
Citation: Zhu, C.; Liu, Z.; Zou, B.;

Xiao, Y.; Zeng, M.; Wang, H.; Fan, Z.

An HBase-Based Optimization Model

for Distributed Medical Data Storage

and Retrieval. Electronics 2023, 12,

987. https://doi.org/10.3390/

electronics12040987

Academic Editor: Fabio Grandi

Received: 9 December 2022

Revised: 25 January 2023

Accepted: 12 February 2023

Published: 16 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An HBase-Based Optimization Model for Distributed Medical
Data Storage and Retrieval
Chengzhang Zhu 1,2,3,4, Zixi Liu 1,3,4 , Beiji Zou 1,3,4, Yalong Xiao 1,2,3,4,*, Meng Zeng 1,3,4, Han Wang 1,3,4

and Ziang Fan 2,3

1 Department of Computer Science, Central South University, Changsha 410083, China
2 Department of Literature and Journalism, Central South University, Changsha 410083, China
3 Mobile Medical Ministry of Education-China Mobile Joint Laboratory, Changsha 410083, China
4 Machine Vision and Smart Medical Engineering Technology Center, Changsha 410083, China
* Correspondence: ylxiao@csu.edu.cn

Abstract: In medical services, the amount of data generated by medical devices is increasing ex-
plosively, and access to medical data is also put forward with higher requirements. Although
HBase-based medical data storage solutions exist, they cannot meet the needs of fast locating and
diversified access to medical data. In order to improve the retrieval speed, the recognition model
S-TCR and the dynamic management algorithm SL-TCR, based on the behavior characteristics of
access, were proposed to identify the frequently accessed hot data and dynamically manage the
data storage medium as to maximize the system access performance. In order to improve the search
performance of keys, an optimized secondary index strategy was proposed to reduce I/O overhead
and optimize the search performance of non-primary key indexes. Comparative experiments were
conducted on real medical data sets. The experimental results show that the optimized retrieval
model can meet the needs of hot data access and diversified medical data retrieval.

Keywords: big medical data; HBase; retrieval optimization; hot data; secondary index

1. Introduction

With the rapid development of medical information technology, medical treatment
and medical research are stepping into the era of big data [1]. According to the National
Hospital Information Construction Standard and Specification (Trial) issued by the National
Health Commission in 2018, the data storage part of the infrastructure construction of the
information platform should realize the unified storage, processing, and management of
the platform data [2]. Massive medical big data contains a great value and can provide
data support for remote consultation, medical consultation, medication recommendation,
daily health care, and other services. Therefore, it is of great significance to construct
unified storage and retrieval of medical data. However, big medical data are characterized
by their large scale, diverse structure, fast growth, and multiple modes, which brings
great challenges to unified storage, retrieval, and management. The traditional relational
storage system can no longer guarantee low-cost, large-capacity storage and fast retrieval
of massive medical data [3–5]. Due to the development of emerging distributed systems,
HBase [6–8], a distributed column database, has become a mainstream medical data storage
model that meets the goal of low-cost and high-capacity storage of massive medical data.
Considering the specificity of the medical service industry, fast response and diversified
retrieval have become the necessary design objectives for the medical data storage model
because of the large amount of data required to support clinical decision-making and other
tasks [9,10]. Hence, how to meet the need for the fast and diverse retrieval for HBase-based
medical data storage models is an urgent problem.

In order to achieve the fast and diverse retrieval of medical data, this paper is opti-
mized from the following two aspects. First, aiming at meeting the requirements of the

Electronics 2023, 12, 987. https://doi.org/10.3390/electronics12040987 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12040987
https://doi.org/10.3390/electronics12040987
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8999-9599
https://doi.org/10.3390/electronics12040987
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12040987?type=check_update&version=1

Electronics 2023, 12, 987 2 of 20

rapid retrieval of data, data that are frequently accessed are called hot data, while data that
are occasionally accessed or not accessed are called cold data [11–14]. Considering that
modern computers use a hybrid storage architecture, the closer the storage media is to the
CPU, the faster the access speed, the smaller the capacity, and the higher the cost, which is
used to balance the cost and performance of storage media. We designed a data dynamic
management model to realize hot data identification and storage media management. By
using this model, the hot data were stored on the high-speed device (i.e., the Hot Area)
while the cold data were stored on the low-speed device (i.e., the Cold Area), thus meeting
the performance requirements of the frequent interactions of hot medical data. Second,
a secondary index was constructed to support the retrieval of non-primary keys and to
meet the needs of medical data diversity queries. Inverted indexing was used to build a
secondary index with the core idea of storing a map from the keys to the corresponding
primary key [15–18]. This solution was simple and easy to implement, but multiple I/O
operations may lead to high time overhead and even performance bottlenecks. Therefore,
in the current study, Bloom Filter (BF) and index position optimization methods were
adopted to reduce the overhead of I/O and optimize the secondary index.

In conclusion, in order to optimize the storage system’s performance, a model for
dynamically identifying and managing hot and cold data and an optimized secondary
index optimization strategy were proposed in this study. The main contributions of this
paper are as follows:

(1) A data temperature recognition method S-TCR and a data management algorithm
SL-TCR were proposed to manage medical data dynamically;

(2) An optimized secondary indexing strategy was proposed to improve the speed of
medical data diversity queries;

(3) The feasibility and efficiency of the proposed model were verified by experiments on
real medical data sets.

This paper is organized as follows: (1) the background knowledge was summarized
in Section 2; (2) the dynamic data management model and the optimization strategy of
secondary index retrieval were introduced in Section 3; (3) the experimental setup and
results were given in Section 4; and (4) this paper was summarized in Section 5.

2. Background Knowledge

In this section, the HBase database was first briefly introduced. Then, the hot and cold data
management algorithms were studied. Finally, the idea of a secondary index was introduced.

2.1. HBase Database

HBase is a column-oriented database running on a Hadoop cluster. Hadoop is a
distributed cluster deployed on multiple machines. A Hadoop cluster connects multiple
servers through a network to provide external storage services as a whole [19,20]. Hadoop
Distributed File System (HDFS) can store and read massive amounts of data in a distributed
manner and provide high-throughput data access. Therefore, Hadoop is well suited for
building a mass data storage platform [21,22].

For application requests that require random data to be read, data can be chosen to
be stored in HBase. HBase stores underlying data in the HDFS to ensure data reliability.
As shown in Figure 1, the HBase cluster consists of Master, RegionServer, Region, and
Zookeeper components [23]. The Master is the primary server of the HBase cluster and
allocates RegionServers to regions. The RegionServer component is responsible for provid-
ing write, delete, and search services to clients [24]. The Region component is a sub-table
divided by RowKey. It is the smallest storage and processing unit in HBase. The RowKey
is the unique identifier for the HBase record [25]. The ZooKeeper provides application
coordination services for the HBase cluster, detects and clears failed Masters, and elects a
new active Master.

Electronics 2023, 12, 987 3 of 20

Electronics 2023, 12, x FOR PEER REVIEW 3 of 20

providing write, delete, and search services to clients [24]. The Region component is a
sub-table divided by RowKey. It is the smallest storage and processing unit in HBase.
The RowKey is the unique identifier for the HBase record [25]. The ZooKeeper provides
application coordination services for the HBase cluster, detects and clears failed Masters,
and elects a new active Master.

Figure 1. The structure of HBase.

2.2. Hot and Cold Data Management Algorithms
In order to utilize the Hot Area more effectively and ensure its hit rate, the Hot Ar-

ea and Cold Area should have efficient management algorithms, which are commonly
used as follows:

2.2.1. LRU
The LRU (Least Recently Used) [26] algorithm manages data in the Hot Area ac-

cording to the access time of historical records. The algorithm is shown in Figure 2,
where the recently accessed data are more likely to be accessed in the future. It is simple
and easy to implement, but the hit rate is low for random and periodic accesses, i.e., the
Hot Area is heavily contaminated.

Figure 2. The idea of the LRU.

2.2.2. LFU
The LFU (Least Frequently Used) algorithm [27] manages the data in the Hot Area

according to the access frequency of historical records. The idea of the algorithm is
shown in Figure 3. It uses a counter to count the number of accesses to each object, and

Figure 1. The structure of HBase.

2.2. Hot and Cold Data Management Algorithms

In order to utilize the Hot Area more effectively and ensure its hit rate, the Hot Area
and Cold Area should have efficient management algorithms, which are commonly used
as follows:

2.2.1. LRU

The LRU (Least Recently Used) [26] algorithm manages data in the Hot Area according
to the access time of historical records. The algorithm is shown in Figure 2, where the
recently accessed data are more likely to be accessed in the future. It is simple and easy to
implement, but the hit rate is low for random and periodic accesses, i.e., the Hot Area is
heavily contaminated.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 20

providing write, delete, and search services to clients [24]. The Region component is a
sub-table divided by RowKey. It is the smallest storage and processing unit in HBase.
The RowKey is the unique identifier for the HBase record [25]. The ZooKeeper provides
application coordination services for the HBase cluster, detects and clears failed Masters,
and elects a new active Master.

Figure 1. The structure of HBase.

2.2. Hot and Cold Data Management Algorithms
In order to utilize the Hot Area more effectively and ensure its hit rate, the Hot Ar-

ea and Cold Area should have efficient management algorithms, which are commonly
used as follows:

2.2.1. LRU
The LRU (Least Recently Used) [26] algorithm manages data in the Hot Area ac-

cording to the access time of historical records. The algorithm is shown in Figure 2,
where the recently accessed data are more likely to be accessed in the future. It is simple
and easy to implement, but the hit rate is low for random and periodic accesses, i.e., the
Hot Area is heavily contaminated.

Figure 2. The idea of the LRU.

2.2.2. LFU
The LFU (Least Frequently Used) algorithm [27] manages the data in the Hot Area

according to the access frequency of historical records. The idea of the algorithm is
shown in Figure 3. It uses a counter to count the number of accesses to each object, and

Figure 2. The idea of the LRU.

2.2.2. LFU

The LFU (Least Frequently Used) algorithm [27] manages the data in the Hot Area
according to the access frequency of historical records. The idea of the algorithm is shown
in Figure 3. It uses a counter to count the number of accesses to each object, and when a
replacement occurs only the least accessed data needs to be moved out of the Hot Area.
However, it does not consider the object access interval and object size, resulting in dead
hot data wrote to storage space and the pollution of the Hot Area.

Electronics 2023, 12, 987 4 of 20

Electronics 2023, 12, x FOR PEER REVIEW 4 of 20

when a replacement occurs only the least accessed data needs to be moved out of the
Hot Area. However, it does not consider the object access interval and object size, re-
sulting in dead hot data wrote to storage space and the pollution of the Hot Area.

Figure 3. The idea of the LFU.

2.2.3. Size
The Size algorithm [28] is a representative algorithm based on the size of the data.

When replacement occurs, larger data are deleted preferentially. This algorithm prefer-
entially deletes large data and has high storage space utilization. However, it may cause
hot data to move frequently, which reduces the hit rate and increases the access delay.

2.2.4. TCR
The TCR (Temperature Calculation Replacement) algorithm [29] takes into account

the time interval and access frequency of data access. The calculation formula of the al-
gorithm is given in Equation (1). T୲౤ indicates the temperature of the data at the time t୬.
The cooling coefficient α is the change rate of the data temperature T୦ୣୟ୲, denoting that
the temperature has increased since the data were accessed. T୲౤ = T୲౤షభeି஑(୲౤ି୲౤షభ) + T୦ୣୟ୲ ∗ c, ൜ data are visited in t୬, c = 1 data are not visited in t୬, c = 0 (1)

When replacement occurs, the algorithm preferentially deletes low-temperature
data. It considers many factors, such as time interval and access frequency, and performs
well. However, it needs to consider the size of the data, resulting in a waste of storage
space. In addition, it wastes storage space by not taking into account the size of the data,
and a lot of time is spent sorting the data.

2.3. Secondary Index
Index stores values of specific columns in the table and pointers to the addresses i

the row [30–33]. Other fields corresponding to a record are not usually stored in the in-
dex, so a pointer is needed to find the history. Data structures commonly used to store
indexes include B-Tree [34], hash index [35], R-Tree [36], bitmap index [37], etc. The time
complexity of the B-tree is low. Its addition, deletion and changes in logarithmic time
and the stored data are ordered. The hash index is based on a hash table. It only stores
the corresponding hash value, and its structure is very compact. Its search speed is very
fast. The R-Tree index is the extension of the B-Tree in the multidimensional index space
and has high storage efficiency but low retrieval efficiency.

HBase uses Log Structure Merge Tree (LSM-Tree) to improve writing speed as an
index structure [38–40]. LSM-Tree is a disk-based data structure that can significantly
reduce the cost of disk traversal [41]. It stores recently used or frequently used data in
memory and infrequently used data in hard disks, significantly reducing storage costs.
As shown in Figure 4, it uses multiple small trees to store data. Its retrieval process is to
build an ordered small tree in memory. As the amount of data grows, the data in
memory is flushed to disk. However, it does not achieve a fast response because its re-
trieval result is obtained by traversing all the small trees [42,43].

Figure 3. The idea of the LFU.

2.2.3. Size

The Size algorithm [28] is a representative algorithm based on the size of the data.
When replacement occurs, larger data are deleted preferentially. This algorithm preferen-
tially deletes large data and has high storage space utilization. However, it may cause hot
data to move frequently, which reduces the hit rate and increases the access delay.

2.2.4. TCR

The TCR (Temperature Calculation Replacement) algorithm [29] takes into account the
time interval and access frequency of data access. The calculation formula of the algorithm
is given in Equation (1). Ttn indicates the temperature of the data at the time tn. The cooling
coefficient α is the change rate of the data temperature Theat, denoting that the temperature
has increased since the data were accessed.

Ttn = Ttn−1e−αtn−tn−1 + Theat ∗ c,
{

data are visited in tn, c = 1
data are not visited in tn, c = 0

(1)

When replacement occurs, the algorithm preferentially deletes low-temperature data.
It considers many factors, such as time interval and access frequency, and performs well.
However, it needs to consider the size of the data, resulting in a waste of storage space. In
addition, it wastes storage space by not taking into account the size of the data, and a lot of
time is spent sorting the data.

2.3. Secondary Index

Index stores values of specific columns in the table and pointers to the addresses i the
row [30–33]. Other fields corresponding to a record are not usually stored in the index, so
a pointer is needed to find the history. Data structures commonly used to store indexes
include B-Tree [34], hash index [35], R-Tree [36], bitmap index [37], etc. The time complexity
of the B-tree is low. Its addition, deletion and changes in logarithmic time and the stored
data are ordered. The hash index is based on a hash table. It only stores the corresponding
hash value, and its structure is very compact. Its search speed is very fast. The R-Tree index
is the extension of the B-Tree in the multidimensional index space and has high storage
efficiency but low retrieval efficiency.

HBase uses Log Structure Merge Tree (LSM-Tree) to improve writing speed as an index
structure [38–40]. LSM-Tree is a disk-based data structure that can significantly reduce
the cost of disk traversal [41]. It stores recently used or frequently used data in memory
and infrequently used data in hard disks, significantly reducing storage costs. As shown
in Figure 4, it uses multiple small trees to store data. Its retrieval process is to build an
ordered small tree in memory. As the amount of data grows, the data in memory is flushed
to disk. However, it does not achieve a fast response because its retrieval result is obtained
by traversing all the small trees [42,43].

Electronics 2023, 12, 987 5 of 20

Electronics 2023, 12, x FOR PEER REVIEW 5 of 20

Figure 4. The structure of LSM-Tree.

Using secondary indexes is an effective method to support diversified queries in
HBase. To date, many researchers have proposed a variety of HBase-based secondary
index design methods [44–46], including a linear index, a double-layer index, and an in-
verted index.

Linear indexing achieves multidimensional indexing by mapping K-dimensional
data to a one-dimensional space. This method is effective for processing
high-dimensional spatial data but is not applicable to indexing other modal data [44].
The double-layer index matches the global index with the local index, thus reducing the
number of query nodes and narrowing the query range from the high-level index to the
low-level index. However, it requires maintaining two indexes and has a high write
overhead. In addition, the two indexes require using different data structures and are
very complex to implement [45]. The inverted index is the simplest multilevel index so-
lution. Figure 5 shows the secondary index created based on the inverted index idea in
HBase. The core idea is to use the index column in the main table as the key of the index
table and the key of the main table as the value of the index table [46]. However, it can-
not avoid querying the index table and the main table, resulting in high I/O overhead.

Figure 5. The secondary index in HBase.

2.4. Summary
As discussed in this section, the storage architecture of the HBase database was an-

alyzed. It was found that HBase did not dynamically manage hot data, and the retrieval
performance of non-primary keys was poor. Inspired by hot and cold management al-
gorithms and secondary indexes, we proposed an HBase-based distributed storage and
retrieval optimization model to optimize the retrieval scenario of data in the medical
field.

Figure 4. The structure of LSM-Tree.

Using secondary indexes is an effective method to support diversified queries in HBase.
To date, many researchers have proposed a variety of HBase-based secondary index design
methods [44–46], including a linear index, a double-layer index, and an inverted index.

Linear indexing achieves multidimensional indexing by mapping K-dimensional data
to a one-dimensional space. This method is effective for processing high-dimensional
spatial data but is not applicable to indexing other modal data [44]. The double-layer index
matches the global index with the local index, thus reducing the number of query nodes
and narrowing the query range from the high-level index to the low-level index. However,
it requires maintaining two indexes and has a high write overhead. In addition, the two
indexes require using different data structures and are very complex to implement [45].
The inverted index is the simplest multilevel index solution. Figure 5 shows the secondary
index created based on the inverted index idea in HBase. The core idea is to use the index
column in the main table as the key of the index table and the key of the main table as the
value of the index table [46]. However, it cannot avoid querying the index table and the
main table, resulting in high I/O overhead.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 20

Figure 4. The structure of LSM-Tree.

Using secondary indexes is an effective method to support diversified queries in
HBase. To date, many researchers have proposed a variety of HBase-based secondary
index design methods [44–46], including a linear index, a double-layer index, and an in-
verted index.

Linear indexing achieves multidimensional indexing by mapping K-dimensional
data to a one-dimensional space. This method is effective for processing
high-dimensional spatial data but is not applicable to indexing other modal data [44].
The double-layer index matches the global index with the local index, thus reducing the
number of query nodes and narrowing the query range from the high-level index to the
low-level index. However, it requires maintaining two indexes and has a high write
overhead. In addition, the two indexes require using different data structures and are
very complex to implement [45]. The inverted index is the simplest multilevel index so-
lution. Figure 5 shows the secondary index created based on the inverted index idea in
HBase. The core idea is to use the index column in the main table as the key of the index
table and the key of the main table as the value of the index table [46]. However, it can-
not avoid querying the index table and the main table, resulting in high I/O overhead.

Figure 5. The secondary index in HBase.

2.4. Summary
As discussed in this section, the storage architecture of the HBase database was an-

alyzed. It was found that HBase did not dynamically manage hot data, and the retrieval
performance of non-primary keys was poor. Inspired by hot and cold management al-
gorithms and secondary indexes, we proposed an HBase-based distributed storage and
retrieval optimization model to optimize the retrieval scenario of data in the medical
field.

Figure 5. The secondary index in HBase.

2.4. Summary

As discussed in this section, the storage architecture of the HBase database was an-
alyzed. It was found that HBase did not dynamically manage hot data, and the retrieval
performance of non-primary keys was poor. Inspired by hot and cold management al-
gorithms and secondary indexes, we proposed an HBase-based distributed storage and
retrieval optimization model to optimize the retrieval scenario of data in the medical field.

Electronics 2023, 12, 987 6 of 20

3. Materials and Methods
3.1. Overview

HBase was employed to store medical data, where a column cluster stores one form
of medical data. In order to improve the retrieval performance of the medical storage
system, an HBase-based retrieval optimization model was proposed, and its design frame-
work is depicted in Figure 6. The optimization module consists of four parts: the Access
Request Management Module, the Temperature Marking Module, the Data Dynamically
Management Module, and the Index Management Module. The Access Request Manage-
ment Module manages access requests by analyzing the type of data to be retrieved. The
Temperature Marking Module identifies the temperature of the data by analyzing data
access records. The Data Dynamic Management Module dynamically manages the optimal
storage medium for data by designing the algorithm SL-TCR. The Index Management
Module, based on the improved secondary index strategy, can realize diversified retrieval
of medical data.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 20

3. Materials and Methods
3.1. Overview

HBase was employed to store medical data, where a column cluster stores one form
of medical data. In order to improve the retrieval performance of the medical storage
system, an HBase-based retrieval optimization model was proposed, and its design
framework is depicted in Figure 6. The optimization module consists of four parts: the
Access Request Management Module, the Temperature Marking Module, the Data Dy-
namically Management Module, and the Index Management Module. The Access Re-
quest Management Module manages access requests by analyzing the type of data to be
retrieved. The Temperature Marking Module identifies the temperature of the data by
analyzing data access records. The Data Dynamic Management Module dynamically
manages the optimal storage medium for data by designing the algorithm SL-TCR. The
Index Management Module, based on the improved secondary index strategy, can real-
ize diversified retrieval of medical data.

Figure 6. Overview of the model designed.

After introducing dynamic data management and index optimization strategies, the
steps to retrieve medical data are as follows.

Step 1. The client sends a medical data access request to the Access Request Man-
agement Module.

Step 2. According to the retrieval keywords, the Access Request Management
Module estimates whether it is a primary key. The request is passed to the Data Dynam-
ic Management Module if it is. Otherwise, it is given to the Index Management Module
(the retrieval process for non-primary keys is described in Section 3.4).

Step 3. The Data Dynamic Management Module determines whether the data to be
retrieved is hot. If it is, the data in the Hot Area is retrieved, and go to Step 8. Otherwise,
go to Step 4.

Figure 6. Overview of the model designed.

After introducing dynamic data management and index optimization strategies, the
steps to retrieve medical data are as follows.

Step 1. The client sends a medical data access request to the Access Request Manage-
ment Module.

Step 2. According to the retrieval keywords, the Access Request Management Module
estimates whether it is a primary key. The request is passed to the Data Dynamic Manage-
ment Module if it is. Otherwise, it is given to the Index Management Module (the retrieval
process for non-primary keys is described in Section 3.4).

Step 3. The Data Dynamic Management Module determines whether the data to be
retrieved is hot. If it is, the data in the Hot Area is retrieved, and go to Step 8. Otherwise,
go to Step 4.

Electronics 2023, 12, 987 7 of 20

Step 4. Interact with the Meta Cache to read information about the RegionServer
where the Meta table is located. If the Meta Cache does not match, connect to Zookeeper to
obtain information about the RegionServer where the Meta table resides.

Step 5. Obtain the specific location of the Meta table, locate the RegionServer where
the Meta table is situated, communicate with the node to obtain the Meta table, and write
the Meta table metadata information to the Meta Cache.

Step 6. Interact with the Meta Table to read information about the RegionServer where
the data to be retrieved is located, establish a connection with the node, and retrieve data
in HBase. If no match is performed, go to Step 7. Otherwise, go to Step 8.

Step 7. An initial temperature is assigned to the retrieved data, and the algorithm
SL-TCR is invoked to insert it into the Warm Area.

Step 8. Return the results to the Client.

3.2. Temperature Marking Module

By analyzing data access records in various specific medical scenarios, this paper finds
that medical data has a relatively fixed access mode in different business scenarios, especially
when specific data are accessed more frequently [47], called hot data. On the contrary, cold
data are data that is accessed occasionally or will not be accessed in the future.

Different “measurement criteria” under the cold and hot degree of data will appear in
different results. [48–50] The existing scheme usually uses the following three methods to
identify the cold and hot degree of data: one is based on the sequence of data generation
identification method, i.e., the earlier the data generated, the colder, the later the data
generated, the hotter, usually using FIFO maintenance data insertion sequence; The second
is the identification method based on data access frequency, i.e., the data with higher
historical access frequency is hotter, and the data with lower access frequency is colder.
Usually, the LFU algorithm can be used to maintain the sequence of data according to the
historical access frequency. The third is the recognition method based on the data access
sequence. That is, the more recently accessed data are hotter, and the earlier accessed
data are colder. LRU algorithm is used to maintain data access to identify the degree of
cold or hot data. However, these identification methods consider a single factor, and the
identification effect of identifying the cold and hot degree of data simply according to the
access time or frequency of data are relatively poor, which cannot truly represent the real
cold and hot situation of data.

On this basis, a method of size–temperature computational recognition (S-TCR) is
proposed in order to better identify the computational recognition of hot and cold data
and take various factors into consideration. The method of S-TCR data cooling and heat
labeling is to learn from Newton’s cooling law and simulate the process of temperature
change through exponential attenuation. As shown in Formula (2), Newton’s cooling law
proposes that an object with a high temperature in the physical environment will gradually
cool down, and the temperature of the object will tend to the ambient temperature with the
passage of time. Similarly, the temperature of the stored data decreases over time; when
accessing data, it is similar to “warming” the data. The temperature of the data increases.
In this way, we can acquire the temperature value of the data in the Hot Area at any time,
and then sort the data according to the temperature value and define the K data with the
lowest temperature as the cold data so as to realize the identification of hot and cold data.

Tt = (T0 −H)e−kt + H (2)

where Tt represents the current temperature of the object, H is the ambient temperature,
and k is the proportional coefficient of the difference between the speed of temperature
change in an object and the temperature of the surrounding environment.

The change law of objects in the physical environment affected by ambient temperature
is slightly different from the change law of cold and hot degrees of data in data storage.
In data storage, each datum is independent; the temperature of the data is not affected
by other data or the storage media, but by the number of and access time of the data

Electronics 2023, 12, 987 8 of 20

itself. Therefore, if data are not accessed for a long time, its temperature will eventually be
infinitely close to 0. That is to say, for data, its ambient temperature has no effect on its own
temperature, thus the ambient temperature can be ignored when calculating the change
in data temperature over time. Therefore, for the application scenario of measuring the
cold and hot degree of data, Formula (2) is deformed, ignoring the influence of ambient
temperature H, and variable Theat is added, namely, the “warming” amplitude of data after
each visit. Formula (3) can be obtained:

Ttn = Ttn−1e−αtn−tn−1 + Theat ∗ c (3)

where Ttn indicates the temperature of the data at the time tn, the cooling coefficient α is the
change rate of the data temperature, Theat denotes the temperature increase since the data
were accessed, and c represents whether the data are accessed at tn. If so, it is 1. Otherwise,
it is 0.

Medical data includes KB of text data and MB of image data, meaning that one also
needs to consider the size of the data. At the same time, the log value of the data size is
used to reduce the weight of the data block size, as to avoid large data blocks from being
mislabeled and residing in high-cost media for a long time [51]. To sum up, the calculation
formula of the S-TCR identification method is shown in Formula (4). Where Size denotes
the size of the data.

Ttn = Ttn−1 e−αlg(Size)tn−tn−1 + Theat ∗ c (4)

The S-TCR method measures the degree of cooling and heating of data in data storage,
specifically for the following three applications. (1) Data insertion: When the data are newly
inserted, the ambient temperature of the data storage is taken as the initial temperature T0
of the data and assigned to the data; (2) Data access: When the data are accessed (Select,
Update), the heat of the data increases. It is assumed that different access operations
increase the temperature of the data equally, which is Theat. Therefore, the temperature at
the time when the data are accessed is the temperature obtained with time cooling, and
then Theat is added; (3) Cold and the hot degrees of data: This method can calculate the
real-time temperature of any data at any time and mark the cold and hot degrees of data. If
you want to compare the cold and hot degrees of different data, you can directly compare
the temperature values of the data. The data with a high temperature are relatively hot,
while the data with a low temperature is rather cold.

The temperature model plays an important role in identifying hot and cold data.
Through the exact temperature value, the temperature model realizes the quantification
and identification of the cold and hot degrees of the data. Because the temperature model
not only considers the influence of access frequency, time factor, and Size on the cold and
hot degree of the data, it also uses the exponential calculation, thus, in the actual workload
at any point in time, the temperature of any two data is different. It is more conducive to
identifying the cold and hot degrees of data. In order to analyze the performance of the
S-TCR method, the general properties of the S-TCR in quantifying the degree of cooling
and heating of data are discussed.

In the following example, a variety of typical examples are selected. Formula 4 is used to
calculate the real-time temperature of the data, assuming that the initial temperature of the
data is the same, T0 = 30, Theat = 2, and the cooling rate of the data temperature is α = −0.05.

(1) The temperature change in S-TCR with time was simulated only considering the
access time. Data-1 was the data that had never been accessed. Data-2 refers to the
data that wre frequently accessed in the first 100 s and never accessed in the last 200 s.
Data-3 refers to the data that were never accessed in the first 200 s and frequently
accessed in the following 100 s. Data-4 is the data that were never accessed in the first
280 s and frequently accessed in the second 20 s. The temperature changes of four
kinds of data over time are shown in Figure 7.

Electronics 2023, 12, 987 9 of 20

Electronics 2023, 12, x FOR PEER REVIEW 9 of 20

refers to the data that were never accessed in the first 200 s and frequently accessed in
the following 100 s. Data-4 is the data that were never accessed in the first 280 s and fre-
quently accessed in the second 20 s. The temperature changes of four kinds of data over
time are shown in Figure 7.

Figure 7. Influence of access time on temperature in S-TCR method.

As shown in Figure 7, when Size, access frequency, and other conditions are con-
sistent, the hot data frequently accessed in the early stage will gradually cool down to
cold data due to the cooling mechanism. When other conditions, such as Size and access
frequency, are consistent, the frequently accessed data in the later period will gradually
heat up to become hot data. It shows that this method pays more attention to the recent
thermal data and avoids the pollution of the Hot Area.

(2) The temperature change in S-TCR with time was simulated only considering the
access frequency. Data-1, Data-2, and Data-3 are the data that were never accessed in the
first 280 s but were frequently accessed in the later 20 s. In addition, Data-1 was the con-
trol group; Data-2 was accessed twice as often as Data-1; Data-3 was accessed three
times as often as Data-1. The temperature changes of three kinds of data over time are
shown in Figure 8.

Figure 8. Influence of access frequency on temperature in S-TCR method.

As shown in Figure 8, when the number of accesses is different, the temperature of
the later accessed data may not be high. When conditions such as Size and access time
are consistent, the higher the access frequency in the S-TCR method, the higher the tem-
perature.

(3) Temperature changes of S-TCR over time were simulated only considering data
Size. Data-1, Data-2, and Data-3 are the data that were never accessed in the first 280 0 s
but were frequently accessed in the later 20 s. In addition, Data-1 was the control group;

0

10

20

30

40

50

60

0 100 200 300 400

Te
m

pe
ra

tu
re

query time/s

Data-1

Data-2

Data-3

Data-4

0

20

40

60

80

100

0 100 200 300 400

Te
m

pe
ra

tu
re

query time/s

Data-1

Data-2

Data-3

Figure 7. Influence of access time on temperature in S-TCR method.

As shown in Figure 7, when Size, access frequency, and other conditions are consistent,
the hot data frequently accessed in the early stage will gradually cool down to cold data
due to the cooling mechanism. When other conditions, such as Size and access frequency,
are consistent, the frequently accessed data in the later period will gradually heat up to
become hot data. It shows that this method pays more attention to the recent thermal data
and avoids the pollution of the Hot Area.

(2) The temperature change in S-TCR with time was simulated only considering the
access frequency. Data-1, Data-2, and Data-3 are the data that were never accessed in
the first 280 s but were frequently accessed in the later 20 s. In addition, Data-1 was
the control group; Data-2 was accessed twice as often as Data-1; Data-3 was accessed
three times as often as Data-1. The temperature changes of three kinds of data over
time are shown in Figure 8.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 20

refers to the data that were never accessed in the first 200 s and frequently accessed in
the following 100 s. Data-4 is the data that were never accessed in the first 280 s and fre-
quently accessed in the second 20 s. The temperature changes of four kinds of data over
time are shown in Figure 7.

Figure 7. Influence of access time on temperature in S-TCR method.

As shown in Figure 7, when Size, access frequency, and other conditions are con-
sistent, the hot data frequently accessed in the early stage will gradually cool down to
cold data due to the cooling mechanism. When other conditions, such as Size and access
frequency, are consistent, the frequently accessed data in the later period will gradually
heat up to become hot data. It shows that this method pays more attention to the recent
thermal data and avoids the pollution of the Hot Area.

(2) The temperature change in S-TCR with time was simulated only considering the
access frequency. Data-1, Data-2, and Data-3 are the data that were never accessed in the
first 280 s but were frequently accessed in the later 20 s. In addition, Data-1 was the con-
trol group; Data-2 was accessed twice as often as Data-1; Data-3 was accessed three
times as often as Data-1. The temperature changes of three kinds of data over time are
shown in Figure 8.

Figure 8. Influence of access frequency on temperature in S-TCR method.

As shown in Figure 8, when the number of accesses is different, the temperature of
the later accessed data may not be high. When conditions such as Size and access time
are consistent, the higher the access frequency in the S-TCR method, the higher the tem-
perature.

(3) Temperature changes of S-TCR over time were simulated only considering data
Size. Data-1, Data-2, and Data-3 are the data that were never accessed in the first 280 0 s
but were frequently accessed in the later 20 s. In addition, Data-1 was the control group;

0

10

20

30

40

50

60

0 100 200 300 400

Te
m

pe
ra

tu
re

query time/s

Data-1

Data-2

Data-3

Data-4

0

20

40

60

80

100

0 100 200 300 400

Te
m

pe
ra

tu
re

query time/s

Data-1

Data-2

Data-3

Figure 8. Influence of access frequency on temperature in S-TCR method.

As shown in Figure 8, when the number of accesses is different, the temperature
of the later accessed data may not be high. When conditions such as Size and access
time are consistent, the higher the access frequency in the S-TCR method, the higher the
temperature.

Electronics 2023, 12, 987 10 of 20

(3) Temperature changes of S-TCR over time were simulated only considering data Size.
Data-1, Data-2, and Data-3 are the data that were never accessed in the first 280 s but
were frequently accessed in the later 20 s. In addition, Data-1 was the control group; The
Size of data 2 was 100 times that of Data-1. Data-2 was 1000 times larger than Data-1.
The temperature changes of three kinds of data over time are shown in Figure 9.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 20

The Size of data 2 was 100 times that of Data-1. Data-2 was 1000 times larger than Da-
ta-1. The temperature changes of three kinds of data over time are shown in Figure 9.

Figure 9. Influence of Size on temperature in S-TCR method.

As shown in Figure 9, we found that data with larger sizes in the S-TCR method
cooled down faster and warmed up faster. In addition, we found that the cooling and
warming amplitude of the data caused by Size was reasonable despite the large differ-
ence in the size of the data, which also showed that formula 4 was reasonable for the
treatment of Size.

In summary, the S-TCR identification method comprehensively considers the access
frequency, access time, and size of multi-modal medical data. It realizes the temperature
identification of any data at any time, avoiding the performance limitation caused by a
single factor of LRU, LFU, Size, and other algorithms. Similarly, it is more suitable for
multi-mode medical data than the TCR algorithm. Therefore, the S-TCR identification
method is in line with our design expectations and can effectively identify hot and cold
medical data.

3.3. Dynamic Management Module of Data
Access to data is dynamic, and the storage capacity of high-cost storage media is

limited. Therefore, it is necessary to design cold and hot data management modules and
realize a dynamic data management model based on data temperature to improve access
performance. The module uses the HBase database as the Cold Area and memory as the
Hot Area. It mainly implements the following three functions: (1) Data insertion: when
newly accessed data are not in the Hot Area, an initial temperature T0 is assigned to the
number and inserted into the Hot Area; (2) Data query: when an access request arrives,
the data will be retrieved in the Hot Area, and the result will be returned. If the search
keyword does not exist, the request will be returned; (3) Data replacement: when the
Hot Area reaches the threshold, an appropriate replacement algorithm is selected to de-
lete the Cold Data that have been cooled in the Hot Area in bulk.

The performance of the data replacement algorithm is analyzed below. Since we
have proposed the temperature identification method S-TCR in Section 3.2, we naturally
thought of using it to replace the cooled data in the Hot Area. By calculating the temper-
ature of all the data in the Hot Area, we used the sorting algorithm to select the K cold-
est data. Although this method is simple and easy to implement, the cost is very high,
and the cost of data replacement is very high. However, the LRU algorithm can be com-
pleted only in O (1) time complexity. According to statistics, under 100 K visits, the time
spent by the S-TCR algorithm is about three times that of the LRU algorithm [29]. Com-
pared with LRU, the hit rate of the S-TCR model can be increased by about 1.5 times,
which indicates that the S-TCR method is more accurate in identifying the degree of cold
and hot data. While the LRU algorithm has a lower time cost, the two can be combined

0

10

20

30

40

50

0 100 200 300 400

Te
m

pe
ra

tu
re

query time/s

Data-1

Data-2

Data-3

Figure 9. Influence of Size on temperature in S-TCR method.

As shown in Figure 9, we found that data with larger sizes in the S-TCR method cooled
down faster and warmed up faster. In addition, we found that the cooling and warming
amplitude of the data caused by Size was reasonable despite the large difference in the size
of the data, which also showed that formula 4 was reasonable for the treatment of Size.

In summary, the S-TCR identification method comprehensively considers the access
frequency, access time, and size of multi-modal medical data. It realizes the temperature
identification of any data at any time, avoiding the performance limitation caused by a
single factor of LRU, LFU, Size, and other algorithms. Similarly, it is more suitable for
multi-mode medical data than the TCR algorithm. Therefore, the S-TCR identification
method is in line with our design expectations and can effectively identify hot and cold
medical data.

3.3. Dynamic Management Module of Data

Access to data is dynamic, and the storage capacity of high-cost storage media is
limited. Therefore, it is necessary to design cold and hot data management modules and
realize a dynamic data management model based on data temperature to improve access
performance. The module uses the HBase database as the Cold Area and memory as the
Hot Area. It mainly implements the following three functions: (1) Data insertion: when
newly accessed data are not in the Hot Area, an initial temperature T0 is assigned to the
number and inserted into the Hot Area; (2) Data query: when an access request arrives,
the data will be retrieved in the Hot Area, and the result will be returned. If the search
keyword does not exist, the request will be returned; (3) Data replacement: when the Hot
Area reaches the threshold, an appropriate replacement algorithm is selected to delete the
Cold Data that have been cooled in the Hot Area in bulk.

The performance of the data replacement algorithm is analyzed below. Since we have
proposed the temperature identification method S-TCR in Section 3.2, we naturally thought
of using it to replace the cooled data in the Hot Area. By calculating the temperature of
all the data in the Hot Area, we used the sorting algorithm to select the K coldest data.
Although this method is simple and easy to implement, the cost is very high, and the cost
of data replacement is very high. However, the LRU algorithm can be completed only in
O (1) time complexity. According to statistics, under 100 K visits, the time spent by the
S-TCR algorithm is about three times that of the LRU algorithm [29]. Compared with LRU,

Electronics 2023, 12, 987 11 of 20

the hit rate of the S-TCR model can be increased by about 1.5 times, which indicates that
the S-TCR method is more accurate in identifying the degree of cold and hot data. While
the LRU algorithm has a lower time cost, the two can be combined to take advantage of
each other. The SL-TCR (Size & LRU–temperature Calculation Recognition) algorithm is
proposed to replace hot and cold data.

The Hot Area is divided into Hot Area and a Warm Area by the SL-TCR algorithm.
warm data refers to cooler hot data, and the rate of Hot Area and Warm Area is 3:1. The
SL-TCR algorithm uses the LRU algorithm to manage data in Hot Area dynamically, and
the S-TCI temperature recognition method uses a sorting algorithm to dynamically manage
data in Warm Area, which avoids traversing all the cached data, reduces the time overhead
of the algorithm, and improves the performance of the algorithm. Figure 10 describes
the replacement idea of the SL-TCR algorithm. In the beginning, both the Hot Area and
the Warm Area are empty. As time goes by, data are accessed continuously. The recently
accessed data are recorded as warm data, and the warm data are moved into the Warm
Area. If the Warm Area is full, the heated data in the Warm Area, namely, hot data, are
transferred into the Hot Area, and the warm data are moved into the Warm Area. If the
Hot Area and Warm Area are both full, the cooled Data in the Hot Area and Warm Area
are deleted, and the warm data are moved into the Warm Area.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 20

to take advantage of each other. The SL-TCR (Size & LRU–temperature Calculation
Recognition) algorithm is proposed to replace hot and cold data.

The Hot Area is divided into Hot Area and a Warm Area by the SL-TCR algorithm.
warm data refers to cooler hot data, and the rate of Hot Area and Warm Area is 3:1. The
SL-TCR algorithm uses the LRU algorithm to manage data in Hot Area dynamically,
and the S-TCI temperature recognition method uses a sorting algorithm to dynamically
manage data in Warm Area, which avoids traversing all the cached data, reduces the
time overhead of the algorithm, and improves the performance of the algorithm. Figure
10 describes the replacement idea of the SL-TCR algorithm. In the beginning, both the
Hot Area and the Warm Area are empty. As time goes by, data are accessed continu-
ously. The recently accessed data are recorded as warm data, and the warm data are
moved into the Warm Area. If the Warm Area is full, the heated data in the Warm Area,
namely, hot data, are transferred into the Hot Area, and the warm data are moved into
the Warm Area. If the Hot Area and Warm Area are both full, the cooled Data in the Hot
Area and Warm Area are deleted, and the warm data are moved into the Warm Area.

Figure 10. Data dynamic management model data replacement idea.

The algorithm SL-TCR (Size & LRU-temperature Calculation Recognition) is used
to manage hot and cold data. This algorithm uses the LRU algorithm to dynamically
manage data in Hot Area and the S-TCR temperature recognition method and sorting
algorithm to manage data in Warm Area dynamically. The data block, designed by
SL-TCR for storing data, is composed of five parts: key, value, T, t, and size. They repre-
sent, respectively, the key of the data, the value of that key, the temperature of the data
block, the timestamp when the temperature was last calculated, and the size of the data
block.

The process of the SL-TCR algorithm proposed in this paper is shown in Algorithm
1. Lines 2 through 4 indicate that if the Warm Area is not full, new data are inserted di-
rectly into the Warm Area. Lines 5 through 11 state that if the Warm Area is full and the
Hot Area is not, then the heated warm data from the Warm Area will be moved to the
Hot Area. Lines 12 through 17 suggest deleting the warm, cooled data in the Warm Area
when both Warm and Hot Areas are full. The temperature of the KTH data is denoted as
Cold. Data blocks with lower temperatures than Cold are deleted from the Hot Area.
Line 18 indicates inserting data into the Warm Area.

Algorithm 1. The process of algorithm SL-TCR
Input: key, value, T, t, size, threshold1, threshold2
Output
1. data = new Node(key, value, T, t, size)
2. if WarmArea.size() < threshold1 then
3. WarmArea.put(data);
4. end
5. else if WarmArea.size() ≥ threshold1 then
6. update_Temperature();

Figure 10. Data dynamic management model data replacement idea.

The algorithm SL-TCR (Size & LRU-temperature Calculation Recognition) is used to
manage hot and cold data. This algorithm uses the LRU algorithm to dynamically manage
data in Hot Area and the S-TCR temperature recognition method and sorting algorithm to
manage data in Warm Area dynamically. The data block, designed by SL-TCR for storing
data, is composed of five parts: key, value, T, t, and size. They represent, respectively, the
key of the data, the value of that key, the temperature of the data block, the timestamp
when the temperature was last calculated, and the size of the data block.

The process of the SL-TCR algorithm proposed in this paper is shown in Algorithm 1.
Lines 2 through 4 indicate that if the Warm Area is not full, new data are inserted directly
into the Warm Area. Lines 5 through 11 state that if the Warm Area is full and the Hot
Area is not, then the heated warm data from the Warm Area will be moved to the Hot Area.
Lines 12 through 17 suggest deleting the warm, cooled data in the Warm Area when both
Warm and Hot Areas are full. The temperature of the KTH data is denoted as Cold. Data
blocks with lower temperatures than Cold are deleted from the Hot Area. Line 18 indicates
inserting data into the Warm Area.

Electronics 2023, 12, 987 12 of 20

Algorithm 1. The process of algorithm SL-TCR

Input: key, value, T, t, size, threshold1, threshold2
Output
1. data = new Node(key, value, T, t, size)
2. if WarmArea.size() < threshold1 then
3. WarmArea.put(data);
4. end
5. else if WarmArea.size() ≥ threshold1 then
6. update_Temperature();
7. HotCold← sort(stcr);
8. if ltcr.size < threshold2 then
9. WarmArea.remove(Hot);
10. HotArea.put(Hot);
11. end
12. else
13. for i← 0 to k do
14. Cold←WarmArea.remove();
15. end
16. HotArea.remove(node.T < Cold.T);
17. end
18. WarmArea.put(data);
19. end

3.4. Index Management Module

When searching in HBase for data by non-primary key, the result can be obtained
only by scanning the entire table and filtering the data that does not meet the search
criteria. However, scanning tables with hundreds of millions of records will take up a lot
of resources. Therefore, we need to design a secondary index for HBase tables to avoid
the time consumption in retrieving non-primary keys. The secondary index stores the
mapping between index columns and keys and is a common and efficient solution for
searching for non-primary keys. It searches the RowKey through the secondary index, and
the corresponding complete data can then be searched via the RowKey.

Further, two optimization strategies for the secondary index were proposed in the
present study to reduce the retrieval time and improve the retrieval efficiency of the index.
Firstly, Bloom Filter was used to optimize the performance of the secondary index. BF is
an effective method to judge whether an element w exists in set A, especially when the
number of elements in A is very large and the amount of data far exceeds the memory
space of the machine [52–55]. Hence, BF is used to discover non-existent search keywords
to avoid unnecessary time overhead generated by extreme I/O. The BF mapping index
keyword is shown in Figure 11, and its idea is described as follows:

Electronics 2023, 12, x FOR PEER REVIEW 13 of 20

𝐹௕ = ሾ1 − ൬1 − 1𝑚൰௞௡ሿ௞ ൎ ൬1 − 𝑒ି௞௡௠ ൰௞
 (5)

Figure 11. The process of hash mapping of BF.

Secondly, the storage location of the secondary index is designed to reduce the time
cost of the index based on an inverted index. Generally, if an HBase table is not large, a
Region is used to store the table and a RegionServer [56] is used to monitor the table. As
the data size increases, the Region may be split and monitored by multiple RegionServ-
ers [56]. Due to the large size of the medical data, secondary indexes and primary data
are likely to be in different Regions and monitored by different RegionServers [57], re-
sulting in non-primary key retrieval requests requiring four I/O operations to acquire
results. Specific operations are as follows: (1) the client queries the index table based on
the retrieval keyword; (2) acquire the RowKey of the main table and return it to the cli-
ent; (3) the client queries the main table according to the RowKey; (4) the retrieval result
is returned to the client. Obviously, multiple communications with the RegionServer in-
creases the time overhead and leads to low retrieval efficiency. Therefore, it is very nec-
essary to optimize the storage location of secondary indexes and reduce the number of
I/O communication to improve the retrieval efficiency of secondary indexes.

The retrieval performance can be improved by reducing the number of I/O opera-
tions. Suppose the main table and index reside on the same RegionServer and are run on
it using the coprocessor provided by HBase. In that case, the query requires only 2 I/O
operations: (1) query the index table and obtain the RowKey according to the data to be
queried, then query the main table in accordance with the RowKey; (2) return the result
to the client. Therefore, for optimization, we should consider how to host the main and
index tables on the same RegionServer. For the purpose of achieving the goal, the field
of RowKey is designed as demonstrated in Figure 12. The RowKey of the secondary in-
dex consists of 3 fields: (1) 0 to 8 bits indicate the start key of the Region where the data
in the main table resides. The search of RowKey follows the rule of the leftmost prefix.
Therefore, the index table and the main table are in the same RegionServer; (2) 9 to 16 is
the index name that uniquely identifies the index; (3) 17 to 17 + m bits to ensure the
uniqueness of RowKey. m is the minimum number of bytes required to provide the
uniqueness of RowKey.

Figure 12. The RowKey of designed secondary index.

After the introduction of the secondary index optimization strategy, the retrieval
steps are shown in Figure 13.

Step 1. The client sends a medical retrieval request to the Access Request Manage-
ment Module.

Figure 11. The process of hash mapping of BF.

Electronics 2023, 12, 987 13 of 20

Step 1. Create an array A of length n with elements of 0 or 1.
Step 2. Each element w of A is initially set to 0.
Step 3. For each keyword w of the index, conduct k hashes, the i’th hashes modulo N,

generate the mappings, and set them to 1 (for example, the x, y, and z are mapped to 1, 5,
13, 4, 11, 16 and 3, 5, 11 by hash function).

Step 4. When a non-primary key retrieval occurs, the mapping values of the search
keywords are obtained through k hashes, and the values of their corresponding bits are
obtained in the A.

If any are not 1, the keyword will fail to be matched. This situation means that
the query result does not exist, and the query will be filtered out (for example, the w is,
respectively, mapped to bit 0, bit 3, and bit 15 because there are non-1 bits in the resulting
mapping value, thus it is determined that w must not be in the A).

Step 5. If the keyword is successfully matched, continue to retrieve.
It is worth noting that there is a case where the match is successful, but the element

does not exist in set A. Such a miscalculation is called a False Positive. For example, the
mapping values of t is 5, 11, and 13, respectively, and these positions are all 1 in A. In fact,
t is not in A. As indicated in that study, let Fb be the rate of the False Positive. Fb can be
expressed as Equation 5, where m represents the bit number of BF, k represents the number
of hash functions, and n represents the number of elements in the set [52]. Due to the low
Fb, it is assumed in this paper that there is no keyword misjudgment.

Fb = [1−
(

1− 1
m

)kn
]

k

≈
(

1− e
−kn

m

)k
(5)

Secondly, the storage location of the secondary index is designed to reduce the time
cost of the index based on an inverted index. Generally, if an HBase table is not large, a
Region is used to store the table and a RegionServer [56] is used to monitor the table. As the
data size increases, the Region may be split and monitored by multiple RegionServers [56].
Due to the large size of the medical data, secondary indexes and primary data are likely to
be in different Regions and monitored by different RegionServers [57], resulting in non-
primary key retrieval requests requiring four I/O operations to acquire results. Specific
operations are as follows: (1) the client queries the index table based on the retrieval
keyword; (2) acquire the RowKey of the main table and return it to the client; (3) the client
queries the main table according to the RowKey; (4) the retrieval result is returned to
the client. Obviously, multiple communications with the RegionServer increases the time
overhead and leads to low retrieval efficiency. Therefore, it is very necessary to optimize
the storage location of secondary indexes and reduce the number of I/O communication to
improve the retrieval efficiency of secondary indexes.

The retrieval performance can be improved by reducing the number of I/O operations.
Suppose the main table and index reside on the same RegionServer and are run on it using
the coprocessor provided by HBase. In that case, the query requires only 2 I/O operations:
(1) query the index table and obtain the RowKey according to the data to be queried, then
query the main table in accordance with the RowKey; (2) return the result to the client.
Therefore, for optimization, we should consider how to host the main and index tables
on the same RegionServer. For the purpose of achieving the goal, the field of RowKey is
designed as demonstrated in Figure 12. The RowKey of the secondary index consists of
3 fields: (1) 0 to 8 bits indicate the start key of the Region where the data in the main table
resides. The search of RowKey follows the rule of the leftmost prefix. Therefore, the index
table and the main table are in the same RegionServer; (2) 9 to 16 is the index name that
uniquely identifies the index; (3) 17 to 17 + m bits to ensure the uniqueness of RowKey. m
is the minimum number of bytes required to provide the uniqueness of RowKey.

Electronics 2023, 12, 987 14 of 20

Electronics 2023, 12, x FOR PEER REVIEW 13 of 20

𝐹௕ = ሾ1 − ൬1 − 1𝑚൰௞௡ሿ௞ ൎ ൬1 − 𝑒ି௞௡௠ ൰௞
 (5)

Figure 11. The process of hash mapping of BF.

Secondly, the storage location of the secondary index is designed to reduce the time
cost of the index based on an inverted index. Generally, if an HBase table is not large, a
Region is used to store the table and a RegionServer [56] is used to monitor the table. As
the data size increases, the Region may be split and monitored by multiple RegionServ-
ers [56]. Due to the large size of the medical data, secondary indexes and primary data
are likely to be in different Regions and monitored by different RegionServers [57], re-
sulting in non-primary key retrieval requests requiring four I/O operations to acquire
results. Specific operations are as follows: (1) the client queries the index table based on
the retrieval keyword; (2) acquire the RowKey of the main table and return it to the cli-
ent; (3) the client queries the main table according to the RowKey; (4) the retrieval result
is returned to the client. Obviously, multiple communications with the RegionServer in-
creases the time overhead and leads to low retrieval efficiency. Therefore, it is very nec-
essary to optimize the storage location of secondary indexes and reduce the number of
I/O communication to improve the retrieval efficiency of secondary indexes.

The retrieval performance can be improved by reducing the number of I/O opera-
tions. Suppose the main table and index reside on the same RegionServer and are run on
it using the coprocessor provided by HBase. In that case, the query requires only 2 I/O
operations: (1) query the index table and obtain the RowKey according to the data to be
queried, then query the main table in accordance with the RowKey; (2) return the result
to the client. Therefore, for optimization, we should consider how to host the main and
index tables on the same RegionServer. For the purpose of achieving the goal, the field
of RowKey is designed as demonstrated in Figure 12. The RowKey of the secondary in-
dex consists of 3 fields: (1) 0 to 8 bits indicate the start key of the Region where the data
in the main table resides. The search of RowKey follows the rule of the leftmost prefix.
Therefore, the index table and the main table are in the same RegionServer; (2) 9 to 16 is
the index name that uniquely identifies the index; (3) 17 to 17 + m bits to ensure the
uniqueness of RowKey. m is the minimum number of bytes required to provide the
uniqueness of RowKey.

Figure 12. The RowKey of designed secondary index.

After the introduction of the secondary index optimization strategy, the retrieval
steps are shown in Figure 13.

Step 1. The client sends a medical retrieval request to the Access Request Manage-
ment Module.

Figure 12. The RowKey of designed secondary index.

After the introduction of the secondary index optimization strategy, the retrieval steps
are shown in Figure 13.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 20

Step 2. The Access Request Management Module determines whether the keyword
is a primary key. If it is a non-primary key query, the request will be passed to the Index
Management Module.

Step 3. The BF determines whether the keyword matches successfully.
Step 4. If the match is successful, go to Step 5. Otherwise, go to Step 9.
Step 5. Connect to HBase.
Step 6. Interact with the Meta Cache to read information from the RegionServer

about where the Meta table is. Communicate with the RegionServer where the Meta ta-
ble is located to obtain the Meta table.

Step 7. Communicate with the RegionServer about where the data are located.
Step 8. The coprocessor receives the request and then parses and queries it. After-

wards, query the index table to receive RowKey. Then, the main table is queried by
RowKey.

Step 9. Return the results to the client.

Figure 13. The retrieval steps of the secondary index.

4. Experiments and Results
In the experiments, 15 servers were employed to build a Hadoop-distributed clus-

ter. Hadoop 3.1.1, Ubuntu 16.04, a Core i7-10700 CPU, 32 GB RAM, and the HBase soft-
ware version 1.4.13 were used in the cluster. According to the model designed in this
paper, the MIMIC-IV dataset [58] was stored in HBase. MIMIV-IV is one of the com-
monly used international public healthcare data sets, which contains data in three
modes: two-dimensional tabular data, text-based diagnostic reports, and image data.
The performance of the dynamic management model was verified by comparing the hit
ratio and access latency. Moreover, the performance of the index optimization strategy
was verified by comparing the access delay of non-primary key retrieval under different
models.

Figure 13. The retrieval steps of the secondary index.

Step 1. The client sends a medical retrieval request to the Access Request Management Module.
Step 2. The Access Request Management Module determines whether the keyword

is a primary key. If it is a non-primary key query, the request will be passed to the Index
Management Module.

Step 3. The BF determines whether the keyword matches successfully.
Step 4. If the match is successful, go to Step 5. Otherwise, go to Step 9.
Step 5. Connect to HBase.
Step 6. Interact with the Meta Cache to read information from the RegionServer about

where the Meta table is. Communicate with the RegionServer where the Meta table is
located to obtain the Meta table.

Step 7. Communicate with the RegionServer about where the data are located.
Step 8. The coprocessor receives the request and then parses and queries it. Afterwards,

query the index table to receive RowKey. Then, the main table is queried by RowKey.
Step 9. Return the results to the client.

4. Experiments and Results

In the experiments, 15 servers were employed to build a Hadoop-distributed cluster.
Hadoop 3.1.1, Ubuntu 16.04, a Core i7-10700 CPU, 32 GB RAM, and the HBase software
version 1.4.13 were used in the cluster. According to the model designed in this paper,
the MIMIC-IV dataset [58] was stored in HBase. MIMIV-IV is one of the commonly

Electronics 2023, 12, 987 15 of 20

used international public healthcare data sets, which contains data in three modes: two-
dimensional tabular data, text-based diagnostic reports, and image data. The performance
of the dynamic management model was verified by comparing the hit ratio and access
latency. Moreover, the performance of the index optimization strategy was verified by
comparing the access delay of non-primary key retrieval under different models.

4.1. Performance of Dynamic Management Model

This experiment used memory and the HBase database as the Hot Area and the Cold
Area, respectively. The hit rate of SL-TCR, LRU [26], and S-TCR algorithms in Hot Areas
were compared to verify the performance of the proposed SL-TCR algorithm through the
medical data query experiment. The specific settings of the experiment were as follows:
the initial query times were 2000, and the query times were increased by 2000. The number
of batch deletions K was 5%, and the temperature attenuation coefficient α was 0.01.
The comparison results of the three algorithms are shown in Figure 14. In addition, the
performance of the model in this paper was confirmed by comparing the access latency of
the original HBase, S-TCR, and SL-TCR models. The access delay experimental results of
the three models are shown in Figure 15.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 20

4.1. Performance of Dynamic Management Model
This experiment used memory and the HBase database as the Hot Area and the

Cold Area, respectively. The hit rate of SL-TCR, LRU [26], and S-TCR algorithms in Hot
Areas were compared to verify the performance of the proposed SL-TCR algorithm
through the medical data query experiment. The specific settings of the experiment were
as follows: the initial query times were 2000, and the query times were increased by
2000. The number of batch deletions K was 5%, and the temperature attenuation coeffi-
cient α was 0.01. The comparison results of the three algorithms are shown in Figure 14.
In addition, the performance of the model in this paper was confirmed by comparing the
access latency of the original HBase, S-TCR, and SL-TCR models. The access delay ex-
perimental results of the three models are shown in Figure 15.

Figure 14. Hit rate comparison of three algorithms.

Figure 15. Access latency comparison of three models.

According to the experimental results in Figure 14, the following conclusions can be
drawn: First, the hit rate of the three algorithms increased with the increase in the num-
ber of queries. It showed that the algorithm had good adaptability and stability to his-
torical access records. Second, the hit rate of SL-TCR algorithm was higher than that of
the LRU and S-TCR algorithm. The hit rate of SL-TCR was 28.76–45.51% higher than that
of LRU. This can be attributed to the fact that the SL-TCR algorithm took more factors
into account than LRU, such as access frequency and size. As Warm Area was intro-

0
10
20
30
40
50
60
70
80
90

100

2 4 6 8 10 12 14 16 18 20

Hit Rate/%

Number of
queries/K

SL-TCR S-TCR LRU

0

2000

4000

6000

8000

 10,000

 12,000

 14,000

2 4 6 8 10 12 14 16 18 20

Access
delay/s

Number of
queries/K

HBase

Hot Area(S-TCR)

Hot Area(SL-TCR)

Figure 14. Hit rate comparison of three algorithms.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 20

4.1. Performance of Dynamic Management Model
This experiment used memory and the HBase database as the Hot Area and the

Cold Area, respectively. The hit rate of SL-TCR, LRU [26], and S-TCR algorithms in Hot
Areas were compared to verify the performance of the proposed SL-TCR algorithm
through the medical data query experiment. The specific settings of the experiment were
as follows: the initial query times were 2000, and the query times were increased by
2000. The number of batch deletions K was 5%, and the temperature attenuation coeffi-
cient α was 0.01. The comparison results of the three algorithms are shown in Figure 14.
In addition, the performance of the model in this paper was confirmed by comparing the
access latency of the original HBase, S-TCR, and SL-TCR models. The access delay ex-
perimental results of the three models are shown in Figure 15.

Figure 14. Hit rate comparison of three algorithms.

Figure 15. Access latency comparison of three models.

According to the experimental results in Figure 14, the following conclusions can be
drawn: First, the hit rate of the three algorithms increased with the increase in the num-
ber of queries. It showed that the algorithm had good adaptability and stability to his-
torical access records. Second, the hit rate of SL-TCR algorithm was higher than that of
the LRU and S-TCR algorithm. The hit rate of SL-TCR was 28.76–45.51% higher than that
of LRU. This can be attributed to the fact that the SL-TCR algorithm took more factors
into account than LRU, such as access frequency and size. As Warm Area was intro-

0
10
20
30
40
50
60
70
80
90

100

2 4 6 8 10 12 14 16 18 20

Hit Rate/%

Number of
queries/K

SL-TCR S-TCR LRU

0

2000

4000

6000

8000

 10,000

 12,000

 14,000

2 4 6 8 10 12 14 16 18 20

Access
delay/s

Number of
queries/K

HBase

Hot Area(S-TCR)

Hot Area(SL-TCR)

Figure 15. Access latency comparison of three models.

Electronics 2023, 12, 987 16 of 20

According to the experimental results in Figure 14, the following conclusions can be
drawn: First, the hit rate of the three algorithms increased with the increase in the number
of queries. It showed that the algorithm had good adaptability and stability to historical
access records. Second, the hit rate of SL-TCR algorithm was higher than that of the LRU
and S-TCR algorithm. The hit rate of SL-TCR was 28.76–45.51% higher than that of LRU.
This can be attributed to the fact that the SL-TCR algorithm took more factors into account
than LRU, such as access frequency and size. As Warm Area was introduced into SL-TCR,
the mining of medical hot spot data was more effective, and its hit rate was 13.98–22.11%
higher than S-TCR. In addition, compared with S-TCR and SL-TCR, the higher the hit rate
of the algorithm, the lower the time cost of the algorithm. If the number of access times was
W, the average hit ratio was r, the number of batch deletes was K, and the number of data
stored in the Hot Area was S, the number of data replacement times was (W(1 − r) − S)/K.
It can be seen that the higher the hit rate of the algorithm, the fewer the number of data
replacement and the lower the time cost of the algorithm. For example, if the Hot Area
could hold 400 pieces of data, the hit rate of access using S-TCR algorithm was 60%, K = 40,
and about 1000 culling will occur. The hit rate of SL-TCR algorithm access was 80%, K = 40,
and about 500 eliminations occur. In addition, because SL-TCR algorithm avoids traversing
all cached data, the time cost of SL-TCR algorithm was much lower than that of S-TCR
algorithm. In addition, the hit rate of SL-TCR model was about two times higher than that
of LRU. In conclusion, the experimental results show that SL-TCR algorithm realized the
complementary advantages of the two algorithms, which is more accurate in identifying
the degree of cold and hot data, and the algorithm also had lower time cost.

According to the experimental results in Figure 15, queries on the Hot Area storage
model have lower access latency than those on HBase. This is because the dynamic
management model improves the utilization rate of the hotspot area and proves that the
dynamic management model can optimize the access performance of the system. Second,
the effect of SL-TCR algorithm is more significant than that of S-TCR algorithm. The
access latency of S-TCR ranges from 49.08% to 77.61%, lower than that of HBase. The
access latency of SL-TCR ranges from 56.21% to 90.66%, lower than that of HBase, because
the Warm Area is introduced in SL-TCR to reduce the amount of data sorting and time
overhead.

In summary, the dynamic data management model based on the SL-TCR algorithm
greatly improves the retrieval efficiency of the original HBase model, improves the accu-
racy of hot data identification, optimizes the algorithm performance compared with LRU
algorithm and S-TCR, and can greatly improve the retrieval performance of HBase-based
medical storage systems.

4.2. Performance of Secondary Index

Medical data were queried to verify the performance of the proposed secondary index
strategy. Access delay was the evaluation index for this experiment. Four groups of
comparison experiments were set up: the original HBase system, the system using the
adding Bloom Filter, the system using the index storage location optimization, and the
system using both optimization strategies. Other settings were as follows: the initial query
times were 200, and the query times were increased by 200. The experimental results are
demonstrated in Table 1.

Table 1. Performance of secondary index optimization strategies.

Number of Queries HBase Bloom Filter Same RegionServer Ours

200 332.78 292.988 324.5 279.1359
400 685.27 573.3687 658.03 552.9814
600 1027.73 822.6875 965.95 774.67
800 1358.72 1050.404 1279.28 985.3437

1000 1704.06 1290.018 1583.52 1179.21

Electronics 2023, 12, 987 17 of 20

According to the experimental results of the secondary l index optimization strategies
obtained in Table 1, the following conclusions can be acquired. First, the two optimization
strategies can improve the speed of non-primary key retrieval. Adding Bloom Filter
reduced access delay by 12.0–26.6% compared to the HBase. This can be attributed to
avoiding the I/O overhead of non-existent keywords to be retrieved. Second, compared
with the HBase, the system with the index and main data on the same RegionServer had
reduced access latency by 3.4% to 7.1%. This can be explained by the fact that this strategy
reduced the number of I/O operations in a single retrieval from 4 to 2. Third, using both
optimization strategies simultaneously reduced the access delay by 16.1–30.8%. Since the
two optimization strategies have different optimization directions and do not interfere
with each other, the simultaneous use of both optimization strategies was better than using
only one optimization strategy. Consequently, it was demonstrated that the optimized
secondary index optimization strategies proposed in this study improve the performance
of non-primary key retrieval and can meet the objectives of fast and diversified medical
data retrieval.

5. Conclusions

An HBase-based distributed storage and retrieval optimization model for medical
data was proposed, and a retrieval optimization model based on dynamic management
of the temperature of data and the improved secondary index was implemented. The
dynamic management of data was introduced to identify the temperature of data, and
data with different temperatures were stored in the corresponding areas, which can make
full use of high-cost media and speed up retrieval. The improved secondary index uses a
Bloom Filter to filter non-existent keywords and the designed RowKey to optimize index
storage location, reducing I/O overhead and improving the retrieval performance of non-
primary keys. The comparison with the original HBase system proves that the proposed
optimization strategy can give full play to the advantages of the storage model, greatly
reduce access latency, and meet the access requirements of frequent interaction of hot data
and diversified queries in the medical service.

With the increase in the amount of medical data and the development of storage
technology, HBase-based retrieval optimization will continue to be a research hotspot in the
future under the retrieval scenario of massive medical data. In order to solve this problem,
we hope to conduct further in-depth research on the following aspects: (1) Integrate the
S-TCR method and SL-TCR algorithm into an open-source system to verify the model effect
at the system level. (2) How to apply the optimized two-level strategy proposed in this
paper to the multi-field query and range query is also one of the key points to be studied in
the future.

Author Contributions: Conceptualization, C.Z. and Z.L.; Formal analysis, H.W.; Funding acquisi-
tion, C.Z.; Investigation, Z.L.; Methodology, Z.L. and Z.F.; Project administration, C.Z. and B.Z.;
Resources, Z.F.; Software, M.Z.; Validation, H.W.; Visualization, M.Z.; Writing—original draft, Y.X.;
Writing—review and editing, Z.L. and Y.X. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Key R&D Program of China, grant number
2018AAA0102100. This research was financed in part by the International Science and Technology
Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province, grant
number 2021CB1013. This research was financed in part by the National Natural Science Foundation of
China, grant number 61902434. This research was financed in part by the Natural Science Foundation
of Hunan Province of China, grant numbers 2019JJ50826, 2022JJ30762. This research was financed in
part by the Key Research and Development Program of Hunan Province, grant numbers 2022SK2054.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: MIMIC-IV Database dataset: https://mimic.mit.edu/docs/gettingstarted,
accessed on 1 December 2022.

https://mimic.mit.edu/docs/gettingstarted

Electronics 2023, 12, 987 18 of 20

Acknowledgments: This work was financed in part by the National Key R&D Program of China
and funded by 2018AAA0102100. This work was financed in part by the International Science and
Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province
and funded by 2021CB1013. This work was financed in part by the National Natural Science Foundation
of China and funded by 61902434. This work was financed in part by the Natural Science Foundation of
Hunan Province of China and funded by 2019JJ50826 and 2022JJ30762. This work was financed in part
by the Key Research and Development Program of Hunan Province and funded by 2022SK2054.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ch, R.; Srivastava, G.; Nagasree, Y.L.V.; Ponugumati, A.; Ramachandran, S. Robust Cyber-Physical System Enabled Smart

Healthcare Unit Using Blockchain Technology. Electronics 2022, 11, 3070. [CrossRef]
2. Hamid, S.; Bawany, N.Z.; Sodhro, A.H.; Lakhan, A.; Ahmed, S. A Systematic Review and IoMT Based Big Data Framework for

COVID-19 Prevention and Detection. Electronics 2022, 11, 2777. [CrossRef]
3. Zeng, N.; Zhang, G.Q.; Li, X.; Cui, L. Evaluation of relational and NoSQL approaches for patient cohort identification from

heterogeneous data sources. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, BIBM,
Kansas City, MO, USA, 13–16 November 2017.

4. Chui, K.T.; Alhalabi, W.; Pang, S.S.H.; Pablos, P.O.D.; Liu, R.W.; Zhao, M. Disease Diagnosis in Smart Healthcare: Innovation,
Technologies and Applications. Sustainability 2017, 9, 2309. [CrossRef]

5. Nasajpour, M.; Pouriyeh, S.; Parizi, R.M.; Dorodchi, M.; Valero, M.; Arabnia, H.R. Internet of Things for Current COVID-19 and
Future Pandemics: An Exploratory Study. J. Health Inform. Res. 2020, 4, 325–364. [CrossRef]

6. Tsai, C.P.; Chang, C.W.; Hsiao, H.C.; Shen, H. The Time Machine in Columnar NoSQL Databases: The Case of Apache HBase.
Future Internet 2022, 14, 92. [CrossRef]

7. Ahmad, G.; Mariam, M.; Mohamad, J.; Yliès, F. User-based Load Balancer in HBase. In Proceedings of the 7th International
Conference on Cloud Computing and Services Science, CLOSER, Porto, Portugal, 24–26 April 2017.

8. Wang, S. Research on Key Technologies of HBase Database Evaluation. Master Thesis, Harbin Institute of Technology, Harbin,
China, 2015.

9. Uzunidis, D.; Karkazis, P.; Roussou, C.; Patrikakis, C.; Leligou, H.C. Intelligent Performance Prediction: The Use Case of a
Hadoop Cluster. Electronics 2021, 10, 2690. [CrossRef]

10. Kavitha, C.; Srividhya, S.R.; Lai, W.-C.; Mani, V. IMapC: Inner MAPping Combiner to Enhance the Performance of MapReduce in
Hadoop. Electronics 2022, 11, 1599. [CrossRef]

11. Zhu, Y. Research on Hot Spot Load Balancing in Distributed Database System. Master’s Thesis, Huazhong University of Science
and Technology, Wuhan, China, 2015.

12. Yi, C. Analysis and Optimization of Hybrid Storage Cold and Hot Data Based on Machine Learning. Master’s Thesis, Huazhong
University of Science and Technology, Wuhan, China, 2020.

13. Kunhui, L.; Kun, G.; Hong, G. Financial Big Data Hot and Cold Separation Scheme Based on HBase and Redis. In Proceedings
of the IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing & Networking, ISPA/BDCloud/SocialCom/SustainCom, Xiamen,
China, 16–18 December 2019.

14. Hsieh, J.W.; Kuo, T.W.; Chang, L.P. Efficient identification of hot data for flash memory storage systems. ACM Trans. Storage 2006,
2, 22–40. [CrossRef]

15. Qader, M.A.; Cheng, S.; Hristidis, V. A Comparative Study of Secondary Indexing Techniques in LSM-based NoSQL Databases.
In Proceedings of the International Conference on Management of Data, SIGMOD, Houston, TX, USA, 10–15 June 2018.

16. Cao, C.; Wang, W.; Ying, Z. Embedding Index Maintenance in Store Routines to Accelerate Secondary Index Building in HBase.
In Proceedings of the 11th IEEE International Conference on Cloud Computing, CLOUD, San Francisco, CA, USA, 2–7 July 2018.

17. Ye, F.; Zhu, S.; Lou, Y. Research on Index Mechanism of HBase Based on Coprocessor for Sensor Data. In Proceedings of the 43rd
Annual Computer Software and Applications Conference, COMPSAC, Milwaukee, WI, USA, 15–19 July 2019.

18. Cui, C.; Zheng, L.; Han, F. Design of secondary indexes in HBase based on memory. J. Comput. Appl. 2018, 38, 1584–1590.
19. Shen, B.; Liao, Y.C.; Liu, D. A Method of HBase Multi-Conditional Query for Ubiquitous Sensing Applications. Sensors 2018, 18,

3064. [CrossRef]
20. Ali, M.; Mohajeri, J.; Sadeghi, M.R. Attribute-Based Fine-Grained Access Control for Outscored Private Set Intersection Computa-

tion. Inf. Sci. 2020, 536, 222–243. [CrossRef]
21. Zhang, H.; Rong-Li, G.A.I. Distributed HBase Cluster Storage Engine and Database Performance Optimization. In Pro-

ceedings of the 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Sys-
tems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application,
HPCC/DSS/SmartCity/DependSys, Haikou, China, 20–22 December 2021.

22. Hassan, M.U.; Yaqoob, I.; Zulfiqar, S.; Hameed, I.A. A Comprehensive Study of HBase Storage Architecture—A Systematic
Literature Review. Symmetry 2021, 13, 109. [CrossRef]

http://doi.org/10.3390/electronics11193070
http://doi.org/10.3390/electronics11172777
http://doi.org/10.3390/su9122309
http://doi.org/10.1007/s41666-020-00080-6
http://doi.org/10.3390/fi14030092
http://doi.org/10.3390/electronics10212690
http://doi.org/10.3390/electronics11101599
http://doi.org/10.1145/1138041.1138043
http://doi.org/10.3390/s18093064
http://doi.org/10.1016/j.ins.2020.05.041
http://doi.org/10.3390/sym13010109

Electronics 2023, 12, 987 19 of 20

23. Liu, S.; Guo, Z.; Chen, L. The Read Amplification Analysis of NoSQL Database on Top of OSDs: A Case Study of HBase. In
Proceedings of the 4th International Conference on Big Data Computing and Communications, BigCom, Chicago, IL, USA,
7–9 August 2018.

24. Wen, S. Efficient DNA Sequences Storage Scheme based on HBase. In Proceedings of the 2nd International Conference on
Mechanical, Electronic, Control and Automation Engineering, MECAE, Qingdao, China, 30–31 March 2018.

25. Haifa, A.; Chase, Q.W. On Performance Modeling and Prediction for Spark-HBase Applications in Big Data Systems.
In Proceedings of the IEEE International Conference on Communications, ICC, Seoul, Republic of Korea, 16–20 May 2022.

26. Xiong, W.; Szefer, J. Leaking Information Through Cache LRU States. In Proceedings of the High-Performance Computer
Architecture, HPCA, San Diego, CA, USA, 22–26 February 2020.

27. Hasslinger, G.; Ntougias, K.; Hasslinger, F. Comparing Web Cache Implementations for Fast O(1) Updates Based on LRU, LFU
and Score Gated Strategies. In Proceedings of the 23rd IEEE International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks, CAMAD, Barcelona, Spain, 17–19 September 2018.

28. Li, P.; Pronovost, C.; Wilson, W. Beating OPT with Statistical Clairvoyance and Variable Size Caching. In Proceedings of the 24th
International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS, Providence,
RI, USA, 13–17 April 2019.

29. Xie, Y. Research on Cold and Hot Data Identification Mechanism Based on Data Temperature. Master’s Thesis, Zhejiang
University, Hangzhou, China, 2019.

30. Kraska, T.; Beutel, A.; Chi, E.H. The Case for Learned Index Structures. In Proceedings of the International Conference on
Management of Data, SIGMOD, Houston, TX, USA, 10–15 June 2018.

31. He, J.; Yao, S.W.; Cai, L. SLC-index: A scalable skip list-based index for cloud data processing. J. Cent. South Univ. 2018, 25,
2438–2450. [CrossRef]

32. Niu, S.; Wang JWang, B. Ciphertext Sorting Search Scheme Based on B+ Tree Index Structure on Blockchain. J. Electron. Inf.
Technol. 2019, 41, 2409–2415.

33. Schlosser, R.; Kossmann, J.; Boissier, M. Efficient Scalable Multi-Attribute Index Selection Using Recursive Strategies. In
Proceedings of the 35th IEEE International Conference on Data Engineering, ICDE, Macao, China, 8–11 April 2019.

34. Wu, J.; Lu, W.; Yan, G.; Li, X. HyperTree: High Concurrency B+ tree index accelerator. Comput. Res. Dev. 2022, 11, 1–16.
35. Hu, Z.; Hu, M. Design and Implementation of T-Hash Tree in Main Memory DataBase. In Proceedings of the 3rd International

Conference on Image, Vision and Computing, ICIVC, Chongqing, China, 27–29 July 2018.
36. Chen, Y.; Li, J.; Li, Y. SBS: Efficient R-tree query algorithm based on Internal Parallelism of Solid State Drive. J. Comput. Res. Dev.

2020, 57, 2404–2418.
37. Chee-Yong, C.; Ioannidis, Y.E. Bitmap index design and evaluation. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, SIGMOD, Seattle, DC, USA, 2–4 June 1998.
38. Zou, Z.; Zheng, L.; Xia, D. CSIndex: A Coprocessor-Based Classified Secondary Index Mechanism for Efficient HBase Query.

In Proceedings of the IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing & Networking, ISPA/BDCloud/SocialCom/SustainCom, Xiamen,
China, 16–18 December 2019.

39. Chen, W. Storage and Retrieval of Medical Image Files Based on Hadoop. Master’s Thesis, Beijing University of Technology,
Beijing, China, 2019.

40. Chen, S.; Zou, Z.; Liu, R.; Tao, T.; Wang, C.; ZHENG, L. Design of HBase classification secondary index based on coprocessor.
J. Chongqing Univ. Technol. 2021, 35, 142–151.

41. Li, F.; Lu, Y.; Yang, Z. SineKV: Decoupled Secondary Indexing for LSM -based Key-Value Stores. In Proceedings of the 40th
International Conference on Distributed Computing Systems, ICDCS, Singapore, 29 November 2020.

42. Chen, H.; Ruan, C.; Li, C. SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage. In Proceedings of the 19th
USENIX Conference on File and Storage Technologies, FAST, Santa Clara, CA, USA, 23–25 February 2021.

43. Wang, H.; Li, Z.; Zhang, X. A Performance Optimization Method for Key -Value Store Based on LSM-tree. In Proceedings of the
3rd International conference on IMAGE, VISION and COMPUTING, ICIVC, Chongqing, China, 27–29 July 2018.

44. Tian, X.; Wang, C. Index and Matching Method of Linear Algebraic Expressions. Comput. Eng. 2018, 44, 201–207.
45. Zhou, W.; Lu, J.; Zhou, K.; Wang, S.; Yao, S. Research on double-layer index architecture of cloud data processing based on

concurrent skip list. Comput. Res. Dev. 2015, 52, 1531–1545.
46. Zhang, K.; Zhou, W.; Sun, S. Multiple complementary inverted indexing based on multiple metrics. Multim. Tools Appl. 2019, 78,

7727–7747. [CrossRef]
47. Singh, M.; Sural, S.; Vaidya, J.; Atluri, V. Managing Attribute-Based Access Control Policies in a Unified Framework using Data

Warehousing and In-Memory Database. Comput. Secur. 2019, 86, 183–205. [CrossRef]
48. Levandoski, J.J.; Larson, P.Å.; Stoica, R. Identifying hot and cold data in main-memory databases. In Proceedings of the 29th IEEE

International Conference on Data Engineering, ICDE, Brisbane, QLD, Australia, 8–12 April 2013.
49. Moghimi, A.; Eisenbarth, T.; Sunar, B. MemJam: A False Dependency Attack Against Constant-Time Crypto Implementations.

Int. J. Parallel Program 2019, 47, 538–570. [CrossRef]
50. Einziger, G.; Friedman, R.; Manes, B. TinyLFU: A Highly Efficient Cache Admission Policy. ACM Trans. Storage 2017, 13, 1–31.

[CrossRef]

http://doi.org/10.1007/s11771-018-3927-0
http://doi.org/10.1007/s11042-018-6439-x
http://doi.org/10.1016/j.cose.2019.06.001
http://doi.org/10.1007/s10766-018-0611-9
http://doi.org/10.1145/3149371

Electronics 2023, 12, 987 20 of 20

51. Waldspurger, C.A.; Saemundson, T.; Ahmad, I. Cache modeling and optimization using miniature simulations. In Proceedings of
the USENIX Annual Technical Conference, USENIX ATC, Santa Clara, CA, USA, 12–14 July 2017.

52. Beiji, Z.; Meng, Z.; Chengzhang, Z.; Ling, X.; Zhi, C. A Learned Prefix Bloom Filter for Spatial Data. In Proceedings of the 33rd
International Conference Database and Expert Systems Applications, DEXA, Vienna, Austria, 22–24 August 2022.

53. Pu, C.; Choo, K. Lightweight Sybil Attack Detection in IoT based on Bloom Filter and Physical Unclonable Function. Comput.
Secur. 2022, 113, 102541. [CrossRef]

54. Pei, S.; Xie, K.; Wang, X. BhBF: A Bloom Filter Using Bh Sequences for Multi-set Membership Query. ACM Trans. Knowl. Discov.
Data 2022, 16, 3502735. [CrossRef]

55. Hua, W.; Gao, Y.; Lv, M. Survey of Bloom filter research. Appl. Comput. 2022, 42, 1729–1747.
56. Chen, Y.; Xiang, X.; Ling, X. Dynamic Load Balance for Hot-spot and Unbalance Region Problems in HBase. In Proceedings of the

IEEE International Conference on Big Data, Atlanta, GA, USA, 10–13 December 2020.
57. Yang, L.; Chen, J.; Xiang, Y. Performance Optimization Strategy for Distributed Storage of industrial Time series Big Data Based

on HBase. Comput. Appl. 2022, 33, 21–27.
58. Alistair, E.W.J.; David, J.S.; Leo, A.C.; Tom, J.P. The MIMIC Code Repository: Enabling reproducibility in critical care research.

J. Am. Med. Inform. Assoc. 2018, 25, 32–39.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.cose.2021.102541
http://doi.org/10.1145/3502735

	Introduction
	Background Knowledge
	HBase Database
	Hot and Cold Data Management Algorithms
	LRU
	LFU
	Size
	TCR

	Secondary Index
	Summary

	Materials and Methods
	Overview
	Temperature Marking Module
	Dynamic Management Module of Data
	Index Management Module

	Experiments and Results
	Performance of Dynamic Management Model
	Performance of Secondary Index

	Conclusions
	References

