between the invocations of utilization, a collection
strategy for historical information is considered.

In the collection strategy, two type of solutions are considered: old solutions and
current solutions. As shown in Figure 3b, old solutions are the solutions generated in the
last invocation of utilization. After the termination of the last utilization, the state transfor-
mation operators begin to generate solutions based on Best. Between the invocations of
utilization, those solutions generated by STA are considered as current solutions.

This collection strategy is seen as an extended version of that in the translation operator.
As shown in Figures 2a and 3a, the translation operator uses an old solution and a current
solution as the historical information. In NM-STA, a set of old solutions and a set of current
solutions are used as the historical information as shown in Figures 2b and 3b.

The collection strategy is implemented by updating H. As shown in Algorithm 4,
a current solution xcurrent is used to update H in an invocation. In the implementation,
Algorithm 4 is invoked iteratively to update H with multiple current solutions. As shown
in Figure 3b, H is updated by multiple current solutions before been utilized. To control
the ratio between old solutions and current solutions in H, a parameter named the update
rate (UR) is proposed:

UR =
ncs

nos + ncs
(17)

where nos and ncs are, namely, the number of old solutions and the number of current
solutions in H. UR is calculated after each update, and only when UR exceeds a certain
threshold value will the utilization be invoked.

Algorithm 4 Collect historical information.

Input: Old historical information set H, current solution xcurrent
Output: Updated historical information set H

1: replace the worst solution in H with xcurrent
2: return updated H
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3.2. Properties of NM-STA

In this section, the fast convergence of NM-STA is briefly illustrated by a comparison
between NM-STA and STA. To illustrate the effect of utilizing historical information, one
classical test function is used, namely Rosenbrock (F7). NM-STA and STA are tested against
the function in 2-D space, and each method is only terminated when a certain criterion is
satisfied. After termination, the corresponding number of function evaluations (FEs) is
recorded. For both STA and NM-STA, SE is set to 50, and Tp is set to 10. In NM-STA, the
threshold value for UR is set to 0.5, and the parameters in the NM simplex search are set as
η, λ, µ, ν = 1, 2, 0.5 and 0.5, which are the same as in the standard implementation of an
NM simplex search [31].

To demonstrate the faster convergence speed of NM-STA, a 2-D Rosenbrock test
function is used. This unimodal function has a global minimum (1,1) that lies in a narrow,
parabolic valley. The valley is easy to reach but further convergence is very difficult [44].
In the test for Rosenbrock function, the methods are terminated if the current solution
xcurrent satisfies:

| f (xcurrent)− f (Best∗)| ≤ ε (18)

where Best∗ indicates the global minimum. If the specified accuracy ε is met, the test is
considered as a ‘success’. In this section, ε is set at 1× 10−8.

The statistical results given in Table 1 reveal that NM-STA is able to reach the same
accuracy with much less FEs. In Figure 4, the solution paths of STA and NM-STA on the
Rosenbrock function are portrayed, where both methods start from the same starting point
(0, 0.75), and only the first 10 solutions are plotted in the figures for the convenience of
observation. It is clear that the solution path of NM-STA is much more efficient.

Table 1. Statistical results for STA and NM-STA with D = 2.

Function
STA NM-STA

Ave FEs Success Rate Ave FEs Success Rate

F7 1.08× 104 30/30 4.54× 103 30/30

0

20

1

40

z

60

1

y

0.8

80

0.5
0.6

x

100

0.4
0.20 0

-0.2

Global minimum

Starting point

(a) Solution path of STA

0

20

1

40

z

60

1

y

0.8

80

0.5
0.6

x

100

0.4
0.20 0

-0.2

Global minimum

Starting point

(b) Solution path of NM-STA

Figure 4. Solution paths of STA and NM-STA on a Rosenbrock function.

By comparing the two paths, it can be seen that both methods quickly reach the valley.
After that, STA searches aimlessly in the valley and moves slowly while NM-STA finds
a promising direction and moves towards the optimum efficiently. This brief experiment
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demonstrates that the utilization of historical information can lead to a more promising
search direction; therefore, NM-STA has a faster convergence speed than basic STA.

3.3. Combination NM-STA with QI

As discussed above, STA and NM simplex search are optimization methods with
distinct characteristics. As a novel metaheuristic method, STA has a strong global explo-
ration capacity; however, its convergence speed and exploitation capacity decrease in the
later stages of searching. As a classical direct search method, NM simplex search has a
fast convergence speed but is not stable in global search. However, when it comes to the
neighbor of the global minimum, both STA and NM are not very powerful. On the contrary,
QI is able to approximate the global minimum by an analytical solution but is only effective
when the search agents are close enough to the global minimum. Thus, QI is used in the
hybrid STA.

To invoke QI in later stage of the search, the average accuracy of the solutions in the
historical information set H is calculated in each iteration as:

AAS =

∣∣∣∣ f (x1)+ f (x2)+. . .+ f (xD+1)

D + 1
− f (Best∗)

∣∣∣∣ (19)

where Best∗ indicates the global best solution.
If AAS meets a certain threshold value, the solutions are considered to be in the

neighborhood of the global optimum. Then, QI will be invoked to improve the solution
accuracy. In the implementation of QI, two QI search agents xa and xb are randomly
chosen from the historical information set H, and the third search agent xbest is the current
best solution.

3.4. The Hybrid STA (NMQI-STA)

To combine the merits of the three methods, NM simplex search and QI are applied to
utilize the historical information of STA. Therefore, an enhanced hybrid STA based on NM
simplex search and QI (NMQI-STA) is proposed. The hybrid STA’s step-wise procedure is
summarized as follows:

Step 1: Produce solutions randomly as original solutions.
Step 2: Use state transformation operators to produce current solutions. Every best solu-

tion found by the operators will be placed into the historical information set H.
Step 3: Calculate the value of UR. If UR meets the threshold value, go to Step 4; otherwise,

go back to Step 2.
Step 4: Utilize the historical information in H based on NM geometric transformations to

update H and the current best solution.
Step 5: Calculate the value of AAS. If AAS meets the threshold value, go to Step 6;

otherwise, go back to Step 2.
Step 6: Utilize QI with the historical information in H.
Step 7: Check whether the termination conditions are met. If not, go back to Step 2;

otherwise, the algorithm is terminated.

As shown in Figure 5, the proposed method uses an eagle strategy [45] to maximize the
efficiency and stability. In the exploration stage, NM simplex search utilizes the historical
information of STA to generate promising solutions. As a result, the convergence speed is
continuously accelerated. In the exploitation stage, QI utilizes the historical information to
enhance the local search capacity. Consequently, the solution accuracy is improved.
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Figure 5. Flowchart of the enhanced hybrid STA.

For comparison, a hybrid STA with QI (QI-STA) was also implemented. The strategy
of QI-STA is essentially the same as NMQI-STA. The only difference is that the NM simplex
search is disabled in QI-STA.

4. Experimental Results and Discussions

We tested the proposed method against a set of benchmark functions. All methods
were implemented in a MATLAB R2018a environment with an Intel Core i7-7700, 3.60 GHz
processor on a 64-bit Windows 10 operating system.
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4.1. Benchmark Functions and Parameter Settings

The details of the benchmark functions are shown in Table 2. Notably, fmin and
Range indicate the global optimal value and the range of the search space. Generally, in
Table 2, there are two types of benchmark functions, called unimodal and multimodal. A
function with a single minimum in the specified range is called unimodal. Unlike unimodal,
multimodal functions have many local minimums that the method may be trapped in.

Table 2. Benchmark function set.

Funtion Name Equation Range fmin Modality

Elliptic F1 = ∑D
i=2
(
106)(i−1)/(D−1) · x2

i [−100, 100] 0 Unimodal

Levy F2 = sin2(πw1) + ∑D−1
i=1 (wi − 1)2(1+ 10 sin2(πwi + 1)) +

(wD − 1)2(1 + sin2(2πwD)), wi = 1 + xi−1
4

[−10, 10] 0 Multimodal

Levy and Mon-
talvo 2

F3 = 0.1
(

∑D−1
i=1 (xi − 1)2(1 + (sin2(3πxi+1)))+

(xD − 1)2(1 + (sin2(2πxD))) + (sin2(3πx1))
) [−5, 5] 0 Multimodal

Pathological F4 = ∑D−1
i=1

(
0.5 +

sin2
√

100x2
i +x2

i+1−0.5

1+0.001(x2
i −2xixi+1+x2

i+1)
2

)
[−100, 100] 0 Multimodal

Penalized 1

F5 = π
D

{
∑D−1

t=1 (yi − 1)2[1 + sin(πyi+1)] + (yD − 1)2+(
10 sin2(πy1)

)}
+ ∑D

i=1 u(xi, 10, 100, 4)

yi = 1 + x1+1
4

u(xi, a, k, m) =


k(xi − a)m, xi > a

0, −a ≤ xi ≤ a

k(−xi − a)m, xi < −a

[−50, 50] 0 Multimodal

Quadconvex F6 = ∑D
i=1(xi − i)2 [−10, 10] 0 Multimodal

Rosenbrock F7 = ∑D−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30, 30] 0 Unimodal

Schwefel 2.4 F8 = ∑D
i=1

[
(xi − 1)2 +

(
x1 − x2

i
)2
]

[0, 10] 0 Multimodal

Rastrigin F9 = ∑D
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12] 0 Multimodal

Levy and Mon-
talvo 1

F10 = π
D

(
10 sin2(πy1) + ∑D−1

i=1 (yi − 1)2[1+

10 sin2(πyi+1)
]
+ (yD − 1)2

)
, yi = 1 + 1

4 (xi + 1)
[−10, 10] 0 Multimodal

Step F11 = ∑D
i=1(|xi + 0.5|)2 [−100, 100] 0 Unimodal

Dixon and Price F12 = (x1 − 1)2 + ∑D
i=2 i(2x2

i − xi−1)
2 [−10, 10] 0 Unimodal

Ackley F13 = −20× e

(
−0.2

√
1
D ∑D

i=1 x2
i

)
− e

(
1

D ∑D
i=1 cos(2πxi)

)
+ 20 + e [−32, 32] 0 Multimodal

Schwefel’s 2.26 F14 = 418.9829D−∑D
i=1 xi sin

√
|xi| [−500, 500] 0 Multimodal

Michalewicz F15 = ∑D
i=1 sin(xi) sin( ix2

i
π )20 [0, π] − Multimodal
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All the parameter settings of other algorithms were the same as in the references. For
all members in the STA family, SE was set to 50, Tp was set to 10, the threshold value for UR
was set to 0.5, and the threshold value for AAS was set to 1× 10−6. To guarantee fairness
and avoid arbitrariness, each test in the following experiments was performed 30 times
independently. In each independent test, a method was terminated if any of the following
criteria were satisfied:

• The global minimum of the objective function is found.
• The maximum number of function evaluations is attained.

4.2. Comparison with Other Metaheuristic Methods

To examine the effectiveness of the hybrid STA, several population-based metaheuristic
methods were used, including ABC [16,17], CLPSO [46,47], GWO [48,49], MVO [50,51],
SSA [52,53] and WOA [54,55]. These meteheuristic methods have been applied in various
fields and have achieved state-of-the-art performance in different problems. For each
benchmark function, the number of decision variables D was set to 20, 30, 50 and 100,
respectively. The computational results are listed in Tables 3–6, and the average convergence
curves of all test functions with D = 20 are given in Figure 6.

Table 3. Statistical results for different metaheuristic methods with D = 20.

Function
ABC CLPSO GWO MVO SSA WOA Hybrid STA

Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

F1 3.62E-08(4.83E-08) 7.55E-08(3.80E-08) 0.00E+00(0.00E+00) 2.50E+06(7.63E+05) 6.34E+06(2.65E+06) 0.00E+00(0.00E+00) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00)
F2 8.95E-10(2.07E-09) 1.45E-10(5.46E-11) 0.72E+00(0.13E+00) 1.86E+00(1.14E+00) 4.98E+00(2.81E+00) 0.04E+00(0.06E+00) 1.50E-321.50E-321.50E-32(5.62E-485.62E-485.62E-48)
F3 2.28E-112.28E-112.28E-11(3.89E-113.89E-113.89E-11) 2.25E-10(2.38E-10) 0.50E+00(0.12E+00) 0.22E+00(0.04E+00) 0.35E+00(0.17E+00) 0.01E+00(0.02E+00) 0.03E+00(0.06E+00)
F4 7.27E+00(0.14E+00) 3.43E+00(0.22E+00) 1.58E-08(4.99E-08) 5.99E+00(0.37E+00) 6.33E+00(0.36E+00) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00) 2.67E-09(2.47E-09)
F5 3.01E-05(8.51E-05) 5.31E-09(2.31E-09) 0.03E+00(0.02E+00) 4.61E+00(1.03E+00) 6.90E+00(2.34E+00) 5.56E-08(2.45E-08) 2.36E-322.36E-322.36E-32(2.81E-482.81E-482.81E-48)
F6 8.97E-09(9.78E-09) 7.00E-08(3.48E-08) 1.15E+02(5.43E+01) 1.50E+03(2.26E+02) 9.30E+02(3.16E+02) 3.66E-04(1.96E-04) 7.19E-157.19E-157.19E-15(2.85E-152.85E-152.85E-15)
F7 2.24E+01(1.10E+01) 2.67E+01(7.71E+00) 1.65E+01(0.85E+00) 1.85E+04(6.22E+03) 9.55E+03(6.75E+03) 1.33E+01(0.23E+00) 6.12E-096.12E-096.12E-09(1.17E-081.17E-081.17E-08)
F8 3.50E-05(1.99E-05) 1.33E-04(6.92E-05) 4.16E+00(0.88E+00) 9.88E+00(0.78E+00) 7.56E+00(2.47E+00) 4.86E+00(6.95E+00) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00)
F9 9.39E+01(8.08E+00) 2.07E+01(3.31E+00) 0.00E+00(0.00E+00) 8.61E+01(1.43E+01) 9.24E+01(1.13E+01) 0.00E+00(0.00E+00) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00)

F10 5.31E-14(1.20E-13) 2.35E-13(1.10E-13) 0.03E+00(0.01E+00) 0.05E+00(0.09E+00) 0.06E+00(0.09E+00) 1.23E-07(7.04E-08) 2.36E-322.36E-322.36E-32(2.81E-482.81E-482.81E-48)
F11 1.12E-09(1.17E-09) 1.72E-08(9.25E-09) 0.32E+00(0.20E+00) 3.79E+02(4.65E+01) 2.47E+02(6.35E+01) 1.32E-07(7.31E-08) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00)
F12 0.67E+00(0.04E-01) 0.70E+00(0.05E+00) 0.67E+00(3.59E-08) 9.81E+01(3.07E+01) 8.38E+01(5.30E+01) 0.63E+000.63E+000.63E+00(0.15E+000.15E+000.15E+00) 0.67E+00(2.91E-14)
F13 1.27E-04(6.38E-05) 4.21E-05(1.01E-05) 4.80E-15(1.09E-15) 6.53E+00(0.37E+00) 5.76E+00(0.66E+00) 2.66E-152.66E-152.66E-15(1.82E-151.82E-151.82E-15) 4.26E-15(7.94E-16)
F14 3.11E-04(2.54E-04) 2.55E-04(9.68E-11) 5.01E+03(3.68E+02) 3.07E+03(3.68E+02) 3.90E+03(6.50E+02) 3.10E+02(7.35E+02) 2.55E-042.55E-042.55E-04(1.09E-121.09E-121.09E-12)
F15 -8.36E+00(0.51E+00) -1.72E+01(0.29E+00) -7.67E+00(0.35E+00) -8.44E+00(0.59E+00) -9.82E+00(0.49E+00) -1.13E+01(1.38E+00) -1.94E+01-1.94E+01-1.94E+01(0.51E+000.51E+000.51E+00)

Table 4. Statistical results for different metaheuristic methods with D = 30.

Function
ABC CLPSO GWO MVO SSA WOA Hybrid STA

Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

F1 1.80E+00(0.52E+00) 0.38E-02(0.16E-02) 0.00E+00(0.00E+00) 1.39E+07(4.01E+06) 2.07E+07(7.68E+06) 0.00E+00(0.00E+00) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00)
F2 1.06E+00(0.33E+00) 2.50E-06(1.03E-06) 1.44E+00(0.21E+00) 1.48E+01(9.91E+00) 1.02E+01(6.50E+00) 0.14E-01(0.33E-01) 1.50E-321.50E-321.50E-32(5.62E-485.62E-485.62E-48)
F3 0.91E-02(0.85E-02) 1.44E-061.44E-061.44E-06(9.30E-079.30E-079.30E-07) 1.21E+00(0.24E+00) 0.54E+00(0.80E-01) 1.20E+00(0.35E+00) 0.22E-01(0.31E-01) 0.70E-01(0.86E-01)
F4 1.20E+01(0.27E+00) 6.21E+00(0.22E+00) 0.40E+00(1.79E+00) 1.06E+01(0.41E+00) 1.07E+01(0.47E+00) 1.03E-04(4.58E-04) 1.21E-091.21E-091.21E-09(2.80E-092.80E-092.80E-09)
F5 1.80E+01(4.00E+00) 6.45E-05(2.17E-05) 0.62E-01(0.12E-01) 8.93E+00(1.50E+00) 1.56E+01(6.42E+00) 2.08E-07(9.36E-08) 1.57E-321.57E-321.57E-32(2.81E-482.81E-482.81E-48)
F6 0.12E-01(0.42E-02) 0.23E-02(5.25E-04) 9.57E+02(3.19E+02) 8.67E+03(1.03E+03) 8.10E+03(1.61E+03) 0.15E-01(0.18E-01) 3.11E-143.11E-143.11E-14(9.69E-159.69E-159.69E-15)
F7 5.22E+03(2.55E+03) 1.08E+02(2.85E+01) 2.64E+01(0.56E+00) 7.86E+04(2.66E+04) 7.03E+04(3.46E+04) 2.35E+01(0.22E+00) 1.94E-081.94E-081.94E-08(3.20E-083.20E-083.20E-08)
F8 3.02E+00(1.43E+00) 0.03E+00(0.71E-02) 9.84E+00(1.75E+00) 1.87E+01(1.56E+00) 3.24E+01(1.40E+01) 4.61E+00(6.38E+00) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00)
F9 2.07E+02(1.33E+01) 4.37E+01(4.71E+00) 0.00E+00(0.00E+00) 1.85E+02(2.01E+01) 1.78E+02(2.25E+01) 0.00E+00(0.00E+00) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00)

F10 5.70E-07(2.26E-07) 1.54E-09(4.09E-10) 0.66E-01(0.17E-01) 0.89E-01(0.14E+00) 0.19E+00(0.15E+00) 4.43E-07(1.87E-07) 1.57E-321.57E-321.57E-32(2.81E-482.81E-482.81E-48)
F11 0.12E-02(2.92E-04) 2.61E-04(9.76E-05) 1.06E+00(0.31E+00) 1.02E+03(8.44E+01) 8.07E+02(1.71E+02) 1.34E-06(6.50E-07) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00)
F12 1.26E+01(2.44E+00) 1.80E+00(0.48E+00) 0.67E+00(5.91E-09) 5.23E+02(1.41E+02) 5.72E+02(3.15E+02) 0.67E+00(2.83E-07) 0.67E+000.67E+000.67E+00(1.31E-141.31E-141.31E-14)
F13 0.21E-01(0.58E-02) 0.47E-02(6.83E-04) 7.46E-15(1.30E-15) 7.80E+00(0.24E+00) 7.69E+00(0.93E+00) 3.73E-153.73E-153.73E-15(2.19E-152.19E-152.19E-15) 4.44E-15(0.00E+00)
F14 4.12E-04(3.92E-04) 3.99E-04(1.05E-05) 8.58E+03(3.26E+02) 6.11E+03(5.44E+02) 6.74E+03(8.14E+02) 2.21E+02(5.58E+02) 3.82E-043.82E-043.82E-04(9.52E-129.52E-129.52E-12)
F15 -1.00E+01(0.72E+00) -2.37E+01(0.51E+00) -9.52E+00(0.60E+00) -9.97E+00(0.59E+00) -1.21E+01(0.68E+00) -1.56E+01(2.10E+00) -2.94E+01-2.94E+01-2.94E+01(0.37E+000.37E+000.37E+00)
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Table 5. Statistical results for different metaheuristic methods with D = 50.

Function
ABC CLPSO GWO MVO SSA WOA Hybrid STA

Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

F1 5.71E+06(9.39E+05) 1.76E+01(4.32E+00) 0.00E+00(0.00E+00) 7.54E+07(1.41E+07) 7.97E+07(2.39E+07) 0.00E+00(0.00E+00) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00)
F2 1.42E+02(2.89E+01) 0.37E-02(6.71E-04) 3.17E+00(0.26E+00) 6.89E+01(3.41E+01) 2.46E+01(9.27E+00) 0.50E-01(0.15E+00) 6.22E-156.22E-156.22E-15(1.31E-141.31E-141.31E-14)
F3 4.33E+00(0.47E+00) 8.41E-048.41E-048.41E-04(2.54E-042.54E-042.54E-04) 2.89E+00(0.27E+00) 1.71E+00(0.33E+00) 5.46E+00(0.84E+00) 0.17E+00(0.19E+00) 0.99E-01(0.14E+00)
F4 2.14E+01(0.22E+00) 1.16E+01(0.36E+00) 0.66E+00(2.95E+00) 1.99E+01(0.37E+00) 1.97E+01(0.57E+00) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00) 8.48E-09(2.37E-08)
F5 1.55E+08(4.51E+07) 0.98E-01(0.39E-01) 0.15E+00(0.22E-01) 5.04E+01(4.71E+01) 3.96E+03(9.62E+03) 1.37E-06(4.38E-07) 8.02E-178.02E-178.02E-17(2.26E-162.26E-162.26E-16)
F6 2.47E+04(3.69E+03) 1.08E+01(2.68E+00) 8.99E+03(1.30E+03) 7.14E+04(5.04E+03) 8.44E+04(1.60E+04) 0.63E+00(0.32E+00) 1.78E-131.78E-131.78E-13(6.78E-146.78E-146.78E-14)
F7 4.86E+07(1.55E+07) 5.28E+02(7.23E+01) 4.66E+01(0.71E+00) 4.17E+05(6.81E+04) 5.13E+05(1.59E+05) 4.39E+01(0.15E+00) 1.92E+011.92E+011.92E+01(5.32E+005.32E+005.32E+00)
F8 1.98E+03(4.72E+00) 1.82E+00(0.27E+00) 2.34E+01(1.47E+00) 4.62E+01(4.52E+00) 2.60E+00(1.35E+02) 9.26E+00(1.29E+01) 1.74E-121.74E-121.74E-12(1.18E-121.18E-121.18E-12)
F9 4.93E+02(1.66E+01) 1.03E+02(1.21E+01) 0.00E+00(0.00E+00) 4.52E+02(3.50E+01) 3.48E+02(2.77E+01) 0.00E+00(0.00E+00) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00)

F10 1.08E+00(0.28E+00) 1.82E-06(3.34E-07) 0.13E+00(0.29E-01) 0.39E+00(0.21E+00) 0.43E+00(0.22E+00) 2.15E-06(8.37E-07) 6.77E-186.77E-186.77E-18(2.36E-172.36E-172.36E-17)
F11 1.04E+03(1.34E+02) 0.47E+00(0.85E-01) 3.31E+00(0.39E+00) 2.83E+03(2.29E+02) 3.09E+03(5.69E+02) 2.45E-05(7.65E-06) 1.04E-191.04E-191.04E-19(4.65E-194.65E-194.65E-19)
F12 3.33E+05(6.48E+04) 1.85E+01(1.72E+00) 0.67E+00(1.31E-08) 4.63E+03(9.51E+02) 6.92E+03(2.94E+03) 0.67E+00(1.57E-07) 0.67E+000.67E+000.67E+00(5.33E-145.33E-145.33E-14)
F13 1.18E+01(1.28E+00) 0.26E+00(0.42E-01) 8.17E-15(7.94E-16) 9.40E+00(0.26E+00) 1.00E+01(0.59E+00) 6.73E-15(2.19E-15) 5.15E-155.15E-155.15E-15(1.46E-151.46E-151.46E-15)
F14 1.18E-02(3.35E-02) 0.97E-02(0.32E-01) 1.60E+03(4.94E+03) 1.32E+03(4.06E+03) 1.35E+03(4.16E+03) 0.15E-01(0.58E-01) 6.36E-056.36E-056.36E-05(1.96E-041.96E-041.96E-04)
F15 -1.26E+01(0.65E+00) -3.54E+01(0.73E+00) -1.25E+01(1.02E+00) -1.36E+01(0.70E+00) -1.72E+01(0.63E+00) -2.07E+01(2.07E+00) -4.91E+01-4.91E+01-4.91E+01(0.50E+000.50E+000.50E+00)

Table 6. Statistical results for different metaheuristic methods with D = 100.

Function
ABC CLPSO GWO MVO SSA WOA Hybrid STA

Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

F1 4.24E+09(3.44E+08) 2.67E+07(5.41E+06) 3.51E-923.51E-923.51E-92(6.26E-926.26E-926.26E-92) 7.47E+08(9.75E+07) 1.16E+09(3.47E+08) 3.34E-44(7.66E-44) 9.04E-58(2.55E-57)
F2 9.71E+02(6.52E+01) 5.44E+01(5.19E+00) 1.05E+01(5.64E+00) 4.06E+02(9.48E+01) 1.31E+02(2.82E+01) 1.62E-01(8.82E-02) 3.77E-023.77E-023.77E-02(9.36E-029.36E-029.36E-02)
F3 1.21E+02(6.45E+00) 7.46E+00(4.96E-01) 8.05E+00(3.05E-01) 2.14E+01(1.91E+00) 2.76E+01(4.97E+00) 1.04E+00(4.89E-01) 7.69E-027.69E-027.69E-02(6.21E-026.21E-026.21E-02)
F4 4.56E+01(3.10E-01) 3.61E+01(4.34E-01) 9.86E+00(1.72E+01) 4.37E+01(4.05E-01) 4.34E+01(3.89E-01) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00) 6.09E+00(2.77E+00)
F5 2.68E+09(2.13E+08) 1.29E+06(2.58E+05) 3.68E-01(5.74E-02) 3.03E+07(1.87E+07) 7.25E+05(1.06E+06) 7.88E-04(1.12E-04) 3.50E-073.50E-073.50E-07(2.72E-072.72E-072.72E-07)
F6 2.62E+07(1.01E+06) 1.36E+06(1.05E+05) 1.33E+05(9.96E+03) 3.06E+06(2.42E+05) 2.16E+06(3.75E+05) 1.35E+03(1.44E+02) 6.03E-056.03E-056.03E-05(9.91E-059.91E-059.91E-05)
F7 1.12E+09(8.35E+07) 7.01E+06(1.73E+06) 9.75E+01(5.47E-01) 2.64E+07(4.84E+06) 1.04E+07(2.79E+06) 9.67E+01(2.32E-01) 9.21E+019.21E+019.21E+01(5.29E-015.29E-015.29E-01)
F8 7.88E+04(4.98E+03) 1.47E+03(1.46E+02) 6.24E+01(2.81E+00) 1.97E+03(2.94E+02) 4.36E+04(3.85E+03) 2.74E+01(2.69E+01) 4.11E-074.11E-074.11E-07(3.99E-073.99E-073.99E-07)
F9 1.57E+03(3.79E+01) 6.65E+02(3.17E+01) 0.00E+00(0.00E+00) 1.18E+03(5.59E+01) 8.98E+02(2.57E+01) 0.00E+00(0.00E+00) 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00)

F10 7.35E+00(5.78E-01) 1.52E-01(1.85E-02) 2.98E-01(2.77E-02) 2.29E+00(4.19E-01) 1.52E+00(2.51E-01) 2.82E-04(4.88E-05) 7.74E-137.74E-137.74E-13(5.59E-135.59E-135.59E-13)
F11 2.58E+05(1.01E+04) 1.31E+04(8.78E+02) 1.17E+01(8.53E-01) 2.96E+04(2.69E+03) 1.88E+04(2.13E+03) 7.94E-02(1.24E-02) 3.09E-113.09E-113.09E-11(2.03E-112.03E-112.03E-11)
F12 2.63E+07(2.17E+06) 1.56E+05(2.73E+04) 6.67E-01(1.66E-07) 7.29E+05(7.28E+04) 2.45E+05(6.71E+04) 6.67E-01(1.31E-05) 6.67E-016.67E-016.67E-01(4.95E-094.95E-094.95E-09)
F13 2.09E+01(6.19E+02) 1.26E+01(2.69E-01) 1.64E-14(3.29E-15) 1.54E+01(4.36E-01) 1.35E+01(5.85E-01) 5.33E-155.33E-155.33E-15(2.64E-152.64E-152.64E-15) 2.84E-12(8.03E-12)
F14 1.84E+04(1.59E+04) 1.45E+04(2.22E+02) 3.56E+04(5.37E+02) 3.19E+04(5.36E+02) 3.39E+04(6.31E+02) 7.24E+02(1.33E+03) 5.83E+025.83E+025.83E+02(2.36E+022.36E+022.36E+02)
F15 -1.93E+01(1.15E+00) -4.48E+01(1.66E+00) -1.98E+01(1.09E+00) -2.04E+01(1.12E+00) -2.77E+01(1.33E+00) -2.96E+01(3.59E+00) -9.41E+01-9.41E+01-9.41E+01(1.68E+001.68E+001.68E+00)

0 0.5 1 1.5 2

FEs 10
5

10
-30

10
-20

10
-10

10
0

10
10

F
u

n
c
ti
o

n
 v

a
lu

e

hybrid STA

ABC

CLPSO

GWO

MVO

SSA

WOA

(a) F1

0 0.5 1 1.5 2

FEs 10
5

10
-30

10
-20

10
-10

10
0

10
10

F
u

n
c
ti
o

n
 v

a
lu

e

hybrid STA

ABC

CLPSO

GWO

MVO

SSA

WOA

(b) F2

Figure 6. Cont.



Electronics 2023, 12, 994 16 of 26

0 0.5 1 1.5 2

FEs 10
5

10
-30

10
-20

10
-10

10
0

10
10

F
u

n
c
ti
o

n
 v

a
lu

e

hybrid STA

ABC

CLPSO

GWO

MVO

SSA

WOA

(c) F5

0 0.5 1 1.5 2

FEs 10
5

10
-30

10
-20

10
-10

10
0

10
10

F
u

n
c
ti
o

n
 v

a
lu

e

hybrid STA

ABC

CLPSO

GWO

MVO

SSA

WOA

(d) F6

0 0.5 1 1.5 2

FEs 10
5

10
-30

10
-20

10
-10

10
0

10
10

F
u

n
c
ti
o

n
 v

a
lu

e

hybrid STA

ABC

CLPSO

GWO

MVO

SSA

WOA

(e) F7

0 0.5 1 1.5 2

FEs 10
5

10
-30

10
-20

10
-10

10
0

10
10

F
u

n
c
ti
o

n
 v

a
lu

e

hybrid STA

ABC

CLPSO

GWO

MVO

SSA

WOA

(f) F9

0 0.5 1 1.5 2

FEs 10
5

10
-30

10
-20

10
-10

10
0

10
10

F
u

n
c
ti
o

n
 v

a
lu

e

hybrid STA

ABC

CLPSO

GWO

MVO

SSA

WOA

(g) F11

0 0.5 1 1.5 2

FEs 10
5

10
-30

10
-20

10
-10

10
0

10
10

F
u

n
c
ti
o

n
 v

a
lu

e

hybrid STA

ABC

CLPSO

GWO

MVO

SSA

WOA

(h) F13

Figure 6. Cont.



Electronics 2023, 12, 994 17 of 26

0 0.5 1 1.5 2

FEs 10
5

-30

-25

-20

-15

-10

-5

F
u

n
c
ti
o

n
 v

a
lu

e

hybrid STA

ABC

CLPSO

GWO

MVO

SSA

WOA

(i) F15

Figure 6. Average convergence curves of different metaheuristic methods on benchmark functions
with D = 20.

As shown in the experiment results, the hybrid STA outperformed ABC, CLPSO, GWO,
MVO and SSA in most of the cases. Despite WOA demonstrating better performance on
functions such as F3 and F13, the hybrid STA performed better than WOA in the other 10
benchmark functions. WOA failed to remain stable in finding acceptable solutions on F2,
F7, F8, F11 and F14. On the contrary, the hybrid STA showed incomparably convergence
speed and solution accuracy on F8 and 11 and showed more robustness on multimodal
functions, such as F2, F7 and F14. Therefore, the proposed method was more effective and
robust than these competitive metaheuristic methods.

4.3. Comparison among the STA Family

To comprehensively verify the effect of NM simplex search and QI in the proposed
method, the STA family (STA, NM-STA, QI-STA and hybrid STA) were tested against
the benchmark functions listed in Table 2. For each benchmark function, the number of
decision variables D was set to 30. The statistical results are shown in Table 7, and the
average convergence curves are given in Figure 7.

Table 7. Statistical results for the STA family with D = 30.

Function
STA QI-STA NM-STA Hybrid STA

Mean(Std) Ave FEs Mean(Std) Ave FEs Mean(Std) Ave FEs Mean(Std) Ave FEs

F1 5.48E-251(0.00E+00) 2.02E+05 0.00E+00(0.00E+00) 1.79E+05 2.44E-238(0.00E+00) 2.02E+05 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00) 1.59E+051.59E+051.59E+05
F2 1.82E-14(5.06E-15) 2.02E+05 1.69E-14(5.43E-15) 2.03E+05 1.25E-14(5.62E-15) 2.01E+05 1.50E-321.50E-321.50E-32(5.62E-485.62E-485.62E-48) 2.02E+05
F3 0.11E+00(0.16E+00) 2.02E+05 0.50E-01(0.14E+00) 2.02E+05 0.40E-010.40E-010.40E-01(0.93E-010.93E-010.93E-01) 2.01E+05 0.70E-01(0.86E-01) 2.02E+05
F4 1.70E-09(2.37E-09) 1.19E+05 1.02E-08(2.32E-08) 1.62E+05 0.95E-01(0.42E+00) 1.26E+05 1.21E-091.21E-091.21E-09(2.45E-082.45E-082.45E-08) 1.30E+05
F5 4.79E-16(1.63E-16) 2.02E+05 3.94E-16(1.50E-16) 2.03E+05 2.77E-16(1.03E-16) 2.01E+05 1.57E-321.57E-321.57E-32(2.81E-482.81E-482.81E-48) 2.02E+05
F6 6.02E-14(2.08E-14) 2.02E+05 7.26E-14(4.58E-14) 2.03E+05 5.43E-14(2.02E-14) 2.01E+05 5.11E-145.11E-145.11E-14(2.40E-142.40E-142.40E-14) 2.01E+05
F7 2.20E+01(1.26E+01) 2.02E+05 2.55E+01(1.76E+01) 2.02E+05 0.24E-02(0.89E-02) 2.02E+05 1.94E-081.94E-081.94E-08(2.97E-082.97E-082.97E-08) 2.02E+05
F8 8.12E-13(3.51E-13) 2.02E+05 9.33E-13(4.04E-13) 2.03E+05 4.84E-13(2.82E-13) 2.01E+05 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00) 1.34E+051.34E+051.34E+05
F9 0.00E+00(0.00E+00) 2.79E+04 0.00E+00(0.00E+00) 2.64E+04 0.00E+00(0.00E+00) 2.76E+04 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00) 2.63E+042.63E+042.63E+04
F10 4.00E-16(1.51E-16) 2.02E+05 3.68E-16(1.87E-16) 2.03E+05 2.37E-16(8.53E-17) 2.01E+05 1.57E-321.57E-321.57E-32(2.81E-482.81E-482.81E-48) 2.02E+05
F11 1.39E-14(5.10E-15) 2.02E+05 1.33E-14(6.65E-15) 2.03E+05 9.33E-15(4.02E-15) 2.01E+05 0.00E+000.00E+000.00E+00(0.00E+000.00E+000.00E+00) 1.05E+051.05E+051.05E+05
F12 0.67E+00(1.63E-14) 2.02E+05 0.67E+00(1.95E-14) 2.02E+05 0.67E+00(1.39E-14) 2.02E+05 0.67E+00(5.67E-15) 2.01E+052.01E+052.01E+05
F13 3.99E-15(0.00E+00) 2.02E+05 3.82E-153.82E-153.82E-15(7.94E-167.94E-167.94E-16) 2.03E+05 4.17E-15(7.94E-16) 2.03E+05 3.99E-15(0.00E+00) 2.03E+05
F14 3.82E-04(1.97E-12) 2.02E+05 3.82E-04(2.83E-12) 2.02E+05 5.93E+00(2.65E+01) 2.02E+05 3.82E-043.82E-043.82E-04(4.37E-124.37E-124.37E-12) 2.02E+05
F15 -2.92E+01(0.46E+00) 2.02E+05 -2.93E+01(0.66E+00) 2.00E+05 -2.92E+01(0.72E+00) 2.02E+05 -2.98E+01-2.98E+01-2.98E+01(0.44E+000.44E+000.44E+00) 2.00E+05
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Figure 7. Cont.
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Figure 7. Average convergence curves of the STA family on benchmark functions with D = 30.

As shown in the experiment results, both the convergence speed and accuracy of the
hybrid STA were better than for STA. The average FEs of the hybrid STA were much less
than those for STA on F1, F8, F9 and F11, which means that the convergence speed of the
hybrid STA was much faster than STA. The convergence accuracy of STA was significantly
improved on F1, F2, F5, F7, F8 and F10.

From the above discussion, when STA is enhanced with both NM simplex search and
QI, the merits of the three distinct methods are combined. The convergence curves and
the statistical results show that hybrid STA combines the merits of all three: the powerful
exploration capacity of STA, the fast convergence speed of NM simplex search and the deep
exploitation capacity of QI.

4.4. Effectiveness Analysis

In order to evaluate the effectiveness of hybrid STA, the overall effectiveness (OE) [56],
which is a useful metric, is computed in this section. The OE of each algorithm is calculated
using Equation (20), where N presents the number of test functions and L presents the
losing test functions of each algorithm. The results are reported in Table 8.

OEi(%) = 1− Li
N

(20)

Table 8. The overall effectiveness of the hybrid STA and competitor algorithms.

Algorithm
20-D 30-D 50-D 100-D Total OE

(W |T|L) (W |T|L) (W |T|L) (W |T|L) (W |T|L) (%)

ABC 1|2|12 1|0|14 0|0|15 0|0|15 2|2|56 6.67%
CLPSO 1|3|11 1|1|13 1|1|13 0|0|15 3|5|52 13.33%
GWO 0|4|11 0|4|11 0|4|11 2|2|11 2|14|44 26.67%
MVO 0|0|15 0|0|15 0|0|15 0|0|15 0|0|60 0.00%
SSA 0|0|15 0|0|15 0|0|15 0|0|15 0|0|60 0.00%

WOA 4|2|9 2|3|10 1|4|10 2|2|11 9|11|40 33.33%
Hybrid STA 9|2|4 11|2|2 11|2|2 11|1|3 42|7|11 81.67%
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4.5. Non-Parametric Statistical Test Analysis

In Tables 3–6, the first results of these algorithms’ performances are presented. To com-
pare the effectiveness of hybrid STA statistically, a powerful and sensitive non-parametric
test, named the Wilcoxon signed-rank sum test, is performed. This test, where the p-value is
computed with a statistical significance value α = 0.05, can present the significant difference
between pairs of algorithms. The results of the test for dimensions of 20, 30, 50 and 100
are listed in Tables 9–12. The results of p-value < α indicate that the hybrid STA had better
performance than the compared algorithms.

Table 9. Wilcoxon signed-rank test in 20 dimensions.

Function
Hybrid STA vs. ABC Hybrid STA vs. CLPSO Hybrid STA vs. GWO Hybrid STA vs. MVO Hybrid STA vs. SSA Hybrid STA vs. WOA

p-Value Sig. p-Value Sig. p-Value Sig. p-Value Sig. p-Value Sig. p-Value Sig.

F1 1.7E-06 > 1.7E-06 > 1 = 1.7E-06 > 1.7E-06 > 1 =

F2 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F3 6.7E-01 ≈ 6.7E-01 ≈ 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.6E-01 ≈
F4 1.7E-06 > 1.7E-06 > 2.3E-01 ≈ 1.7E-06 > 1.7E-06 > 4.2E-04 <

F5 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F6 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F7 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F8 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F9 1.7E-06 > 1.7E-06 > 1 = 1.7E-06 > 1.7E-06 > 1 =

F10 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F11 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F12 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 3.1E-05 <

F13 1.7E-06 > 1.7E-06 > 1.2E-01 ≈ 1.7E-06 > 1.7E-06 > 6.1E-05 <

F14 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F15 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

Table 10. Wilcoxon signed-rank test in 30 dimensions.

Function
Hybrid STA vs. ABC Hybrid STA vs. CLPSO Hybrid STA vs. GWO Hybrid STA vs. MVO Hybrid STA vs. SSA Hybrid STA vs. WOA

p-Value Sig. p-Value Sig. p-Value Sig. p-Value Sig. p-Value Sig. p-Value Sig.

F1 1.7E-06 > 1.7E-06 > 1 = 1.7E-06 > 1.7E-06 > 1 =

F2 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F3 2.1E-02 < 2.1E-02 < 1.7E-06 > 1.7E-06 > 1.7E-06 > 2.1E-01 ≈
F4 1.7E-06 > 1.7E-06 > 4.9E-01 ≈ 1.7E-06 > 1.7E-06 > 1.3E-02 >

F5 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F6 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F7 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F8 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F9 1.7E-06 > 1.7E-06 > 1 = 1.7E-06 > 1.7E-06 > 1 =

F10 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F11 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F12 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F13 1.7E-06 > 1.7E-06 > 3.4E-07 > 1.7E-06 > 1.7E-06 > 6.5E-02 ≈
F14 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F15 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >
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Table 11. Wilcoxon signed-rank test in 50 dimensions.

Function
Hybrid STA vs. ABC Hybrid STA vs. CLPSO Hybrid STA vs. GWO Hybrid STA vs. MVO Hybrid STA vs. SSA Hybrid STA vs. WOA

p-Value Sig. p-Value Sig. p-Value Sig. p-Value Sig. p-Value Sig. p-Value Sig.

F1 1.7E-06 > 1.7E-06 > 1 = 1.7E-06 > 1.7E-06 > 1 =

F2 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F3 1.7E-06 > 1.0E-01 ≈ 1.7E-06 > 1.7E-06 > 1.7E-06 > 4.1E-02 >

F4 1.7E-06 > 1.7E-06 > 6.7E-01 ≈ 1.7E-06 > 1.7E-06 > 3.9E-03 <

F5 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F6 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F7 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F8 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F9 1.7E-06 > 1.7E-06 > 1 = 1.7E-06 > 1.7E-06 > 1 =

F10 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F11 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F12 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F13 1.7E-06 > 1.7E-06 > 2.5E-06 > 1.7E-06 > 1.7E-06 > 9.4E-03 >

F14 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F15 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

Table 12. Wilcoxon signed-rank test in 100 dimensions.

Function
Hybrid STA vs. ABC Hybrid STA vs. CLPSO Hybrid STA vs. GWO Hybrid STA vs. MVO Hybrid STA vs. SSA Hybrid STA vs. WOA

p-Value Sig. p-Value Sig. p-Value Sig. p-Value Sig. p-Value Sig. p-Value Sig.

F1 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F2 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 8.1E-04 >

F3 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F4 1.7E-06 > 1.7E-06 > 3.7E-01 ≈ 1.7E-06 > 1.7E-06 > 1.7E-06 <

F5 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F6 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F7 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F8 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F9 1.7E-06 > 1.7E-06 > 1 = 1.7E-06 > 1.7E-06 > 1 =

F10 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F11 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F12 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

F13 1.7E-06 > 1.7E-06 > 2.3E-03 < 1.7E-06 > 1.7E-06 > 9.7E-04 <

F14 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 6.7E-01 ≈
F15 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 > 1.7E-06 >

5. Wireless Sensor Network Application

A wireless sensor network (WSN) is a self-organizing network composed of a large
number of sensor nodes deployed in a predetermined area [57]. A WSN can monitor the
information in the deployment area and deliver effective information in the real time. The
node-positioning technology of sensor is the basis of the entire wireless sensor network. As
it is widely used in medical, military, environmental science, space exploration and other
fields, the requirements on its positioning accuracy are continually increasing [58–62].

Many researchers have applied the metaheuristic method with a node-positioning
algorithm. Wang [63] proposed a PSO clustering algorithm based on mobile aggregation
for WSN. The algorithm used PSO to perform virtual clustering in the routing process,
which improved the positioning accuracy and reduced the transmission delay. Sharma [64]
proposed a genetic algorithm based on the improved distance vector Hop and applied it
to the WSN positioning problem to improve the positioning accuracy. Cui [65] obtained
the estimated location of unknown nodes using a differential evolution algorithm, which
effectively reduced the range error and obtained high positioning accuracy.

5.1. Wireless Sensor Network Localization Problem

There are m anchor nodes a1, a2, . . . , am ∈ Rd (d represents the dimensions, which
are two or three), and there are n unknown nodes x1, x2, . . . , xn ∈ Rd. The Euclidean
distance between the ith unknown node and jth unknown node is called dij, and (i, j) ∈ Nx.
The Euclidean distance between the ith unknown node and kth anchor node is called dik,
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and (i, k) ∈ Na. Furthermore, Nx = {(i, j) : ‖xi − xj‖ = dij ≤ rd}, and Na = {(i, k) :
‖xi − ak‖ = dik ≤ rd}, where rd represents the sensor communication distance.

The wireless sensor network localization problem (SNL) is to estimate the position of
n unknown nodes xi(i = 1, . . . , n), which should satisfy:

‖xi − xj‖2 = d2
ij, ∀(i, j) ∈ Nx, (21)

‖xi − ak‖2 = d
2
ik, ∀(i, k) ∈ Na. (22)

Considering that there is noise in the real situation, there is no guarantee that the
formula above is workable. To make the model universal, the SNL is reformulated as the
following non-convex optimization problem by using the least-squares algorithm:

min ∑
(i,j)∈Nx

(‖xi − xj‖2 − d2
ij)

2 + ∑
(i,k)∈Na

(‖xi − ak‖2 − d
2
ik)

2. (23)

5.2. Experimental Results and Analysis

To further test the performance of hybrid STA, it was applied to the SNL problem.
Furthermore, it was compared with other optimization algorithms, such as ABC, CLPSO,
GWO, WOA, MVO and SSA. All the parameter settings of other algorithms were the same
as in the references.

In the two-dimensional SNL problem, the number of anchor nodes was set as 4, and
the number of unknown nodes was set as 50. The coordinates of the anchor nodes were
(0,0), (0,1), (1,0) and (1,1). The radio range was 0.3. In the three-dimensional SNL problem,
the number of anchor nodes was set as 8, and the number of unknown nodes was set as
50. The coordinates of the anchor nodes were (0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0), (1,0,1),
(0,1,1) and (1,1,1). The radio range was 0.35. In Figure 8, the data marked in red are the
true locations of the unknown nodes, and the data marked in green are the locations of
the nodes as calculated by the algorithms. Furthermore, the data marked in blue are the
locations of the anchor nodes.
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(c) WOA used in a 3−D SNL problem (d) Hybrid STA used in a 3−D SNL problem

Figure 8. Optimization results of hybrid STA and WOA in 2−D and 3−D SNL problems.

Figure 8a,b show the localization results of the WOA in two-dimensional and three-
dimensional SNL problems. Figure 8c,d show the localization results of the hybrid STA
in the two-dimensional and three-dimensional SNL problems. After using the hybrid
STA, the estimation location almost coincided with the true location. However, after using
the WOA, the estimation error remained large between the estimation location and the
true location. In the SNL problem, the hybrid STA performed much better than WOA.
Figure 9a,b show the convergent curves of the hybrid STA and other methods for the
2-D and 3-D SNL problems, respectively. Compared with other metaheuristic methods,
the optimization accuracy and convergence speed of the hybrid STA were clearly better
compared with the other algorithms.
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Figure 9. Average convergence curves of different metaheuristic methods in the SNL problems.

6. Conclusions

In this paper, we proposed a hybrid STA based on Nelder–Mead simplex search and
QI. In the hybrid STA, both NM simplex search and QI were applied to utilize the historical
information. Specifically, in the exploration stage, NM simplex search utilized the historical
information of STA to generate promising solutions. In the exploitation stage, QI utilized
the historical information to enhance the local search capacity.
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The proposed method used an eagle strategy to maximize the efficiency and stability.
The proposed method enjoys the merits of the three methods: the global exploration capac-
ity of STA, the fast convergence speed of NM simplex search and the strong exploitation
ability of QI. The superiority and effectiveness of the proposed method was demonstrated
by testing on 15 benchmark functions as well as the SNL problem and was compared with
six other well-known metaheuristic methods.

In the proposed hybrid method, an eagle strategy was used to control the selection of
vertices in the NM stage. However, the selection of vertices requires further study. In our
future work, the quantitative properties of the vertices will be considered in the collection
of historical information. It would also be interesting to apply the proposed historical
information mechanism to other metaheuristic methods. In addition, other approaches of
utilizing the historical information will be considered as well.
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