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Abstract: For classifying brain tumors with small datasets, the knowledge-based transfer learning
(KBTL) approach has performed very well in attaining an optimized classification model. However,
its successful implementation is typically affected by different hyperparameters, specifically the
learning rate (LR), batch size (BS), and their joint influence. In general, most of the existing research
could not achieve the desired performance because the work addressed only one hyperparameter
tuning. This study adopted a Cartesian product matrix-based approach, to interpret the effect of
both hyperparameters and their interaction on the performance of models. To evaluate their impact,
56 two-tuple hyperparameters from the Cartesian product matrix were used as inputs to perform an
extensive exercise, comprising 504 simulations for three cutting-edge architecture-based pre-trained
Deep Learning (DL) models, ResNet18, ResNet50, and ResNet101. Additionally, the impact was
also assessed by using three well-known optimizers (solvers): SGDM, Adam, and RMSProp. The
performance assessment showed that the framework is an efficient framework to attain optimal
values of two important hyperparameters (LR and BS) and consequently an optimized model with
an accuracy of 99.56%. Further, our results showed that both hyperparameters have a significant
impact individually as well as interactively, with a trade-off in between. Further, the evaluation space
was extended by using the statistical ANOVA analysis to validate the main findings. F-test returned
with p < 0.05, confirming that both hyperparameters not only have a significant impact on the model
performance independently, but that there exists an interaction between the hyperparameters for a
combination of their levels.

Keywords: brain tumor classification; transfer learning; learning rate; batch size; ANOVA analy-
sis; hyperparameter

1. Introduction

Brain tumors, which appear as a collection of anomalous cells growing inside or
around the brain, are one of the most well-known and imperative causes of the increase in
fatalities among adults and children [1]. A precise and early diagnosis of a brain tumor
is the key to a successful course of treatment. Among imaging modalities, MRI is the
most extensively utilized non-invasive approach that succor radiologists and physicians
in the discernment, diagnosis, and classification of brain tumors [2–4]. The radiologist
approaches brain tumor classification in two ways: (i) by categorizing the normal and
anomalous magnetic resonance (MR) images and (ii) by scrutinizing the types and stages
of the anomalous MR images [2].

Since brain tumors show a high level of dissimilarities related to size, shape, and
intensity [5] and tumors from various neurotic types might show comparatively similar
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appearances [6], therefore the classification into different types and stages has become quite
a wide research topic [7,8]. Manual classification of comparatively similar appearing brain
tumor MR images is quite a challenging task, which relies upon the skills of radiologists
and their availability. Despite the radiologist’s skills, the human visual system always
bounds the analysis as the knowledge contained in an MR image surpasses the visual
system’s capacity of the human to perceive. Thus, the computer was used as the second
eye to understand the MR images.

DL models trained on a dataset for a certain classification task are difficult to effectively
reuse and generalize [9]. Therefore, a new model from scratch has to be rebuilt even for
a similar task that requires considerable computational power and time. At the same
time, if sufficient data are not available for similar tasks, the developed algorithm may
have difficulty in attaining the desired performance or might even fail to complete the
tasks. In case of a shortage of data, KBTL techniques have shown good performance for
the classification problem [10]. KBTL is a technique that uses the knowledge of a pre-
trained DL model to retrain the model with the available dataset for a targeted classification
problem. However, to obtain an optimized model for the intended classification problem,
it is challenging to select an existing pre-trained DL model, hyperparameters’ optimum
values, and an optimization algorithm (solver).

All existing pre-trained deep learning models have the hyperparameter’s values set
and the most fundamental task in implementing KBTL is to tune these hyperparameters to
obtain the optimal performance. Therefore, hyperparameter tuning has become a challeng-
ing and the most critical problem for implementing KBTL to obtain an optimized model for
the targeted classification problem. The tuning of hyperparameters is an optimization prob-
lem that makes solvers efficient and the objective function of optimization is ultimately the
model’s black-box function. The optimization problem in implementing KBTL is finding a
set of model hyperparameter values that are consistent with the knowledge of the used
pre-trained model and give the best accuracy for the classification problem.

Traditional techniques to find the optimal values such as the grid search method
have scalability issues. Therefore, interest in determining more effective optimization
strategies has recently increased [11]. In one of our recent research studies [10], we proposed
a framework to implement KBTL for the brain tumor classification task. To obtain an
optimized model, the framework compared the performances of 11 different state-of-
the-art existing DL models that were retrained with the brain tumor dataset with three
different solvers: SGDM, RMSProp, and Adam. To determine the optimal hyperparameter
values, the framework took inputs from the Cartesian product matrix consisting of 16
pairs generated to serve as the foundation of the framework using unique values of the
two most important hyperparameters BS and LR. The pairs were formed using individual
hyperparameter values taken from the literature rather than making a grid for a particular
range. The framework proved to be an efficient framework that reduced the computational
complexity (as the search space consisted of very limited hyperparameter values and
corresponding pairs) and consequently the time to reach to the optimal values of the
hyperparameters, ultimately providing us with ResNet18 [12], an optimized model with
optimal hyperparameter values (BS = 32 and LR = 0.01) for the SGDM solver which achieved
99.56% accuracy. ResNet50 [12] and ResNet 101 [12] also provided us more or less the
same accuracies, 99.56% and 99.35% respectively, but could not be considered as optimized
models because of other measuring parameters (see Section 4.1) such as testing accuracies
and the convergence time. ResNet architecture-based DL models proved to be the best
models for brain tumor classification in comparison to other pre-trained DL models such
as AlexNet [13], GoogleNet(s) [14], VGGNet(s) [15], SqueezeNet [16], MobileNet [17], and
InceptionV3 [18]. A comparative study of these models’ performances with their optimal
parameters are presented in Section 4.1. "Simulated Results".

Despite the significant success this framework has achieved, it is still unable to answer
questions such as: how significant each hyperparameter is to the model ? Which hyperpa-
rameter interactions are significant? How do the responses to these queries connect to the
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features of the dataset being examined? To answer these questions, a statistical approach is
adopted in this study to contribute to extending the scope of the research work presented
in [10].The research contributions of this study are as follows:

• In comparison to the previous research, for better interpretation, an extended version
of a (8 × 7) Cartesian product matrix is generated to evaluate and validate the impact
of hyperparameters (LR and BS). The matrix consists of the 56 most effective two-
tuple hyperparameters used as an input to perform an extensive exercise, comprising
504 simulations for three cutting-edge architecture-based pre-trained Deep Learning
(DL) models, ResNet18, ResNet50, and ResNet101. Additionally, the impact was
also assessed by using three well-known optimizers (solvers): SGDM, Adam, and
RMSProp.

• A dataset comprising 504 DL model accuracies against each pair of hyperparameters
(LR, BS). The accuracies represent model performances trained for brain tumor multi-
classification.

• Validation of the simulated results regarding the significant impact of hyperparameters
individually as well as interactively using statistical ANOVA analysis.

The rest of the paper is divided into five sections. Section 2 presents a brief literature
review related to the tuning and the significant impact of hyperparameters. Section 3
describes the materials and methods used to analyze simulated data and its statistical
analysis. Section 4 discusses the experimental setup and results analysis. In the end, the
conclusion and future work are discussed in Section 5.

2. Literature Review

Over the years, research on the improvement and development of new optimization
techniques has played a vital role in effectively utilizing the knowledge of pre-trained deep
learning models to implement KBTL for the targeted classification problem. Many research
efforts have contributed to addressing the impact of the hyperparameters [10,19–22], espe-
cially the learning rate and batch size, on the network performance either in terms of the
accuracy of the model or the convergence time. Very few researchers have extended their
work to perform a statistical analysis to examine the significance of each hyperparameter
individually as well as their interactive effect on the network performance [19,20].

I. Kandel and M. Castelli [20] used the Patch Camelyon histopathologic dataset to
identify the metastatic tissues in the lymph node section. The set is larger than the dataset
CIFAR10 and smaller than the dataset ImageNet. The authors compared the performance
of the VGG16 DL model in which five different batch sizes [16, 32, 64, 128, 256] and two
different learning rates [0.001 0.0001] were used. The authors concluded that the network’s
performance was significantly influenced by the learning rate and batch size. The learning
rate and batch size had a high correlation: when the learning rates were high, bigger batch
sizes performed better than those with low learning rates. The authors advised choosing
small batch sizes with a low learning rate. In addition, they advised the use of lower batch
sizes initially (often 32 or 64), having in mind that small batch sizes need small learning
rates. The authors concluded the study based on experiments performed with very limited
values of the hyperparameters, especially learning rates. Moreover, the authors did not
perform any statistical test to find the correlation between hyperparameters and their
significance on the model performance.

Using the CIFAR-10 and MNIST datasets, Radiuk et al. [19] experimented to examine
the batch size impact on the performance of a pre-existing DL model for image classification.
The author evaluated a batch size range (16–1024) with a power of two, along with 50, 100,
150, 200, and 250 batch sizes. For the MNIST dataset, the author used a LeNet architecture,
while for the CIFAR-10 dataset, he used a customized model based on five convolutional
layers. The SGD optimizer with initial learning rates of 0.0001 and 0.001 was used for the
CIFAR-10 dataset and the MNIST dataset, respectively for both networks. The 1024 batch
size produced the highest accuracy for both datasets, whereas the batch size 16 produced
the lowest results. According to the author’s investigation, the batch size had a significant
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influence on the model performance, which showed that the bigger the batch size, the
better the model performance. The author, in this research, investigated the impact of only
one hyperparameter i.e., batch size, and kept fixed other hyperparameters such as learning
rate.

In [21] the author found that 32 is an appropriate default setting for the batch size.
He also noted that a bigger batch size would speed up the network processing but would
need fewer updates to attain convergence. According to the author, an appropriate batch
size helps in reducing the convergence time but not network performance. On the other
hand, the authors in [22] investigated the effect of batch size on two state-of-the-art mod-
els: AlexNet [13] and ResNet [12]. Authors used batch sizes ranging from 21 till 211 and
examined their effect on three datasets: ImageNet [23], CIFAR10 [24], and CIFAR100 [24].
The research study concluded that batch sizes between 2 and 32 produced good results and
added that small batch sizes are more robust than high batch sizes.

Usmani et al. [10], presented a framework to implement KBTL for brain tumor classifi-
cation. The authors assessed the performance of the framework by taking hyperparameters’
inputs from a Cartesian product matrix in a pair combination of two-tuple. The two most
important hyperparameters, learning rate and batch size, were contributed to tune the
11 state-of-the-art pre-trained DL models and found that ResNet architectures performed
the best among all for the targeted brain tumor classification task. The Cartesian product
matrix comprised of only 16 pairs built using individual hyperparameter values gathered
from the literature instead of creating a full grid for a certain range for optimization. Since
the authors picked up very selective values from the literature, making the whole process
much less computationally expensive, they were able to assess the framework with two
inputs in parallel allowing for the examination of their combined effect on the network
performance. The authors performed a comparative analysis to find the best-performing
model, but the study required a statistical analysis to further investigate the significance of
both hyperparameters individually as well as their interactive effect. The statistical analysis
may have justified controlling the learning rate and batch size in parallel to find the best
model for brain tumor classification.

3. Materials and Methods
3.1. KBTL Implementation

As discussed in the Introduction, we have adopted a Cartesian-based framework, from
one of our most recent research studies [10], to implement KBTL, presented in Figure 1.
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Any pre-trained classification model with its learned parameters can be used after
customization. The framework is based on an idea to input hyperparameters in the form of
ordered pairs (batch size and learning rate). The ordered pair can be defined as a 2-tuple
element of a matrix constructed using the concept of the Cartesian product of two initialized
sets of the batch size and learning rate. The following subsections discuss the step-by-step
implementation of the transfer learning technique using the adopted framework.

3.1.1. Dataset

Exactly 3064 MR images from a publicly available dataset of 233 patients with brain
tumors were used [25]. This collection contained three different types of brain tumor
MR images, including 1426 slices of gliomas, 708 slices of meningiomas, and 930 slices of
pituitary tumors. Each type of tumor proportion in the dataset is shown in Figure 2 [10].
These data, which are accessible in .mat file (Matlab data format), include a patient ID, a
label for the image, the picture as a 512 by 512 matrix, a tumor mask, and discrete point
coordinates on the tumor border.
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3.1.2. Preprocessing

Data preprocessing, which includes contrast enhancement and normalization, is nec-
essary for medical image analysis. The dataset was first normalized to the intensity values
and then mapped to the 256 levels of grayscale using Equation (1):

y(i,j) =
x(i,j) − xmin

xmax − xmin
× 28 (1)

where y(i,j) represents any one of the 8-bit grayscale pixel values between 0 and 255 against
x at position (i, j). The variables xmax and xmin are the maximum and minimum pixel
intensity in the original image, respectively. Figure 3 shows the original and enhanced
images and Figure 4 presents one sample of each type of tumor.
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The enhanced resultant images were resized and concatenated three times, as per
the standard input image size of the pre-trained DL models, to create channels. All
three variants of ResNet: ResNet18, ResNet50, and ResNet101, the best-performing pre-
trained DL models [10] for brain tumor classification, have a standard input image size of
224× 224× 3.

3.1.3. Pre-Trained DL Models

There were many state-of-the-art pre-trained DL models for the classification task. In
this research, the idea behind the adopted framework was domain adaptation, in which
transfer learning allowed us to utilize the network and knowledge in terms of network
weights of pre-trained DL models, from a source domain, to retrain it using new training
data for another classification task in the target domain. The data size and similarity
between the target and source domain tasks were important parameters for the pre-trained
model selection. Because almost all pre-trained existing DL models are trained on millions
of natural images, choosing one pre-trained model directly to implement the transfer
learning technique for the classification of brain tumors was quite difficult. We assumed,
based on the availability of state-of-the-art pre-trained DL models, that the source domain
and target domain were different but the task in both domains was similar i.e., classification
task. Since we were extending the scope of the research of [10] through statistical analysis,
therefore, for better interpretation, we had to increase the simulated results in terms
of accuracy to evaluate and validate the hyperparameter effect individually as well as
interactively. For this purpose, in this study we were using only the best-performing
models based on ResNet architecture: ResNet18, ResNet50, and ResNet101. Figure 5 shows
the network architecture of the ResNet18 model.
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The ResNet18 network architecture consists of 18 layers including 17 convolutional
layers plus one fully connected layer and an additional softmax layer to perform the
classification task. In this study, we used ResNet18 as a network, already trained on
ImageNet dataset to classify 1000 objects, for the initialization of weights, and KBTL was
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performed. KBTL was implemented by replacing the last fully connected (FC) layer with
the new FC layer to match the number of classes, which was 3 three for our task. After
replacing the layer, the modified network was retrained for our target domain brain tumor
multi-classification task. The modified network was trained with different hyperparameter
settings, discussed in the next section, and a comparative analysis was performed to find
the optimal hyperparameters, ultimately to obtain an optimized model with the highest
accuracy. Since ResNet50 and ResNet101 have the same foundation as ResNet18 and both
networks are deeper than ResNet18, therefore, we also used these networks to extend
our evaluation space and to validate the significance of hyperparameters in the model
performance.

3.1.4. Model Training with Hyperparameters

The optimization problem in implementing KBTL, using the classification frame-
work [10], is finding a set of two most important model hyperparameters’ values i.e., the
optimal values for the learning rate and batch size that are consistent with knowledge
of the used pre-trained model and give the best accuracy for the classification problem.
Mathematically, the problem is defined as:

f : Rn → R, Find [x1, x2] = argmin f (x1, x2), x1, x2 ∈ R

where f is representing the cost function and (x1, x2) are the two optimal values of learning
rate and batch size that help in minimizing the cost function using the solvers: SGDM,
Adam, and RMSprop. Mathematically, f (x1, x2) is defined in Equation (2) as the training
average cost fi(x1, x2) with N dataset size.

f (x1, x2) =
1
N

N

∑
i=1

fi(x1, x2) (2)

There are three options to compute the gradient updates: utilizing the complete dataset
images N, using a single image, or a sample of size between 1 and N. The three methods
are known as batch gradient descent, stochastic gradient descent, and mini-batch gradient
descent respectively. The image sample size utilized to update the gradients each time in
one iteration is indicated by the hyperparameter batch size B.

Networks using SGDM solver [27] can update their weights according to Equation (3):

wt+1 = wt − η
∂ f
∂wt

; (3)

where, ∂ f
∂wt

= ∇w J(wt) and η is representing the learning rate and w are the weights being
updated.

The Adam [27] is a relatively straightforward method using first-order gradients that
is computationally efficient and has a low memory demand for stochastic optimization.
The technique calculates the rate of adaptive learning for each gradient training parameter.
For this solver, the weights can be updated using Equation (4):

wi
t = wi

t−1 −
η√

v̂t + ε
.m̂t (4)

where m̂t =
mt

1−βt
1

; v̂t =
vt

1−βt
2

; mt = β1mt−1 + (1− β1)
∂ f

∂wt
; vt = β2vt−1 + (1− β2)

[
∂ f

∂wt

]2
;

vt = β2vt−1 + (1− β2)
[

∂ f
∂wt

]2
; ∂ f

∂wt
= ∇w J(wt) and ∂ f

∂wt
= ∇w J(wt) where the value of

β1 ∈ [0, 1] indicates how much information from the previous update is required, mt is
the first momentum, which is the running average of the gradients, and vt is the second
momentum, which is the running average of the squared gradients. The first and second
momentums after bias correction are m̂t and v̂t.
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The weight updated equation for RMSprop [27] is as follows:

wt+1 = wt −
η√

E
[

∂ f
∂w

2
]

t
+ ε

.
∂ f
∂wt

(5)

where, E
[

∂ f
∂w

2
]

t
= 0.9E

[
∂ f
∂w

2
]

t−1
+ 0.1 ∂ f

∂wt

2
. RMSprop divides the learning rate by an

average of the squared gradients that decays exponentially. The above equations show that
the batch size and learning rate have an impact on each other, and they can have a huge
impact on the network performance.

In our previous research work [10], we initialized two different sets X and Y for both
hyperparameters, consisting of possible values based on their available values in various
studies [46, 50, 53, 62, 68, 69]. We defined X = [7, 10, 32, 128] and Y = [0.01, 0.001, 0.0001,
0.00001] for the batch size and learning rate, respectively. A 2− dimensional matrix of size
4× 4, containing 2-tuple elements, was generated by taking the Cartesian product of two
initialized sets X and Y. The Cartesian product of two sets X and Y is the set of all ordered
pairs (x, y) and can be defined as:

X×Y = [(x, y) | x ∈ X and y ∈ Y] (6)

It can be generalized to an n-ary Cartesian product over n sets X1, . . . , Xn of different
hyperparameters:

X1 × . . .× Xn = [(x1, . . . , xn) | xi ∈ Xi for every i ∈ {1, . . . , n}] (7)

In our case, we transformed the Cartesian product vector into a matrix for a better
understanding, as described in Equation (8):

X×Y =


(7, 0.01) (7, 0.001) (7, 0.0001) (7, 0.00001)
(10, 0.01) (10, 0.001) (10, 0.0001) (10, 0.00001)
(32, 0.01) (32, 0.001) (32, 0.0001) (32, 0.00001)
(128, 0.01) (128, 0.001) (128, 0.0001) (128, 0.00001)

 (8)

Each element of the Cartesian product matrix is applied as a pair of inputs for two
hyperparameters to retrain the modified network architecture against each pre-trained
deep learning model with our dataset for the brain tumor classification task. Each modified
network architecture was evaluated for the three most popular solvers: SGDM, ADAM,
and RMSProp. An extensive comparative assessment was conducted in terms of accuracy
to obtain the optimal values of batch size and learning rate, along with the most appropriate
solver.

3.2. Analysis of Variance (ANOVA)

ANOVA is a group of statistical models and their accompanying estimation tech-
nique for examining the differences between means. A two-way ANOVA, an extension
of ANOVA, is used when data are collected for a quantitative dependent variable (perfor-
mance) at multiple levels of two independent controlling categorical variables (learning
rate and batch size). The categorical variables are called factors and model performances at
each row/column factors are known as treatments. ANOVA is based on the total variance
law, according to which the variance observed in a given variable is divided into parts
attributed to various variation sources [28]. In this study, we used ANOVA to evaluate the
significance of the LR and BS factors and their interaction on model performance.
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3.2.1. Factor Effects Model

Consider the two categorical variables (factors) LR with levels i = 1, . . . , a ; BS with
levels j = 1, . . . , b, and Y(i,j), k representing the kth treatment observation (k = 1, . . . , r;
where r = a× b) at the factor’s level (i, j). Equation (9) [29] represents the Factor effects
model:

Y(i,j),k = µ + θi + ϕj + γi,j + ε(i,j),k (9)

where, µ represents the overall mean:

µ = µ.. =
∑i,j µi,j

ab
, (9a)

µi represents the ith level of LR: µi. =
∑j µi,j

b ,

µj represents the jth level of BS: µ.j =
∑i µi,j

a
θi is the main effect due to factor LR:

θi = µi. − µ⇒ µi. = µ + θi (9b)

ϕj is the main effect due to factor BS

ϕj = µ.j − µ⇒ µ.j = µ + ϕj (9c)

and γi,j represents the interaction effect between factors LR and BS and can be defined as:

γi,j = µi,j −
(
µ + θi + ϕj

)
= µi,j −

(
µ + (µi. − µ ) +

(
µ.j − µ

))
= µi,j − µi. − µ.j + µ

(9d)

These equations also describe the relationship between the factor effects model param-
eters and cell means µi,j.

3.2.2. Estimates for the Factor Effects Model

Equation (10) represents the overall mean and each group’s means estimation by the
overall mean of all treatments/outputs and by the mean of the treatments within that
group, respectively.

µ̂ = Y... =
∑(i,j),r Y(i,j),k

abr
(10)

µ̂i. = Yi.. and µ̂.j = Y.j. (10a)

θi, the main effect due to factor LR can be estimated using Equation (10b):

θ̂i = Yi.. −Y... (10b)

ϕi, the main effect due to factor BS can be estimated using Equation (10c):

ϕ̂j = Y.j. −Y... (10c)

γi,j, the interaction effect in between factors LR and BS that can be estimated using Equa-
tion (10d):

γ̂i,j = Yi,j. −Yi.. −Y.j. + Y... (10d)

3.2.3. Sum of Squares (SS) for ANOVA Table

SS (total) defines the sum of squares for the overall data, corrected for the overall mean
of all accuracies. Equation (11) describes the SS (total), mathematically.

SS(total) = SS(LR) + SS(BS) + SS(LR× BS) + SS(E) (11)
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where,

SS(LR) = Sum of Squares due to factor LR = ∑
(i,j),r

θ̂i
2 = ∑

(i,j),r

(
Yi.. −Y...

)2

= rb ∑
i

(
Yi.. −Y

)2

SS(BS) = Sum of Squares due to factor BS = ∑
(i,j),r

ϕ̂i
2 = ∑

(i,j),r

(
Y.j. −Y...

)2

= ra ∑
j

(
Y.j. −Y

)2

SS(LR× BS) = Sum of Squares due to interaction of factor LR & BS = ∑
(i,j),r

γ̂2
i,j

= r ∑
(i,j)

γ̂2
i,j

SS(E) = Error Sum of Squares = ∑
(i,j),r

(
Y(i,j),r −Yi,j.

)2
= ∑

(i,j),r
e2
(i,j),r

3.2.4. Degree of Freedom (df) for ANOVA Table

The degree of freedom (df) is the number of independent pieces of information.
Mathematically,

d fLR = (a− 1) (12a)

d fBS = (b− 1) (12b)

d fLR×BS = (a− 1)(b− 1) (12c)

d fE = ab(r− 1) (12d)

d ftotal = abr− 1 (12e)

3.2.5. Mean Square (MS) for ANOVA Table

The ratio of the Sum of Squares (SS) and Degree of freedom (df) gives the correspond-
ing Mean Square (MS). Mathematically,

MS(LR) = SS(LR)/d fLR (13a)

MS(BS) = SS(BS)/d fBS (13b)

MS(LR× BS) =
SS(LR× BS)

d fLR×BS
(13c)

MS(E) = SS(E)/d fE (13d)

MS(total) = SS(total)/d ftotal (13e)

3.2.6. Hypotheses for Two-Way ANOVA

Test for LR Effect:
Null Hypotheses H0 : θi = 0 for all i
Alternate Hypotheses Ha : θi 6= 0 for at least one i
The F-statistics for the LR effect test is

FLR =
MS(LR)
MS(E)

(14a)

and under the null hypotheses, this follows an F distribution with d fLR, d fE.
Test for BS Effect:
Null Hypotheses H0 : ϕj = 0 for all j
Alternate Hypotheses Ha : ϕj 6= 0 for at least one j
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The F-statistics for the BS effect test is

FBS =
MS(BS)
MS(E)

(14b)

and under the null hypotheses, this follows an F distribution with d fBS, d fE.
Test for LR and BS Interaction Effect:
Null Hypotheses H0 : γ(i,j) = 0 for all (i, j)
Alternate Hypotheses Ha : γ(i,j) 6= 0 for at least one (i, j)
The F-statistics for the LR and BS interaction effect test is

FLR×BS =
MS(LR× BS)

MS(E)
(14c)

and under the null hypotheses, this follows an F distribution with d fLR×BS, d fE.

3.2.7. F-Statistics for the Tests

F-statistics gives p-values, calculated using the F distribution with (d fFactors, d fError).
A p ≤ 0.05 indicates that the tested effect due to factors LR and BS, either as individuals
or with an interaction in between, is statistically significant. Table 1 summarizes all the
statistical parameters involved in the statistical analysis.

Table 1. The two-way ANOVA Table, with the individual and interaction effect of LR (column) and
BS (rows) [30].

Source SS df MS F

Columns (LR) SS (LR) (a− 1) MS(LR) MS(LR)
MS(E)

Rows (BS) SS (BS) (b− 1) MS(BS) MS(BS)
MS(E)

Interaction
(LR × BS) SS (LR × BS) (a− 1)(b− 1) MS(LR× BS) MS(LR×BS)

MS(E)

Error SS (E) ab(r− 1) MS(E)

Total SS (total) abr− 1 MS(total)

4. Experimental Setup and Results Analysis

For brain tumor classification, we used the experimental setup based on the methodol-
ogy described in Section 3, implemented and investigated using a system equipped with
NVIDIA GEFORCE GTX 1080—8 GB Graphics and MATLAB 2020. The dataset was di-
vided into 70%, 15%, and 15% for training, validation, and testing of the model, respectively.
After customizing all pre-trained deep learning models, experiments were performed with
each pair of inputs from the Cartesian product-based matrix of the batch size and learning
rate for the three most popular solvers.

To evaluate and validate the impact of both hyperparameters, we increased the number
of samples in the specified ranges [10] of the LR and BS to obtain a detailed output
distribution for better interpretation. This study used an extended Cartesian product
matrix, consisting of 56 two-tuple hyperparameters generated from the following two
vectors:

LR ε [0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001]

and
BS ε [2, 4, 7, 8, 10, 16, 32, 64]

4.1. Simulated Results

An extensive exercise, comprising 504 simulations on the best-performing [10] three
cutting-edge architecture-based pre-trained DL models, ResNet18, ResNet50, and ResNet101
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were performed. Additionally, the impact was also assessed by using three well-known
optimization algorithms (solvers): the adaptive moment estimation (Adam), the stochas-
tic gradient descent with momentum (SGDM), and the root mean squared propagation
(RMSProp). The three best-performing ResNet variants were selected with the help of
a comparative analysis in which three ResNet variants were compared with other start-
of-the-art classification models as presented in Table 2. The parameters to compare were
the number of epochs utilized in convergence, number of iterations, validation accuracy,
training time, and confusion matrix. All three variants of ResNet, especially ResNet18,
outperformed all other networks with parameters {SGDM, 32, 0.01} by achieving 99.56%
accuracy when using our framework for brain tumor classification. This was due to the
ResNet working principle of building a deeper network compared to other networks
and its capability to solve the vanishing gradient problem simultaneously. Figure 6a,b
depict the training-validation accuracy and loss curve and the confusion matrix while
training, validating, and testing ResNet18, the best-performing model. In addition to
the ultimate accuracy measurement, utilizing three other measures: precision, recall, and
specificity, the framework was further evaluated. Table 3 summarizes the performance
measures related to the above-mentioned measuring parameters for the average of all
classes and each class separately as well for all deep learning networks presented in Ta-
ble 2. The comparison shows that ResNet18 outperforms all the others in all the measuring
fields. Figure 6 clearly describes the condition that we had achieved a solution of our
optimization problem, defined in Section 3.1.4, with the optimal hyperparameters’ values
(x1 = LR = 0.01 and x2 = BS = 32) using the SGDM solver. The solution, ultimately,
provided us with an optimized model with the highest accuracy of 99.56% for the brain
tumor classification problem.
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Table 2. A comparative study of the models with their optimal parameters [10].

Pre-Trained
Model

Confusion
Matrix

Predicted Class
Solver Batch

Size
Learning

Rate
Epoch

Validation
Accuracy

(%)

Testing
Accuracy

(%)

Training
TimeG M P

AlexNet True
Class

G 210 3 1

SGDM 32 0.001 54 97.17 97.6 0:14:44M 2 101 3

P 0 2 137

GoogleNet
(ImageNet)

True
Class

G 210 4 0

Adam 10 0.0001 16 98.4 97.39 00:16:03M 2 101 3

P 1 2 136

GoogleNet
(Places365)

True
Class

G 210 4 0

SGDM 10 0.001 20 98.26 97.17 00:14:42M 6 99 1

P 1 1 137

ResNet-50 True
Class

G 213 1 0

SGDM 7 0.001 17 98.26 99.56 0:24:46M 1 105 0

P 0 0 139

ResNet-101 True
Class

G 213 1 0

SGDM 10 0.001 23 98.26 99.35 0:51:04M 1 105 0

P 1 0 138

ResNet-18 True
Class

G 213 1 0

SGDM 32 0.01 54 98.48 99.56 0:19:25M 0 105 1

P 0 0 139

VGG16 True
Class

G 214 0 0

SGDM 7 0.0001 11 96.74 98.26 0:14:41M 6 98 2

P 0 0 139

VGG19 True
Class

G 211 3 0

SGDM 7 0.0001 15 97.17 98.69 0:21:24M 1 105 0

P 0 2 137

SqueezeNet True
Class

G 208 5 1

SGDM 32 0.001 36 97.39 97.39 0:11:18M 1 103 2

P 2 1 136

MobileNet True
Class

G 213 1 0

SGDM 32 0.01 54 97.61 98.91 0:43:46M 1 103 2

P 0 1 138

Inception
V3

True
Class

G 211 3 0
RMS-Prop 10 0.0001 20 98.04 98.26 0:58:39M 1 103 2

P 1 1 137
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Table 3. A comparative study of the models in terms of performance metrics [10].

Fine-Tune
Models

Precision Per
Class

Average
Precision

Sensitivity Per
Class

Average
Sensitivity

Specificity Per
Class

Average
Specificity

AlexNet

99.06%

97.61%

98.13%

97.60%

99.18%

98.91%95.28% 95.28% 98.58%

97.16% 98.56% 98.75%

GoogleNet
(ImageNet)

98.11%

96.97%

97.20%

96.95%

98.37%

98.53%92.59% 94.34% 97.73%

98.56% 98.56% 99.38%

GoogleNet
(Places365)

96.77%

97.17%

98.13%

97.17%

97.14%

98.25%95.19% 93.40% 98.58%

99.28% 98.56% 99.69%

ResNet50

99.53%

99.56%

99.53%

99.56%

99.59%

99.74%99.06% 99.06% 99.72%

100.00% 100.00% 100.00%

ResNet101

99.07%

99.35%

99.53%

99.35%

99.18%

99.55%99.06% 99.06% 99.72%

100.00% 99.28% 100.00%

ResNet18

100.00%

99.57%

99.53%

99.56%

100.00%

99.84%99.06% 99.06% 99.72%

99.29% 100.00% 99.69%

VGG16

97.27%

98.30%

100.00%

98.26%

97.55%

98.67%100.00% 92.45% 100.00%

98.58% 100.00% 99.38%

VGG19

99.53%

98.73%

98.60%

98.69%

99.59%

99.48%95.45% 99.06% 98.58%

100.00% 98.56% 100.00%

SqueezeNet

98.58%

97.41%

97.20%

97.39%

98.78%

98.75%94.50% 97.17% 98.30%

97.84% 97.84% 99.06%

MobileNet

99.53%

98.91%

99.53%

98.91%

99.59%

99.49%98.10% 97.17% 99.43%

98.57% 99.28% 99.38%

InceptionV3

99.06%

98.26%

98.60%

98.26%

99.18%

99.17%96.26% 97.17% 98.87%

98.56% 98.56% 99.38%

In this study, as discussed above, we extended the scope of the research by performing
a statistical analysis to evaluate and validate the effect of the hyperparameters. All three
models with three different solvers were simulated with each pair (LR, and BS) from the
extended Cartesian product matrix for 100 epochs. Seven LRs and eight BSs in the form of
pairs resulted in 56 test accuracies with one solver for one model. Table 4 presents all three
models’ performances in terms of accuracies for the three solvers.
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Table 4. ResNet architecture-based models’ performances in term of accuracies (percentage).

ResNet18 ResNet50 ResNet101

SGDM SGDM SGDM

BS
LR 0.01 0.005 0.001 5 ×

10−4
1 ×
10−4

5 ×
10−5

1 ×
10−5 0.01 0.005 0.001 5 ×

10−4
1 ×
10−4

5 ×
10−5

1 ×
10−5 0.01 0.005 0.001 5 ×

10−4
1 ×
10−4

5 ×
10−5

1 ×
10−5

2 93.03 94.55 97.17 98.91 95.21 95.86 88.02 92.59 94.99 96.95 98.26 95.86 96.73 92.16 78.87 94.77 96.08 97.6 95.64 94.77 89.76

4 95.21 96.51 97.39 98.04 94.55 96.73 90.2 96.95 94.99 98.04 98.69 96.08 96.73 94.12 97.6 97.82 97.82 97.6 95.42 94.12 93.9

7 95.64 93.25 98.91 98.26 97.82 95.21 95.86 96.73 98.04 99.56 97.82 97.17 97.17 95.21 98.69 98.04 97.82 98.26 97.17 95.42 95.86

8 95.64 97.17 97.6 96.95 96.08 93.25 93.68 97.17 96.73 98.26 97.82 95.64 95.86 95.64 97.6 98.91 98.69 97.39 96.3 95.21 93.03

10 97.82 96.3 98.91 96.73 96.73 94.12 95.42 97.6 98.26 99.35 97.17 96.95 96.08 96.3 98.04 97.17 99.35 98.91 96.73 95.42 94.34

16 96.08 97.82 96.73 97.39 94.99 95.86 91.5 98.69 98.04 98.04 96.95 95.42 97.17 91.94 98.04 98.69 98.04 97.82 96.08 95.64 93.25

32 99.56 98.47 96.3 95.21 97.39 94.77 94.34 97.39 96.73 97.82 96.95 95.86 94.99 92.37 98.69 98.47 95.64 96.3 95.21 94.12 93.9

64 97.39 96.3 96.51 94.99 93.9 93.03 89.32 97.17 96.51 94.77 96.3 95.42 96.3 89.54 97.6 98.04 95.17 95.82 95.04 92.37 92.16

ADAM ADAM ADAM

2 66.23 89.54 92.59 95.86 97.39 95.86 97.39 68.63 76.47 90.58 96.51 97.82 96.95 95.86 62.96 79.08 65.58 90.41 97.17 94.99 91.29

4 76.03 87.36 93.03 95.21 98.91 96.08 95.86 69.72 88.89 93.9 92.16 96.51 95.42 96.95 71.68 86.06 93.9 89.76 97.39 97.82 98.26

7 91.29 93.68 93.9 95.21 98.47 95.42 96.3 80.61 83.22 96.08 97.39 98.26 98.47 94.99 79.74 88.24 92.37 96.95 97.39 97.39 96.73

8 84.75 91.72 96.08 96.95 98.47 95.64 96.08 78.43 94.55 94.55 91.29 97.82 98.91 96.73 84.1 84.97 93.25 97.6 99.13 97.17 95.64

10 81.48 94.34 92.81 98.26 98.04 95.42 96.3 90.41 94.55 95.64 95.21 98.26 97.39 95.42 88.45 92.81 92.59 95.86 97.17 97.6 96.73

16 94.77 91.29 96.08 98.47 97.6 99.13 96.08 91.72 92.59 95.21 97.17 99.13 98.91 96.3 83.01 90.2 94.77 97.17 98.47 96.3 94.34

32 94.12 94.99 96.95 98.47 98.91 98.69 95.21 87.58 95.21 96.51 98.04 97.17 98.91 96.08 93.46 91.7 91.29 96.51 97.82 97.6 95.64

64 96.51 95.86 96.3 96.08 98.91 98.04 97.39 92.16 95.86 95.21 95.64 98.26 98.91 93.9 90.63 90.81 91.7 95.21 97.39 96.51 93.04

RMSProp RMSProp RMSProp

2 76.25 80.39 84.31 89.54 95.64 97.39 96.95 64.71 81.92 85.4 83.88 98.26 96.51 96.95 23.09 64.92 82.79 79.96 96.73 98.04 94.12

4 76.03 82.79 92.16 93.25 98.69 97.39 95.42 78.65 87.15 92.16 93.25 98.47 97.82 98.04 78.43 84.53 89.32 94.12 98.04 98.91 95.64

7 90.63 92.81 91.29 93.25 95.64 97.39 96.95 76.47 88.24 88.45 97.82 98.91 97.17 95.42 79.3 81.05 90.41 95.42 96.51 98.04 96.08

8 93.68 89.54 95.42 94.99 98.26 98.69 97.6 85.84 82.35 91.5 96.95 98.04 97.6 98.26 86.71 87.58 91.72 94.55 98.04 98.47 95.64

10 86.06 90.63 94.55 90.63 97.6 98.26 96.3 86.93 89.98 92.75 94.99 96.73 98.69 96.73 89.11 91.5 94.34 94.34 98.47 97.6 97.6

16 87.58 92.81 96.51 96.51 98.47 98.04 97.6 83.22 89.54 93.03 97.39 97.17 98.47 95.86 83.66 91.29 93.9 93.03 96.3 97.82 96.73

32 90.2 90.85 94.55 95.64 97.39 97.17 96.51 88.89 91.94 94.77 91.07 97.82 98.91 96.51 85.19 90.72 97.17 95.64 97.82 98.04 96.8

64 91.07 93.68 74.73 94.77 98.04 96.51 95.64 91.5 89.98 95.86 96.51 97.39 98.26 94.77 80.61 88.89 94.55 93.9 95.21 97.39 95.86

Furthermore, Figure 7 shows boxplots, demonstrating the collected results’ distribu-
tion for the ResNet18 DL model retrained on our brain tumor dataset with solvers SGDM,
Adam, and RMSProp. On the left side, each boxplot exhibits a distribution of measured
accuracies for the given range of BSs at each specific LR starting from 0.00001 to 0.01. On
the right side, each boxplot exhibits a distribution of the measured accuracies for the given
range of LRs at each specific BS starting from 2 to 64. Each boxplot represents the lower
quartile, median, and upper quartile, and whiskers extend to the end of the sample range
to display the maximum and minimum accuracies.

On increasing the LRs, the parameters of the boxplots display a nonlinear behavior.
When referring to SGDM, the maximum accuracy of 99.56% i.e., the highest value of the
whiskers, was observed with LR = 0.01 while the maximum dispersion was observed
with the lowest value of LR = 0.00001. On the other hand, with Adam, the maximum
value of the whiskers (accuracy = 99.13%) was observed with LR = 0.00005, whereas the
greatest dispersion was depicted with LR = 0.01. RMSProp informed of a behavior similar
to Adam, with the greatest dispersion being at the highest value of LR and the maximum
performance being at LR = 0.00005. Similarly, on the right side of Figure 7, boxplots about
the increase in the batch size reveal a nonlinear pattern. Conclusively, it is quite evident
from the boxplots that increasing/decreasing the LRs and BS did not increase/decrease
the model performance in a hierarchical fashion, rather there seemed to be a trade-off
in-between.

Figure 7d reveals the joint impact of LR and BS on the data set while comparing the
model performances using SGDM, Adam, and RMSProp. We observed that concerning the
brain tumor classification, SGDM had the most optimum performance in comparison to
Adam and RMSProp as it reached the maximum accuracy and has the lowest dispersion too.
The dispersion of outputs was gradually increasing in Adam and RMSProp, respectively.
Although the whiskers maxima and the upper quartile were almost the same for all three
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solvers, the lower quartile was gradually decreasing. Conclusively, the experimental results
show that both hyperparameters (LR and BS) had a significant impact individually as well
as interactively, with a trade-off in between.

Similar experiments were performed for ResNet50, and ResNet101 models to collect
the relevant data in terms of accuracies for the defined values of LR and BS. Simulation
results revealed the same effect of LR and BS on the model performance as shown by
ResNet18.
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Figure 7. (a) ResNet18 performances with SGDM: varying BSs at specific LRs (left side), varying LRs
at specific BSs (right side). (b) ResNet18 performances with ADAM: varying BSs at specific LRs (left
side), varying LRs at specific BSs (right side). (c) ResNet18 performances with RMSProp: varying BSs
at specific LRs (left side), varying LRs at specific BSs (right side). (d) ResNet18 model performances
with three solvers for paired hyperparameter inputs.

A performance comparison is presented in Table 5 between our work and other exist-
ing state-of-the-art research studies that used the same brain tumor dataset for multi-type
tumor classification. The comparison was mainly based on the performance metric “accu-
racy” with the support of three other parameters: “precision,” “recall,” and “specificity.”
The comparison showed that the transfer learning technique, implemented through our
proposed framework for brain tumor classification, outperformed all existing approaches
based on traditional image processing [5,31], CNN [32,33], and transfer learning [34–40].

Table 5. The comparison of the framework with the related work based on the same dataset.

Related Work Approach Accuracy
Precision Recall Specificity

G M P Average G M P Average G M P Average

[5] BoW-SVM 91.28 - - - - 96.4 86 87.3 - 96.3 95.5 95.3 -

[31] DWT-Gabor-NN 91.90 - - - - 95.1 86.9 91.2 - 96.3 96 95.7 -

[32] CapsNet 90.89 - - - - - - - - - - - -

[33] CNN-ELM 93.68 91 94.5 98.3 - 97.5 76.8 100 - - - - -

[34] VGG19 94.58 - - - - - - - 88.41 - - - 96.12

[35] VGG19 94.82 93 87.97 87.34 89.52 95.97 89.98 96.81 94.25 93.79 96.42 93.93 94.69

[36] GoogleNet-SVM 97.10 99 94.7 98 - 97.9 96 98.9 - 99.4 98.4 99.1 -

[40] VGG16 98.69 - - - - - - - - - - - -

[37] VGGNet 94.00 - - - - - - - - - - - -

[38] DenseNet 99.51 99 99 100 - 100 99 99 - - - - -

[39] GoogleNet-
KNN 98.30 98 95.55 97.78 - 98.02 94.57 99.1 - 98.63 98.65 99.01 -

Our Approach ResNet18 99.56 100 99.06 99.29 99.45 99.53 99.06 100 99.53 100 99.72 99.69 99.8

4.2. Statistical Analysis

The discussion in this section validates our experimental results using two-way
ANOVA. The analysis was performed using the collected data in terms of test accura-
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cies, shown in Table 4 as well as in Figure 7 boxplots. Each accuracy represented an output
against each pair of LR and BS for the ResNet18 model with solvers SGDM, Adam, and
RMSProp. The statistical analysis has validated our experimental findings: (1) LR showed
a significant impact on the model performance, (2) BS showed a significant impact on the
model performance, and (3) there was an interaction effect of LR and BS on the model
performance.

In addition to the representation of data as boxplots, a sample of data to describe how
it was used in the analysis is shown in Table 6.

Table 6. The dataset sample (the ResNet model’s performances (accuracies) with SGDM) organized
for ANOVA statistics [30].

LR
BS 0.01 0.005 0.001 0.0005 0.0001 0.00005 0.00001

2

93.03 94.55 97.17 98.91 95.21 95.86 88.02

92.59 94.99 96.95 98.26 95.86 96.73 92.16

78.87 94.77 96.08 97.60 95.64 94.77 89.76

4

95.21 96.51 97.39 98.04 94.55 96.73 90.20

96.95 94.99 98.04 98.69 96.08 96.73 94.12

97.60 97.82 97.82 97.60 95.42 94.12 93.90

The columns of the matrix represent the LRs and the rows represent the BSs. In this
analysis, we replicated each experiment three times, as per the ANOVA statistics, for a
balanced design. The first three rows correspond to ResNet18, ResNet50, and ResNet101,
respectively for BS = 2 and the next three rows represent the performances for all three
models with BS = 4. The response values are the model performances in terms of accuracy
at each (LR, BS) paired value.

Table 7 shows the parameters obtained through the ANOVA analysis. The parameter
Prob > F shows the p-values: 3.52524× 10−20, 2.4884× 10−09, and 6.57531× 10−07 for the
LRs, BSs, and the interaction effect between LR and BS, respectively. These values indicate
that LRs and BSs affected the model performance individually as well as there was an
interaction between the two hyperparameters. Further, we have also performed multiple
comparison tests to investigate whether the model performance differed between pairs of
LRs or not. The test helped us in finding the significant impact on the model performance
due to an increase/decrease in the LR.

Table 7. The two-way ANOVA, individual and interaction effect of LR (column) and BS (rows).

Source SS df MS F Prob > F

LRs 367.89 6 61.3145 27.91 3.52524 × 10−20

BSs 148.04 7 21.148 9.63 2.4884 × 10−9

Interaction 292.94 42 6.9748 3.17 6.57531 × 10−7

Error 246.07 112 2.1971

Total 1054.94 167

Table 8 shows the multiple comparisons of the means of accuracies associated with
each LR. Seven LRs are representing seven groups to compare.
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Table 8. The two-way ANOVA, multiple comparisons of LR’s (column-wise) means.

Group A Group B Lower Limit A-B Upper Limit p-Value

1 2 −1.9294 −0.64458 0.6402 0.74045

1 3 −2.5744 −1.2896 −0.0047974 0.048506

1 4 −2.4115 −1.1267 0.15812 0.12605

1 5 −1.0219 0.26292 1.5477 0.99624

1 6 −0.44145 0.84333 2.1281 0.43887

1 7 2.1056 3.3904 4.6752 3.71 × 10−8

2 3 −1.9298 −0.645 0.63979 0.73987

2 4 −1.7669 −0.48208 0.8027 0.9186

2 5 −0.37729 0.9075 2.1923 0.34781

2 6 0.20313 1.4879 2.7727 0.01243

2 7 2.7502 4.035 5.3198 3.71 × 10−8

3 4 −1.1219 0.16292 1.4477 0.99975

3 5 0.26771 1.5525 2.8373 0.0076499

3 6 0.84813 2.1329 3.4177 4.61 × 10−5

3 7 3.3952 4.68 5.9648 3.71 × 10−8

4 5 0.1048 1.3896 2.6744 0.025044

4 6 0.68521 1.97 3.2548 0.00021833

4 7 3.2323 4.5171 5.8019 3.71 × 10−8

5 6 −0.70437 0.58042 1.8652 0.82336

5 7 1.8427 3.1275 4.4123 3.79 × 10−8

6 7 1.2623 2.5471 3.8319 6.74 × 10−7

Column 1 and column 2 of Table 3 show the LR’s associated groups that are compared.
Column number 4 shows the difference between the calculated group means. Column
numbers 3 and 5 represent the lower and upper limits, respectively, for the 95% confidence
interval for the true mean difference. The last column consists of the p-value for a hypothesis
testing that the difference between the corresponding group means is equal to zero. It is
very clear from Table 4 that the larger group mean difference resulted in a p-value < 0.05.
The p-values in Table 4 that are very small, indicate that the model performance varied
across LRs. Conclusively, the LR had a significant impact on the model performance.

Similarly, another multiple comparison was performed to investigate the impact of
BS on the model performance. Table 9 shows the multiple comparisons of the means of
accuracies associated with each BS. There are eight accuracies groups associated with eight
BSs. The small p-values < 0.05 indicate that the model performance differed between two
BSs and the group means were significantly different from each other. It is concluded that
BS had a significant impact on the model performance.
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Table 9. Two-way ANOVA, multiple comparisons of BS’s (row-wise) means.

Group A Group B Lower Limit A-B Upper Limit p-Value

1 2 −3.3525 −1.9395 −0.5265 0.0012

1 3 −4.2764 −2.8633 −1.4503 2.6014 × 10−7

1 4 −3.6435 −2.2305 −0.8175 9.5937 × 10−5

1 5 −4.2664 −2.8533 −1.4403 2.8206 × 10−7

1 6 −3.6225 −2.2095 −0.7965 1.1579 × 10−4

1 7 −3.4464 −2.0333 −0.6203 5.3643 × 10−4

1 8 −2.1325 −0.7195 0.6935 0.7653

2 3 −2.3368 −0.9238 0.4892 0.4736

2 4 −1.7040 −0.2910 1.1221 0.9983

2 5 −2.3268 −0.9138 0.4992 0.4881

2 6 −1.6830 −0.2700 1.1430 0.9989

2 7 −1.5068 −0.0938 1.3192 1.0000

2 8 −0.1930 1.2200 2.6330 0.1439

3 4 −0.7802 0.6329 2.0459 0.8629

3 5 −1.4030 0.0100 1.4230 1.0000

3 6 −0.7592 0.6538 2.0668 0.8418

3 7 −0.5830 0.8300 2.2430 0.6117

3 8 0.7308 2.1438 3.5568 2.0727 × 10−4

4 5 −2.0359 −0.6229 0.7902 0.8724

4 6 −1.3921 0.0210 1.4340 1.0000

4 7 −1.2159 0.1971 1.6102 0.9999

4 8 0.0979 1.5110 2.9240 0.0272

5 6 −0.7692 0.6438 2.0568 0.8521

5 7 −0.5930 0.8200 2.2330 0.6264

5 8 0.7208 2.1338 3.5468 2.2624 × 10−4

6 7 −1.2368 0.1762 1.5892 0.9999

6 8 0.0770 1.4900 2.9030 0.0311

7 8 −0.0992 1.3138 2.7268 0.0883

Kandel et al. [20] used five different BS(s) and two LR(s) to investigate these hy-
perparameters’ influence on the network’s performance. The author concluded that the
performance was significantly influenced by the learning rate and batch size; the learning
rate and batch size had a high correlation. The author advised choosing small batch sizes
with a low learning rate. According to a Masters et al. [22] statement, small BS(s) should
be used. The author did not comment on the influence of LR while Radiuk [19] said that
a higher BS should be used with a large LR to obtain a better performance. All these
research studies used very limited experiments with few LR(s) and BS(s) that could not
guarantee the exact pattern. In our case, we performed an extensive exercise with a larger
number of LR(s) and BS(s) to find the pattern. From our simulation results, presented
in Table 4, it is quite clear that both hyperparameters have a significant influence on the
model performance with a trade-off in-between. Further, the ANOVA statistical test also
proved that both hyperparameters not only have an individual significant effect on the
model performance but also an interaction exists in-between.
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5. Conclusions and Future Work

The successful implementation of KBTL is completely based on the tuning of hyperpa-
rameters such as the LR and BS. In addition to the challenging task of selecting an optimal
value for hyperparameters, there is another issue to find their significant impact, indepen-
dently as well as interactively, on the model performance. In this study, a Cartesian product
matrix, consisting of 56 pairs of LR and BS, was used to input the three best-performing
ResNet architecture-based DL models for brain tumor classification. In the first phase, an
extensive experiment comprising 504 simulations was performed, and results in terms
of the accuracy were collected for further investigation. The initial study revealed that
increasing/decreasing the LRs and BS did not increase/decrease the model performance
in a hierarchical fashion, rather there seemed to be a trade-off in-between. Further, the
experimental results showed that both hyperparameters (LR and BS) had a joint significant
impact on the model performance. In the second phase, the results were validated using the
statistical ANOVA analysis. The F-test returned all three results, with p < 0.05, stating both
hyperparameters (LR and BS) not only have a significant impact on the model performance
independently, but there exists an interaction between LR and BS for a combination of
their levels. In addition to these findings, multiple comparison tests for different LRs and
different BSs concluded that each LR and BS had an independent impact on the model
performance. Further, the non-linear pattern for accuracy on increasing/decreasing LR and
BS suggested that there should be a trade-off between LR and BS to obtain the maximum
accuracy, ultimately helping to find the optimal values of LR and BS and the optimum
model for brain tumor classification.

This study can be further extended by using more than two hyperparameters in the
Cartesian product matrix to obtain their optimal values. Moreover, researchers are invited
to further validate the methodology by using other dataset(s) for not only brain tumor
classification but also in other classification problems. The limitation of this research was
the GPU specifications that allowed for the evaluation and validation of the framework for
the batch sizes up to 64.
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