
Citation: Lee, H.; Kwon, S.; Lee, J.-H.

Experimental Analysis of Security

Attacks for Docker Container

Communications. Electronics 2023, 12,

940. https://doi.org/10.3390/

electronics12040940

Academic Editors: Juan M. Corchado,

Byung-Gyu Kim, Carlos A. Iglesias,

In Lee, Fuji Ren and Rashid

Mehmood

Received: 11 December 2022

Revised: 9 February 2023

Accepted: 11 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Experimental Analysis of Security Attacks for Docker
Container Communications
Haneul Lee 1, Soonhong Kwon 2 and Jong-Hyouk Lee 2,*

1 Protocol Engineering Laboratory, Sejong University, Seoul 143-747, Republic of Korea
2 Department of Computer and Information Security & Convergence Engineering for Intelligent Drone,

Sejong University, Seoul 143-747, Republic of Korea
* Correspondence: jonghyouk@sejong.ac.kr

Abstract: Docker has become widely used as an open-source platform for packaging and running
applications as containers. It is in the limelight especially at companies and IT developers that
provide cloud services thanks to its advantages such as the portability of applications and being
lightweight. Docker provides communication between multiple containers through internal network
configuration, which makes it easier to configure various services by logically connecting containers
to each other, but cyberattacks exploiting the vulnerabilities of the Docker container network, e.g.,
distributed denial of service (DDoS) and cryptocurrency mining attacks, have recently occurred. In
this paper, we experiment with cyberattacks such as ARP spoofing, DDoS, and elevation of privilege
attacks to show how attackers can execute various attacks and analyze the results in terms of network
traffic, CPU consumption, and malicious reverse shell execution. In addition, by examining the
attacks from the network perspective of the Docker container environment, we lay the groundwork
for detecting and preventing lateral movement attacks that may occur between the Docker containers.

Keywords: containers; container-based virtualization; Docker; network security

1. Introduction

With the outbreak of COVID-19 and digital transformation, developers are starting
to use cloud computing environments to efficiently manage computing resources or to
provision on-demand computing resources on the fly [1]. The most important technology
to provide a cloud computing environment is virtualization technology, which solves
the problems caused by the increase in the amount of data generated by various devices
and provides fast software distribution, customized functions, and flexibility for users.
Container technology, which is one of these virtualization technologies, is different from
the existing virtual machine (VM), namespace, which provides a virtual independent space
by separating the resources used by the container in one operating system kernel and
the space where the container is isolated isolating processes using Cgroups, which allows
resource control on the platform to run applications independently [2].

Docker, an open-source platform used to package and run applications as containers,
has become an important platform used by more than half of developers for reasons
such as software portability, application operation standardization, and efficient resource
management [3]. However, security threats targeting Docker containers began to increase
with the activities of malicious hacker teams such as TeamTNT, WatchDog, Kinsing, and
Rocke [4]. They mainly infiltrate Docker container environments through misconfigured
APIs for the purpose of DDoS or cryptocurrency mining. In the case of applications that
are used by multiple users and acquire special privileges, such as Portainer, a web GUI
tool to facilitate Docker container management, various attacks can occur in the Docker
container environment [5,6]. In addition, as an attacker can enter the Docker container
environment through the Docker API exposed on the Internet, the attacker can bypass the
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security program and execute various secondary attacks. Further research is needed to
detect such attacks from a container network perspective [7].

In [8], a Docker image vulnerability diagnostic system was introduced to analyze
Docker images. The system checks Docker images when uploading or downloading the
Docker images from a Docker image repository if any known vulnerabilities are included in
the images. In [9], the authors introduced a dynamic analysis method to assess the security
of Docker images based on their behavior. The dynamic analysis method was shown to
complement the static analyses typically used for security assessments for Docker images.
The work presented in [10] introduced a Docker image traceability and security detection
system based on inheritance graphs, called ZeroDVS, where a basic image graph is built
with 160 official Docker images published by Docker Hub. Based on the built image graph,
ZeroDVS can identify known vulnerabilities of a Docker image. In [11], various types of
base images were compared in terms of security severity.

Among recent container security mechanisms applicable to Docker, major ones ad-
dressing container network security are Docker-sec, LiCshield, and Lic-sec.

Docker-sec is a Docker security mechanism based on AppArmor. It creates an AppArmor
profile for a container and interacts with the Docker engine to apply it. The default AppArmor
profile protects the container only after it is initialized by RunC, but Docker-sec protects
the container during its entire life cycle [12]. Docker-sec shows excellent performance in
defending against privilege escalation attacks but cannot defend well against privilege
escalation attacks on images in the form of Docker in Docker [13].

LiCshield is a framework to automatically apply AppArmor policies to all Docker
containers. It tracks all kernel activity with a tool called SystemTap5 while the Docker
daemon is running. It can create access rules, mount rules, link rules, and execution
rules that Docker-sec cannot create [14]. However, since LiCshield does not restrict
malicious functions and commands such as /bin/bash, and it cannot defend against
all kernel attacks [13].

Lic-sec has been proposed by combining the advantages of Docker-sec and LiC-
shield. It can create access rules, mount rules, link rules, and execution rules, as well as
an audit function, while providing excellent performance in defending against privilege
escalation attacks. However, a defense against DoS attacks is not supported [13].

The previous works have provided only defense mechanisms or assumed possible se-
curity threats. In other words, no specific details for security threats in the Docker container
environment have been published. Rather than proposing a new defense mechanism, in
this paper, we present our actual experimental results showing that various attacks are
still possible even in the latest Docker container environment. The main contributions of
this paper are as follows:

1. It mainly focuses on Docker container networking and presents actual security at-
tacks to show how attackers can execute various attacks even in the latest Docker
container environment.

2. It presents detailed experimental steps for executing attacks such as ARP spoofing,
DDoS, and elevation of privilege attacks and presents analysis results of the secu-
rity attacks in terms of network traffic, CPU consumption, and malicious reverse
shell execution.

The structure of this paper is as follows. Section 2 describes the Docker container net-
work configuration method based on a Docker container network methodology. Section 3
analyzes network security attacks between independent containers. Section 4 shows the
experimental setup of this paper to demonstrate network security attacks in a Docker
container environment. Section 5 analyzes the experimental results. Finally, Section 6
concludes this paper.

2. Docker Container Communication

When we implement a specific service based on Docker, we usually configure the
service by running an application in a container environment. When composing a service
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based on the container, as communication between containers needs to be made, Docker
configures the network environment for service configuration by connecting the container-
to-container or existing network and VLAN. To clearly understand Docker networking, it is
necessary to understand three concepts: container network model (CNM), libnetwork, and
driver. First, the CNM is a standard for Docker networking and is composed of a sandbox,
endpoint, and network, as shown in Figure 1. In the case of the sandbox in Figure 1, it can be
defined as an isolated network stack, including Ethernet interfaces, ports, and DNS settings.
Additionally, in the case of an endpoint, veth, which can be checked when configuring a
Docker container network environment with a virtual Ethernet interface, corresponds to
this. That is, the main role of the endpoint plays the role of a network interface, and in the
CNM, it plays the role of connecting the sandbox to the network. A network is a software
application implementation of one switch, and it plays the role of integrating or separating
the endpoints for communication [15,16].

Figure 1. Overview of the container network model.

The roles of each component in the CNM are shown in Figure 2. In the case of
Container A, it can be seen that the endpoint is connected to the back-end network, and
Container B is connected to the back-end network and the front-end network based on
the two endpoints. Additionally, the endpoint of Container C is connected to the front-
end network. In the case of Figure 2, it can be seen that each container is connected to
the back-end network and the front-end network, so communication between them is
possible. However, in the case of the two endpoints of Container B, communication is
impossible without a Layer 3 router, and communication is possible only through the Layer
3 router [15].

Figure 2. Container network model showing the back-end and front-end networks.

Next, in the case of libnetwork, it implements the CNM and performs all the roles of
each component in the CNM. This can be explained as being responsible for native service
discovery, ingress-based container load balancing, and network control and management
plane functions. In the early days of Docker, these functions were supported by the Docker
daemon, but now it has been refactored and established as libnetwork [15].
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In the case of a driver, it can be explained compared to libnetwork, and if libnetwork
provides network control and management plane functions, the driver implements the
data plane. It can be seen that both the connection and isolation of the Docker container
are handled by the driver, which can be seen in Figure 3. In the case of libnetwork, as
cross-platform is supported, there is a difference in the driver depending on the Linux
environment or Windows environment even in the case of the driver. On Linux, it has
bridge, overlay, and macvlan drivers, and on Windows, it has nat, overlay, transparent,
and l2bridge drivers. Each driver operates in the form of a plug-in and provides a role to
manage as well as create all resources on the network [15].

Figure 3. Driver components of the container network model.

Docker networking is based on these components, and more specifically, there is single-
host communication between containers that share a single-host kernel and multi-host
communication between containers on multiple hosts [15].

2.1. Single-Host Networking

The single-host communication method refers to communication between containers
that share the same host kernel. Communication methods include ‘None Mode’, ‘Bridge
Mode’, ‘Container Mode’, and ‘Host Mode’ [17]. Figure 4 is a diagram schematically
showing the structure of various communication methods appearing in a single-host
communication method [18].

Figure 4. Single-host networking mode.

First, ‘None Mode’ is a mode that sets the container to a closed network. It cannot
connect to other containers on the same host or on an external network, and because of
its characteristics, it has the highest isolation and security level of communication methods.
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‘None Mode’ is used for tasks that do not require network access operations such as data
calculations, batch processing, or backup operations. Figure 5 shows the network structure
of the ‘None Mode’ method in a single host [18].

Figure 5. ‘None Mode’ communication method in a single host.

Second, ’Bridge Mode’ is a mode in which two networks are used as one network
by connecting a container to a host. This is the network mode set by default when a
Docker container is created, and it communicates by creating docker0 or a custom bridged
network interface. Each container is isolated by a namespace, and they have a private
IP address. Containers communicate by creating a virtual interface veth to connect to
the bridge network interface that they must go through to communicate with each other.
Although each container in ‘Bridge Mode’ is isolated, it provides relatively weak security
compared to ‘None Mode’ because it is connected by a bridge. Figure 6 shows the ‘Bridge
Mode’ network structure in a single host [19].

The third ‘Container Mode’ is a mode to communicate by sharing the namespace
of the proxy container. Because containers sharing a single namespace use a common IP,
they communicate with each other using Inter-Process Communication (IPC) and can be
identified through port numbers. Communication with other containers is possible through
‘Bridge Mode’. In ‘Container Mode’, isolation from groups using different namespaces is
high, but isolation between containers using the same group is low. Figure 7 shows the
‘Container Mode’ communication method in a single host [20].

Finally, ‘Host Mode’ is the mode in which the container uses the namespace of the host
OS. It removes the network isolation between the container and the host and uses the host’s
network directly. Therefore, this mode provides the lowest level of security. However,
communication is as easy as exchanging processes with other hosts. Figure 8 shows the
‘Host Mode’ communication method in a single host [20].

Table 1 summarizes the characteristics of the communication method between con-
tainers on a single host according to the method in which each namespace is divided, the
type of ‘Network Interface/Network Driver’ used, and the security strength.
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Figure 6. ‘Bridge Mode’ communication method in a single host.

Figure 7. ‘Container Mode’ communication method in a single host.

Figure 8. ‘Host Mode’ communication method in a single host.

2.2. Multi-Host Networking

Docker was developed for the purpose of networking between containers on a single
host, so there were difficulties in container communication between different hosts. To
solve this problem, solutions such as Calico and Weave began to appear, and after Docker
version 1.9, Docker itself began to support overlay networking. Each support method can
be selected according to the developer’s requirements.



Electronics 2023, 12, 940 7 of 19

Table 1. Comparison according to communication method in a single host.

Mode Namespace Network Interface Network Driver Security

None Isolated - - High

Bridge Isolated docker0/user-defined bridge interface Bridge Medium

Container Connected with proxy container Interface of proxy container - Medium

Host Connected with host Host Host Low

First, a Docker overlay network plays a role of integrating into one network for con-
tainers running on multiple Docker daemons on one host or multiple Docker daemons
on different hosts. In more detail, the Docker overlay network can be defined as a virtual
networking solution using libnetwork and libk. It solves the scalability problem by using
Virtual extensible LAN (VxLAN), an encapsulation protocol built into the libnetwork li-
brary. All management traffic is encrypted using AES algorithm by default, and application
data encryption protects messages with IPsec on VxLAN [21]. Figure 9 shows an example
of a Docker overlay network.

Figure 9. Docker overlay network.

Second, Weave is a virtual networking solution developed by Weaveworks. It is
configured as a Weave Net router and communicates by creating a veth–bridge network
interface on each host to connect containers. Weave also uses the VxLAN encapsulation
protocol, which allows for IP lookups of other containers using DNS queries for container
names. In addition, the message is protected using the Networking and Cryptography
library (NaCI), which provides network communication, encryption, decryption, and
signature [22]. The fast data path in Weave uses the Open vSwitch module to announce
to the kernel how to process packets. In addition, in the case of Weave NET, a method of
issuing commands directly to the kernel is adopted, and context switching is reduced by
using a fast data path, and there are advantages in terms of CPU overhead and latency
efficiency. Figure 10 shows a general overview of Weave [22].
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Figure 10. Overview of Weave.

Finally, Calico is a virtual networking solution developed by Tigera. It uses two types
of encapsulation, IP in IP (IPIP) and VxLAN, to explore routes to individual containers.
IPIP is an IP tunneling protocol that encapsulates one IP packet in another IP packet, and
routing information is exchanged between Calico nodes using the Border Gateway Protocol
(BGP). VxLAN is applied to some environments such as Azure where IPIP is not applied
and BGP is not used. Figure 11 shows an example of multi-host networking configuration
for MySQL containers based on Calico [23].

Figure 11. Multi-host networking configuration for MySQL containers based on Calico.

Table 2 is a table summarizing the characteristics of virtual networking solutions between
containers on different hosts. It indicates the encapsulation protocol used, whether the name
service is supported, the encryption channel used, and the supported protocol types.

Table 2. Characteristics of virtual networking solutions [18].

Overlay Encapsulation Protocol Name Service Support Encryption Channel Protocol Support

Docker overlay VxLAN N N ALL

Weave VxLAN Y Y ALL

Calico VxLAN/IPIP N N TCP, UDP, ICMP
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3. Security Attacks Exploiting the Docker Container Network

In this section, we present our analysis of the network security attacks associated with
communications between Docker containers. Container network security challenges can be
expressed as the five challenges shown in Figure 12 below [24].

Figure 12. Container network security challenges [24].

The description of challenges shown in Figure 12 is summarized in Table 3 below.
(1) Each container has its own virtual network interface through which Docker can bridge
other containers. However, the security challenge is that inspection of packets can only
be performed in each container, and packet inspection in the host network namespace
must rely on packet header information. If a malicious container exists on the bridge, this
container can forge packets of other containers and enables lateral movement, making it
impossible to inspect normal container packets. (2) Containers have dynamic IP changes
using Dynamic Host Configuration Protocol (DHCP), making it difficult to update security
policies using iptables and are vulnerable to Layer 2 attacks such as ARP spoofing.
(3) Each container is subdivided and a security policy suitable for the container is required.
iptables is a centralized management mechanism for host network interfaces. When a
large number of containers are created, management of each container’s security policy
becomes difficult and performance suffers [25]. (4) Container networks have an external
gateway interface. Containers can access that gateway, which allows them to access services
running on the host and also access other connected hosts. If a malicious container exists
on container network, the malicious container may perform an attack that violates the
availability of the host, such as DoS. (5) In the case of a container that has network authority
over the host through Host Mode, the container’s isolation is low, so it can monitor the
traffic of all containers connected to the host and inject malicious attacks.

Table 4 describes the network security threats that can occur between containers
among the security problems that can occur on the above Docker container network and
the resulting attacks [26].

3.1. Poor Independence between Containers

The network connection between Docker containers can weaken the independent
container characteristics. For this reason, attacks such as DDoS and man-in-the-middle
(MITM) attacks can occur. A DDoS attack is one of the availability breach attacks that
depletes the victim’s computer resources and prevents normal operation. When a malicious
container is inserted into the Docker network and connected to other containers through a
network, it shares the same CPU core resource on a single host and may infringe the area of
other connected containers. An attacker may use this maliciously to lead to a DDoS attack
that consumes service resources. In an MITM attack, when two or more containers sharing
the same network interface communicate with each other on a single host, assuming that
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there is a malicious container using the same network interface, the malicious container can
intervene in communication between the two containers. Typical MITM attacks include
sniffing that eavesdrops on communications, ARP spoofing that pretends to be another user,
and tampering that can modify information in other containers without permission [27].

Table 3. Challenges in Docker container networks [24].

No. Challenges Description

1 Loss of container context Malicious containers can forge packet header information through the
bridge network, enabling attacks such as spoofing

2 Limitations of IP-based access control
Because of the dynamic change of container IP, updating

the policy table of iptables can be difficult and
vulnerable to Layer 2 attacks

3 Network policy explosion
As each container requires a different security policy

setting the security policy through the centralized
mechanism iptables can result in severe performance

degradation

4 Unrestricted host access
A container can access it through a gateway for external
access connected to the host network, allowing lateral

movement to access other containers

5 No restriction on network privileges container It monitors the network traffic of all containers connected to the host
and can inject malicious attacks

Table 4. Network security threats and related attacks for an inter Docker container.

Threats Attacks Description Ref.

Poor
independence

between
Docker containers

DDoS A malicious Docker container depletes
the resource of another container

[28–31]

Sniffing Communication between two containers
can be eavesdropped

-

ARP Spoofing ARP spoofing is possible for containers
running in the kernel

[29–31]

Tampering

In the case of host mode, a malicious Docker container
can modify information because the Docker container

user the same namespace as the host
[29–31]

In the case of container mode, information of containers
sharing a namespace can be modified

[29–31]

Lack of
security protocols

Sniffing Unencrypted packets can be eavesdropped -

Tampering Unencrypted packets can be modified -

Privilege Escalation A malicious Docker container can access the endpoint
of a Rest API, allowing elevation of privilege

[28–31]

3.2. Lack of Security Protocols

The Docker communication system consists of a client–server structure. It is repre-
sented as a Docker client and a Docker daemon, respectively, which communicate with
each other via the REST API. As the REST API uses the HTTP protocol, there is a possibility
that it may be exposed to vulnerabilities in the protocol. Since the HTTP protocol is weak
in security as security protocols such as TLS/SSL are not applied, MITM attacks such as
sniffing and tampering are easy, and further security attacks that infringe confidentiality
and integrity may occur.

In addition, the firewall of the REST API protects the intrusion of external attackers,
but does not respond to security threats that occur inside when a malicious container
is inserted. Recently, privilege escalation attacks using this vulnerability have occurred
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frequently, and through this, cases where the target host is exploited for cryptocurrency
mining are increasing [32].

4. Experimental Setup

We now demonstrate some of the Docker network security attacks described in
Section 3. We use Ubuntu version 20.04.3, and the experiments are carried out in Docker
version 20.10.12. The host IP and container addresses are shown in Table 5.

Table 5. Summary of Docker network security threats [26].

Attack OS Docker Classification Host IP Container IP Address

ARP spoofing

Ubuntu 20.04.3 Docker 20.10.12

Target host 192.168.19.130

busybox1 172.17.0.2

busybox2 172.17.0.3

ARP spoofer 172.17.0.4

DDoS

MySQL 172.18.0.2

phpMyAdmin 172.18.0.3

Ubuntu 172.18.0.4

Privilege escalation
Malicious host 192.168.19.129

my_registry 172.17.0.2

ubuntu_attacker 172.17.0.3

Target host 192.168.19.130 ubuntu_target 172.17.0.3

At this time, the MAC address of busybox1 is 02:42:ac:11:00:02, and the MAC ad-
dress of busybox2 is 02:42:ac:11:00:03. Additionally, the MAC address of ARP Spoofer
is 02:42:ac:11:00:04. The configuration of environment information for the DDoS attack
consists of the MySQL container required for web construction, the phpMyAdmin container
acting as the victim, and 20 Ubuntu containers acting as the attacker. After preparing two
hosts, malicious host and target host, for the containers required for privilege elevation,
the Ubuntu container required for attack on the malicious host, the registry to upload the
image, and the Ubuntu container required for the target host to be attacked are prepared.

The ARP spoofing, DDoS, and privilege escalation attacks are performed based on
the experimental environment specified in Table 5, and the main outline of each attack
execution is as follows.

• ARP spoofing

For the ARP spoofing experiment in communication between Docker containers, it is
assumed that a malicious container ARP spoofer exists on a single host. The ARP spoofer
intercepts communication between busybox1 and busybox2 and disguises its IP as the IP of
busybox1 and busybox2. Figure 13 shows the environment of the ARP spoofing experiment.

• DDoS

To experiment with a DDoS attack in Docker container-to-container communication,
it is assumed that a malicious container exists on a single host. In the experiment, when
the phpMyAdmin container and the MySQL container communicate with each other,
20 malicious Ubuntu containers simultaneously conduct a SYN flood attack through the
hping3 tool. Figure 14 is a diagram showing the corresponding experimental environment.

• Privilege escalation

For privilege escalation experiments in communication between Docker containers,
experiments are conducted on multiple hosts. First we need to set up a malicious host,
which is the host of the attacker, and the target host, which is the host of the victim. The
malicious host uploads a malicious Ubuntu image file to its registry my_registry and
attacks the target host through its own Ubuntu. The target host downloads the malicious
ubuntu image file from the attacker’s registry. When the target host executes the ubuntu
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file, the reverse shell is executed. Figure 15 shows the experimental environment briefly,
and Figure 16 shows the overall workflow between the attacker and the victim in detail.

Figure 13. Experimental environment for the ARP spoofing.

Figure 14. DDoS experimental environment.

Figure 15. Experimental environment of privilege escalation.
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Figure 16. Overall attack and victim workflow.

5. Analysis of the Attack Results

• ARP spoofing

The ARP spoofing attack is performed based on the attack method configured in
Section 4. First, in order to determine the success of the ARP spoofing attack, the pack-
ets of busybox1 and busybox2 performing general ICMP communication are checked
using Wireshark. From Figure 17, it is confirmed that busybox1 and busybox2 commu-
nicate normally with source and destination MAC addresses of 02:42:ac:11:00:02 and
02:42:ac:11:00:03, respectively.

Figure 17. General ICMP communication process.

However, when the ARP spoofer is involved in inter-container communication, if busy-
box1 (02:42:ac:11:00:02) and busybox2 (02:42:ac:11:00:03) communicate with each
other, the destination MAC address 02:42:ac:11:00:04 can be seen through Wireshark.
On the IP address, it is confirmed as the original communication between busybox1 and
busybox2, but when it is checked through the MAC address, it can be seen from Figure 18
that the MITM attack that ARP spoofer intervened in is executed.

• DDoS

As previously described in Section 4, in the case of a DDoS attack, the attack is
performed based on 20 Ubuntu containers and is performed based on the hping3 tool.
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Figure 19 shows that the hping3 command executed in each Ubuntu container acting as
an attacker performs a SYN flooding attack on port 80 of the container whose IP address
is 172.18.0.3. In the case of attacking the target by executing the command in Figure 19
in the 20 Ubuntu containers, we can confirm the network traffic through Wireshark as
shown in Figure 20. It can be seen that when phpMyAdmin and MySQL communicate
with each other, the Ubuntu container continuously sends the SYN messages to the target
container, phpMyAdmin, and the Ubuntu container sends the RST messages to phpMyAd-
min after receiving the SYN and ACK messages in response. Additionally, we can confirm
that the traffic is classified as malicious (bad) TCP traffic in Figure 21.

Figure 18. General ICMP communication process with the ARP spoofing attack.

Figure 19. hping3 command for the SYN flooding attack.

Figure 20. Wireshark execution screen with the DDoS attack.

As a result of observing the amount of accumulated traffic through the Wireshark I/O
graph, it can be observed that there is no change in terms of packets per second (PPS), as
shown in Figure 22 when the DDoS attack is not executed.
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Figure 21. Traffic classified as malicious in Wireshark.

Figure 22. PPS result without the DDoS attack.

In the case of abnormal traffic confirmed by the execution of the DDoS attack, it is
confirmed that the amount of packets per 100 ms is between 1500 and 2000, as shown in
Figure 23. This confirms that the availability of the target environment is violated.

In more detail, the cAdvisor tool [33] is used to compare a CPU usage when a DDoS
attack does not occur and when it occurs. The CPU usage in a normal state where the DDoS
attack does not occur showed mainly usage 0% to 20% as shown in Figure 24.

However, as a result of measuring the CPU usage based on the time of the DDoS
attack, the result shown in Figure 25 is confirmed, which means a high usage of 25% to
100%. This result shows that attackers can waste host resources regardless of intention
when using Docker, which is a fatal security threat that harms availability.

• Privilege escalation

The privilege escalation attack described in Section 4 is performed. First, as men-
tioned above, it is assumed that the malicious host has uploaded a malicious image with
a backdoor code inserted to access the target host to the registry. In addition, the target
host is the situation in which the malicious image file uploaded by the attacker is down-
loaded, and the container is executed based on the malicious image. At this time, the
ubuntu_attacker container of the malicious host is connected to the ubuntu_target of
the target host. Figure 26 shows that the malicious host’s ubuntu_attacker container is
connected to the target host’s ubuntu_target container.
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Figure 23. Confirmation of the PPS result after the DDoS attack is executed.

Figure 24. Confirmation of the CPU consumption when the DDoS attack does not occur.

Figure 25. Confirmation of the CPU consumption when the DDoS attack occurs.

When the ubuntu_target container is executed on the target host, that the reverse
shell can be seen to have been executed as follows. To check this, it can be seen from
Figures 27 and 28 that the same result is obtained after inputting the same command into
the ubuntu_attacker container of malicious host and the ubuntu_target container of the
target host.
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Figure 26. Privilege escalation attack success screen.

Figure 27. ubuntu_target docker container list accessed from ubuntu_attacker (1).

Figure 28. ubuntu_target docker container list (1).

Figure 29 shows that the container of the ubuntu_target container is deleted from the
ubuntu_attacker container through privilege escalation.

Figure 29. Delete the docker container in the ubuntu_target container.

As a result, it can be confirmed through Figures 30 and 31 that the information of
the ubuntu_target container identified in the ubuntu_attacker container of the malicious
host and the information of the ubuntu_target identified in the target host are the same.

Figure 30. ubuntu_target docker container list accessed from ubuntu_attacker (2).

Figure 31. ubuntu_target docker container list (2).

6. Conclusions

This paper demonstrated through experiments that security attacks, i.e., ARP spoofing,
DDoS, and privilege escalation attacks, can occur in communication between the Docker
containers. We have analyzed the impacts of the security attacks in terms of network
traffic, CPU consumption, and malicious reverse shell execution. Security attacks occurring
in inter-container communication must be prevented, and efforts to demonstrate and
analyze attacks based on the security mechanisms presented above are required. For
future research, in order to conduct research on security systems usable on inter-container
communication, we will demonstrate and analyze various Docker network attacks to which
security mechanisms are applied and propose new ways to overcome the limitations of
security mechanisms.
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