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Abstract: Intrusion detection systems (IDSs) play a significant role in the field of network security,
dealing with the ever-increasing number of network threats. Machine learning-based IDSs have
attracted a lot of interest owing to their powerful data-driven learning capabilities. However, it
is challenging to train the supervised learning algorithms when there are no attack data at hand.
Semi-supervised anomaly detection algorithms, which train the model with only normal data, are
more suitable. In this study, we propose a novel semi-supervised anomaly detection-based IDS
that leverages the capabilities of representation learning and two anomaly detectors. In detail, the
autoencoder (AE) is applied to extract representative features of normal data in the first step, and
then two semi-supervised detectors, the one-class support vector machine (OCSVM) and Gaussian
mixture model (GMM), are trained on the derived features. The two detectors collaborate to detect
anomalous samples. The OCSVM predicts the abnormal samples initially, and after that, the GMM
is applied to recheck the misclassified samples further. The experiments demonstrate that the AE
improves the detection rate, and two detectors are more promising than a single one.

Keywords: intrusion detection; semi-supervised anomaly detection; autoencoder; one-class support
vector machine; Gaussian mixture model

1. Introduction

The increasing number of network attacks pose significant threats for network envi-
ronments. To enhance the network protection ability, intrusion detection systems (IDSs)
have received a lot of attention. According to the detection methodologies, they can be sep-
arated into two categories: misuse detection and anomaly detection [1]. Misuse detection
approaches employ the signatures of known attacks to examine new samples. They have
higher detection rates, but it is hard to identify unknown attacks or the variants of known
attacks. Anomaly detection based methods learn the normal profile and find abnormal
samples that deviate from it [1].

Machine learning-based anomaly detection methods have been widely employed.
They leverage data-driven learning approaches to learn the characteristics of network traffic.
Supervised learning methods would learn the decision boundary between anomalous and
normal data during the training phase, and then utilize this capability to categorize the
new samples during the testing phase—for example, decision trees [2], support vector
machine [3], and random forest [4]. However, for these supervised learning algorithms,
they need a labeled dataset comprising both normal and abnormal samples. It is difficult
and expensive to gather the labeled samples [5,6].

In the anomaly detection techniques, based to whether the dataset has labels or not,
they have three types [7]: supervised methods, semi-supervised methods, and unsuper-
vised methods. The semi-supervised methods train on the dataset that only contains normal
data. Unsupervised techniques operate with the dataset without label directly. Since it is
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easy to gather normal data in a network environment, we can learn about the characteristics
of normal data. In this research, we focus on semi-supervised anomaly detection-based IDS.

The one-class learning approach could be employed to handle this problem, for ex-
ample, one-class support vector machine (OCSVM) [8–10]. The anomalous sample is
identified using a hyperplane that separates the normal and abnormal samples. However,
it is challenging to cope with high-dimensional data.

There are numerous other kinds of anomaly detection approaches, for example, ker-
nel density estimation (KDE) is employed to learn the characteristics of normal data [11].
Before training KDE, authors apply an autoencoder (AE) to extract the representative
features. In this manner, it enhances the detection performance compared with applying
the original feature directly. The AE itself could be applied in anomaly detection and recon-
struction loss serves as anomaly score [12]. Also, an IDS based on the probabilistic model is
proposed [13]. It leverages the Gaussian mixture model (GMM) to learn the probability
distribution. These studies learn the features of normal data from different perspectives
and generate distinct anomaly scores. The anomalous samples can be recognized if they
have higher anomaly scores.

In general, while dealing with high-dimensional data, imposed by the curse of di-
mensionality, the performance may not be satisfactory. In the mean time, there are still
improvement space for a single of detector. In this research, we present a novel semi-
supervised anomaly-based IDS utilizing the OCSVM and GMM both. Compared with the
supervised techniques, which use a labeled dataset comprising both normal and attack data
to train the model, this model uses simply normal data. This technique utilizes the data
representation capabilities of deep learning and combines the capacities of two different
anomaly detectors to enhance the effectiveness of IDS. In detail, the contributions can be
summarized as follows:

1. Before training the anomaly detector, we use the AE to extract representative features
from network data. These features are fed into the anomaly detectors. The new
features enhance detection performance.

2. After obtaining latent features, we employ them to train OCSVM and GMM further.
The OCSVM learns a one-class classification boundary; in the meantime, the GMM
learns a probability distribution of the normal data. In specifically, the GMM is utilized
to reclassify the samples obtained via OCSVM.

3. We conduct a number of experiments on two intrusion detection datasets to illus-
trate their performance. The experiment results indicate that our proposed model
demonstrates higher detection capability.

The rest of this study is structured as follows. We review some related work in
Section 2. Then, Section 3 describes the proposed detection framework. After that, we
evaluate the proposed detection method and analyze the experiment results in Section 4.
In final, Section 5 draws the corresponding conclusions and points out some future work.

2. Related Work

Aside from detection techniques, IDS can be divided into two categories depending on
the data source, namely, host-based IDS (HIDS) and network-based IDS (NIDS) [1]. HIDS
analyzes data like logs of the operating system on a host. The NIDS is good at detecting
malicious actions by analyzing network traffic transmitted inside the network. In this study,
we concentrate on the NIDS.

Machine learning- and deep learning-based NIDS have been developed by a number of
researchers [14], as their performance is remarkable. Among them, supervised approaches
have gained a lot of attention [15–18]. But as stated previously, it requires to gather labeled
datasets [5,6]. Deep learning methods, in particular, are data-hungry [19]. They require
huge amounts of data to train the neural network. When there are fewer attack samples,
they may confront the problem of imbalanced data [20,21]. Considering these challenges, it
is possible to create a semi-supervised anomaly-based NIDS that trains the model using
only normal data. Semi-supervised anomaly detection approaches try to learn the features
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of normal data. Various approaches use different metrics to quantify the degree of the
abnormality. When their anomaly score is high, the abnormal samples can be identified.

Considering the issue of high-dimensional data [5], numerous researchers proposed
employing the AE before training anomaly detector. The AE is a special neural network
that has been frequently employed in dimension reduction [22] because it can learn a
compressed latent of the original input.

For example, the AE is used to extract representative features before training the semi-
supervised anomaly detection algorithms for identifying cyber attacks in smart grids [23].
According to the experiment results, the semi-supervised algorithms, like OCSVM, gain
improvement from the new features. As one of the ensemble learning methods, isolation
forest (IForest) is employed in intrusion detection [24]. Similarly, a one-class extreme
learning machine is used as anomaly method to detect abnormalities for gas turbine
combustor [25]. These approaches benefit from the new features derived from the AE.

In another way, the AE itself could be utilized to identify anomalies. During training,
the reconstruction error is utilized as the loss function to train the neural network. The AE
attempts to reconstruct the original input as much as possible. In this method, the recon-
struction error is utilized as anomaly score. The authors of [12] investigate the effectiveness
of several AE variants.

Liao et al. [26] created an ensemble framework utilizing various AEs and generative
adversarial networks (GAN). Traditional AE, variational AE, convolutional AE, convo-
lutional variational AE, and GAN are all part of the proposed framework. A weighted
average ensemble is used to obtain the final anomaly score from the reconstruction error
produced by multiple models after each model has been trained. By comparing the anomaly
score to a predefined threshold, the sample is classified as anomalous or not. The results of
the experiments demonstrate that the ensemble model outperforms the single model. This
research motivates us to employ several detectors to cooperatively identify anomalies.

Considering the works described above, two concerns deserve consideration during
the design of IDS: one is the feature engineering required to process high-dimensional data,
and the other is the application of a powerful detector. In this study, we propose a novel
detection method that employs the AE and two different anomaly detectors.

3. Proposed Methods

In this section, we introduce the proposed model in detail. First, we lay out the basic
elements within the detection model in sequence, including the AE, OCSVM, and GMM.
After that, we merge these elements to present our whole detection framework.

3.1. AE

The AE is an unsupervised neural network; it can learn efficient representations of
the input data. Figure 1 displays the architecture of AE. As the figure illustrates, the AE
can be divided into two components the encoder and the decoder [27]. The latent features
generated by the encoder have a smaller dimension than the input data usually.

The main objective of the AE is to reconstruct the input data as much as possible.
The input data goes through hidden layers in the neural network, and the output layer
outputs rebuilt data. The encoder learns a map function φ for sample xi and outputs a
compressed latent representation zi, given a set of input features X = {x1, x2, . . . , xN},
where N is the number of samples in the dataset.

zi = φ(xi) (1)

After that, the decoder learns a mapping function ψ and tries to rebuild the input data
from compressed latent representation zi. Finally, it outputs x̂i, which is reconstruction of
the input.

x̂i = ψ(zi) (2)
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The training process of the AE finds the parameters in the encoder and decoder that
minimize the reconstruction error. In this work, the mean squared error is utilized to
calculate the reconstruction loss. The calculation is defined as

L =
1
N

N

∑
i=1
‖x̂i − xi‖2 =

1
N

N

∑
i=1
‖ψ(φ(xi))− xi‖2 (3)

After training, we only use the trained encoder to obtain discriminative latent repre-
sentation zi. In addition, we use them to train the other anomaly detectors.

As stated before, the reconstruction error measures the degree to which the AE rebuilds
the data. As a result, the reconstruction loss can be used as the anomaly score for samples
to detect attacks. To decide which samples are attacks, we can use a percentile score from
reconstruction loss of training set as a threshold [28]. When the reconstruction error is
higher than the threshold, the sample is classified as anomalous. The method will be
compared with ours as a baseline.

Encoder Latent
Feature !𝑥𝑥 Decoder

Reconstruction Loss

Figure 1. The architecture of an AE. The encoder compresses a original input x into a latent feature,
and then the decoder reconstructs it from the latent feature.

3.2. OCSVM

OCSVM [8] is one representative method of one-class classification. The one-class
classification method, unlike the binary or multi-class classification methods, only deals
with one class of data [29]. The trained model determines whether a new sample belongs
to the target class or not. An illustration of OCSVM is shown in Figure 2.

Consider the sample xi, a mapping function ϕ maps it into a high-dimensional kernel
space F . In the space F , the inner product can be computed by some kernel function
k, where the k(x, y) =< ϕ(x), ϕ(y) > and <,> is the inner product. The main idea of
OCSVM is to find a hyperplane in the kernel space F that separates data from the origin
with maximum margin [8]. In detail, the OCSVM solves the quadratic problem as below.

min
1
2
‖w‖2

F − ρ +
1

νN

N

∑
i=1

ξi

s.t. 〈w, ϕ(xi)〉F≥ ρ− ξi, ξi ≥ 0 . (4)

where the w is the weight vector of the hyperplane and ρ is the margin. Nonnegative
slack variables ξi allow some samples to cross the hyperplane and make the margin to be
soft. The hyperparameter ν ∈ (0, 1] controls the trade-off in the objective. Also, ν is an
upper bound on the fraction of anomalies. In this study, we use Gaussian kernel function
k(x, y) = exp(−γ‖x− y‖2).

After solving the problem, for one testing sample, the decision function f (xi) is
computed.

f (xi) = sgn(〈w, ϕ(xi)〉F − ρ) (5)

If new samples are on the wrong side of the hyperplane, they are recognized as
anomaly points. The decision function of anomalous points will be negative.
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Anomalous
Samples

Normal
Samples

Figure 2. The illustration of OCSVM. It tries to find a hyperplane to separate the normal samples
from the anomalous samples. The hyperplane, in particular, has the greatest distance to the origin.

3.3. GMM

GMM is a probabilistic model [30]. It uses a mixture of Gaussian distributions (also
called components) to fit the data. It can be used to cluster the data like KMeans [31].
For illustration, we plot the GMM to clustering the data with different components in the
Figure 3. There is a synthetic data with four clusters, and the number of components for
GMM is set in the range of 3 to 5.

(a) Component 3 (b) Component 4 (c) Component 5

Figure 3. An illustration of GMM trained on the synthetic data. There are three results with different
components for the data. We use different colors to mark the different cluster results of the trained
GMM. (a) Three components. (b) Four components. (c) Five components.

In comparison to the other two component settings, the GMM fits the data best when
the component is set to 4. When using GMM within the job of anomaly detection, it can
output corresponding probability densities for the samples after training. As a result,
the log-likelihood serves as anomaly score to detect anomalous samples, since abnormal
ones have a lower log-likelihood. In the following, we introduce the theory of GMM.

Let input feature x as a D-dimensional vector, the GMM can be expressed as a linear
combination of K Gaussian components, as shown below:

p(x) =
K

∑
k=1

πkN (x|µk, Σk) (6)

where the N (x|µk, Σk) represents the k-th Gaussian components with the mean µk and
covariance Σk. In detail, the µk is a D−dimensional vector, and Σk is a D × D matrix.
The πk is called mixing coefficients. It satisfied the conditions:

0 ≤ πk ≤ 1,
K

∑
k=1

πk = 1 (7)
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Let define a K−dimensional latent binary random variables z, it satisfy zk ∈ {0, 1}
and ∑k zk = 1. It is worth noting that only one element zk equals 1.The distribution of z
can be written as

p(z) =
K

∏
k=1

π
zk
k (8)

The following is the conditional distribution of x given the latent variable z.

p(x|z) =
K

∏
k=1
N (x|µk, Σk)

zk (9)

The graphical model of the GMM can be plotted when all variables are considered,
as shown in Figure 4.

𝒛!

𝒙!
𝑁

𝚺𝝁

𝝅

Figure 4. The graphical model of GMM.

The marginal distribution of x can be obtained from the joint distribution p(z)p(x|z)
using these elements.

p(x) = ∑
z

p(z)p(x|z) =
K

∑
k=1

πkN (x|µk, Σk) (10)

We also introduce the conditional probability of z given x (also known as responsibili-
ties) because it will be useful in the following calculations. We denote the p(zk = 1|x) as
γ(zk). Using Bayes’ theorem, the calculation can be obtained as

γ(zk) =
πkN (x|µk, Σk)

∑K
j=1 πjN (x|µj, Σj)

(11)

With the corresponding parameters, including π, µ and Σ, we can obtain the log-
likelihood for the X = {x1, x2, . . . , xN} as follows:

ln p(X|π, µ, Σ) =
N

∑
n=1

ln{
K

∑
k=1

πkN (xn|µk, Σk)} (12)

To find the parameters from which to obtain the maximum likelihood, we can use
the expectation-maximization (EM) algorithm. First, some initial values for the means
µ, covariances Σ, and mixing coefficients π are chosen randomly. After that, we update
parameters iteratively between the expectation step and the maximization step (we call
them E step and M step in the following). In the E step, we can estimate the responsibilities
using current parameters. After that, in the M step, using the new responsibilities, the new
parameters are obtained. The new µ, Σ, and π are listed:

µk =
1

Nk

N

∑
n=1

γ(znk)xn (13)

Σk =
1

Nk
γ(znk)(xn − µk)(xn − µk)

T (14)
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πk =
Nk
N

(15)

in which Nk is defined as

Nk =
N

∑
n=1

γ(znk) (16)

With new parameters, the log-likelihood can be evaluated again. We can check the
convergence of either parameters or the log-likelihood [30]. If it does not converge, we can
go back to step E and re-estimate the responsibilities. In general, before the convergence,
we repeat the E and M steps. Readers can refer to [30] for a detailed calculation of the
EM algorithm.

After fitting the distribution using GMM, we use the negative log-likelihood as the
anomaly score. We need a threshold T as the decision boundary. Usually, we can select
a value from the anomaly scores of the training dataset. Let si represent the negative
log-likelihood output by GMM G for sample xi, and define the decision function d(xi) as

d(xi) =

{
1, if si ≤ T
−1, if si > T

(17)

When the si is higher than threshold T, the sample xi is denoted as anomalous.

3.4. Whole Detection Frame

With the previously introduced theory foundation, we propose the total detection
framework combining these elements in this subsection. The whole detection framework
is shown in Figure 5. The whole framework can be divided into two phases: training
and testing.

OCSVM GMM

Hyperplane Probability
Distribution

One-Class
Boundary

Log-
Likelihood

Predictions Anomaly
Results

Training Dataset
(Only Normal)

Testing Dataset

Training
Phase

Testing
Phase

AE

AE

Figure 5. The proposed detection framework.

In the training step, we first train an AE model to extract representative features.
After that, we employ the latent features to train two anomaly detectors simultaneously,
OCSVM and GMM. These two detectors learn the characteristics of normal data from
different viewpoints. In particular, the OCSVM finds a hyperplane, and the GMM learns
the probability distribution. In summary, we learn about their models in the training phase.
It should be noted that, in the training phase, only normal data are utilized.

Anomalies in the data can be identified if they deviate from the normal profile. Al-
though the OCSVM learns a hyperplane for the normal samples, it may produce some false
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positives. Since the GMM learns the distribution of normal data, we can use it to verify the
prediction results produced via OCSVM.

With these well-trained models, we employ them to detect network attacks. We list the
detection process in the Algorithm 1. In sequence, we employ the AE to extract the latent
feature zi of the testing sample xi. We then apply OCSVM and GMM to them. The one-class
boundary of OCSVM produces the relevant prediction result yi first. Then, the negative
log-likelihood provided by GMM G is utilized to recheck the prediction result. In particular,
if a sample has been identified as attack but it has a lower negative log-likelihood than
predefined threshold T, we reclassified the it as normal.

Algorithm 1: Testing process of our proposed methods.
Data: Original input data xi. Encoder function φ of trained AE. The decision

function f (·) of trained OCSVM. The trained GMM G and decision
threshold T.

Result: Anomaly detection result for xi.
/* Step 1: Extract latent feature from encoder. */

1 zi ← φ(xi)
/* Step 2: Predict the anomaly detection by OCSVM. */

2 yi ← f (zi)
/* Step 3: Recheck the misclassified predictions. */

3 if yi == −1 then
4 si = G(zi)
5 if si ≤ T then
6 yi ← 1
7 end
8 end
/* Step 4: Return the anomaly detection result. */

9 if yi == −1 then
10 xi is an anomaly
11 else
12 xi is not an anomaly
13 end

4. Experiment Results

In this part, we evaluate the effectiveness of our proposed detection model. First,
we introduce the dataset utilized in the research. Then, the evaluation metrics are listed.
After that, the detailed experiment settings are laid out. In the final part, we analyze the
detection performance.

4.1. Dataset

In this work, there are two datasets utilized in the experiments, namely, NF-BoT-IoT-v2
and NF-CSE-CIC-IDS2018-v2 respectively [32]. There are seven types of traffic in the first
dataset and five types of traffic in the second dataset. In the research, we refer to these two
dataset as BoT-IoT and IDS2018 correspondingly.

Since there are a huge number of samples in the original datasets, we select some
samples for each class at random. In detail, the BoT-IoT dataset comprises 143,748 samples,
of which 65,150 are normal. The sampled IDS2018 dataset includes 296,502 samples and
120,000 is normal. Also, the precise distribution of various attacks is displayed in Figure 6.
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Normal

45%

DoS

29%

DDoS

15% Reconnaissance
10%

Theft1%

BoT-IoT
Normal

44%

DDoS
25%

DoS

17%
Bot

5%
Bruteforce

4% Infilteration
4% Web1%

IDS2018

Figure 6. The distribution of different categories traffic in two datasets.

Every record is created with NetFlow v9 features set. After removing several irrele-
vant columns, such source or destination IP, there are 39 features left. We apply the log
function to the numeric features first in order to minimize the influence of some large
values. To further handle the category features in the data, the one-hot encoder is applied.
After processing, there are roughly 200 features for the BoT-IoT dataset and 300 features for
the IDS2018 dataset.

During the experiments, we use the 5-fold cross-validation method to evaluate the
performance. As we seek to build a semi-supervised anomaly detection model, all the
attack samples in the training set are removed. Before training the model, we use Min-Max
normalization to scale all the features into a range of [0, 1].

4.2. Evaluation Metric

In Table 1, we present the confusion matrix. Considering the attack class as a positive
type, there are four classification results between the true class and prediction class: true
positive (TP), false negative (FN), false positive (FP), and true negative (TN). One TP record,
for example, demonstrates that an attack sample is accurately classified as abnormal.

Table 1. Confusion matrix of detection results.

Actual Condition
Predicted Condition

Attack Normal

Attack True Positive False Negative
Normal False Positive True Negative

We can derive some performance metrics from the four categories of classification
results. The accuracy represents the proportion of samples that were properly classified,
including both attack and normal samples, as shown below.

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

There are other two types of performance metrics: detection rate (DR) and false
positive rate (FPR), as illustrated blow.

DR =
TP

TP + FN
(19)

FPR =
FP

FP + TN
(20)
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Also, we include the three metrics frequently used in the classification field, including
precision, recall, and F1.

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
(22)

F1 =
2× Precision× Recall

Precision + Recall
(23)

The recall and DR have the same format. In the following comparisons, we only use
the recall.

4.3. Experiment Settings

In this section, we describe the specifics of the experiment settings, including several
baseline methods and parameter settings. We utilize six baseline techniques to compare our
method. Particularly, the GMM and OCSVM are employed to illustrate the enhancement
of our combination strategy. Except for the GMM, OCSVM, and AE mentioned earlier,
the three additional methodologies are

• IForest. IForest builds numerous isolation trees from random subsets of data and
provides an anomaly score by aggregating the results from each tree.

• KDE. KDE is a non-parametric approach to estimate the probability density function
using a kernel function. The probability density can be utilized as anomaly score.
In this work, we employ the Gaussian kernel.

• Deep support vector data description (DSVDD) [33]. Like OCSVM, the support vector
data description (SVDD) is an one-class learning method. It aims to learn the smallest
hypersphere that encloses most of the target data. DSVDD utilizes SVDD as a loss
function to train the neural network and finds a hypersphere with a minimum volume.

During experiments, we utilize scikit-learn [34] to implement the semi-supervised
detection techniques. Accounting for the AE, we apply the Keras [35] framework to
program the neural network. We utilize a three-hidden-layer setting for both datasets.
As for the number of neurons in the hidden layers, we choose “150-100-50-100-150” and
“210-140-70-140-210” for the BoT-IoT and IDS2018 dataset, respectively, and PReLU [36] as
the activation function in the hidden layer. During the training of the AE, the batch size is
256, the epoch is 200, and the learning rate is 0.001.

For the OCSVM, since there are no attack samples in the training set, it is difficult to
pick the optional parameters. Two parameters have a significant influence on performance:
ν and γ. As most samples are normal, we set the value of ν as 0.01. And the γ is 1.0.
For GMM, we utilize 20 components.

For the IForest, we utilize the parameter recommended by the original paper, in which
the number of estimators is 100 and the maximum number of samples is 256. The bandwidth
of KDE is set to 1.0 by default in scikit-learn. The total training epoch of DSVDD is 200. It
has the same network architecture as the encoder within AE. We train a AE model with first
50 epochs, and then DSVDD uses the weights from the trained AE encoder for initialization.
The DSVDD is then trained over the last 150 epochs using SVDD loss. The batch size and
learning rate are identical to the AE we used.

Except for the OCSVM, when employing other techniques like GMM or KDE as
detectors, a threshold has to be selected for checking new samples. We take the 90th
percentile of the anomaly score obtained from the training set as the threshold. It should be
noted that our combination approaches employ the same parameter settings.

4.4. Experiment Results

In this subsection, we conduct several experiments to illustrate their comprehensive
performance. In the first, we compare the detection performance with other baselines.
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As the AE plays a critical role in the detecting process, we investigate its influence next.
In the final part, we examine several significant hyperparameters that effect performance.

4.4.1. Detection Performance

We provide the detection performance, including five metrics, in the Tables 2 and 3 for
both datasets. In the tables, we present both the mean value and the standard deviation.
It should be emphasized that all the approaches are trained on the latent representations
derived from the AE.

Table 2. Detection performance of BoT-IoT dataset.

Method Accuracy Precision Recall F1 FPR

IForest 66.29± 7.53 84.37± 3.74 46.55± 14.04 59.26± 12.64 9.84± 0.57
KDE 89.97± 0.38 91.54± 0.22 89.99± 0.54 90.76± 0.37 10.06± 0.24

GMM 95.45± 0.12 92.35± 0.18 99.98± 0.01 96.01± 0.10 10.02± 0.26
OCSVM 88.65± 6.97 83.58± 8.66 99.96± 0.01 90.84± 5.18 25.02± 15.41

AE 94.42± 2.01 92.17± 0.35 98.15± 3.65 95.04± 1.91 10.08± 0.25
DSVDD 95.36± 0.11 92.21± 0.17 99.98± 0.01 95.94± 0.09 10.22± 0.24

Ours 98.73± 0.33 97.78± 0.59 99.95± 0.01 98.85± 0.30 2.75± 0.74

Bold font indicates best results. The following table are the same.

Table 3. Detection performance of IDS2018 dataset.

Method Accuracy Precision Recall F1 FPR

IForest 66.57± 11.87 86.94± 4.82 50.60± 19.87 62.58± 17.27 9.93± 0.15
KDE 92.86± 0.15 93.20± 0.23 94.93± 0.04 94.06± 0.12 10.18± 0.37

GMM 93.25± 0.14 93.03± 0.20 95.84± 0.11 94.41± 0.11 10.57± 0.33
OCSVM 92.62± 0.68 92.05± 1.01 95.90± 0.05 93.93± 0.53 12.20± 1.67

AE 91.30± 2.81 92.89± 0.29 92.45± 4.86 92.62± 2.59 10.39± 0.36
DSVDD 92.36± 1.23 93.15± 0.14 94.08± 2.13 93.61± 1.10 10.17± 0.21

Ours 95.10± 0.13 96.10± 0.30 95.65± 0.13 95.87± 0.11 5.72± 0.46

We analyze the results of the BoT-IoT dataset first. IForest shows the lowest perfor-
mance for most metrics and a larger standard deviation. Other methods present a value of
F1 higher than 90%. They exhibit a remarkable improvement over IForest. Except for IFor-
est and KDE, all other approaches demonstrate a higher recall with a value of 98%, which
indicates they identify most of the attack samples. AE, GMM, and DSVDD present similar
results on all metrics. OCSVM displays a lower precision value. Particularly, OCSVM has
the highest FPR. When it comes to our approach, since it combines the power of GMM and
OCSVM, it has the highest results in terms of all metrics except for recall. The FPR is the
lowest in the table, with a value of 2.75%.

From the Table 3 concerning the IDS2018 dataset, the OCSVM performs well on this
dataset compared with the BoT-IoT dataset. Our approach continues to deliver the highest
results, as before. However, the F1 achieves roughly 96%, which is lower than the 99% in
the previous table. The recall of our techniques is a little lower than the maximum result of
OCSVM. In addition, the FPR is reduced as compared to other techniques.

From the results mentioned above, in conclusion, our approach displays the highest
result in terms of most metrics. When compared to a single model, GMM or OCSVM, our
approach employs both and delivers a better result. In detail, we use GMM to check the
samples that are predicted to be anomalous by the OCSVM. In this way, the false positive
samples can be reclassified. From the results shown in the table, the FPR has been reduced
significantly for both datasets, which proves the improvement of our combination method.

4.4.2. Effect of Feature Extraction by AE

In the previous content analysis, we provided the performance anomaly detector
trained on the latent features extracted from the AE. It is reasonable to assess the impact
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of the AE. In Figures 7 and 8, we compare the performance of various detectors whether
trained with original features or not. For simplicity, we plot the precision, recall, and F1
only. It should be noted that whether latent features are employed or not, detectors use the
same parameter settings.
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F1

Original Features AE Latent

Figure 7. Performance comparisons of whether using an AE for the BoT-IoT dataset. The mean value
of three metrics, including precision, recall, and F1, is presented. Since AE or DSVDD directly applies
to original features, there is one bar for the AE and DSVDD.
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Figure 8. Performance comparisons of whether using AE for IDS2018 dataset.

From the comparisons for both datasets, when using latent features, most methods
exhibit improvements in terms of F1, which is a metric combining both precision and
recall. IForest indicates decrements for both datasets. GMM indicates a little bit of a decline
in BoT-IoT and an increase in IDS2018. For our combination method, it demonstrates
improvements in both datasets.

It should be noted that, if we do not employ AE features, the combination method does
not demonstrate improvement in terms of F1. When employing original features for the
IDS2018 dataset, for example, our combination technique show lower performance than the
single model, OCSVM or GMM. This is because both OCSVM and GMM perform poorly
on original features. It illustrates that the AE extracts useful features for two detectors in
this way.

4.4.3. Parameter Analysis

In this part, we investigate two parameters within the GMM: the number of compo-
nents and the selection of threshold. Also, we provides the approaches that utilize original
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features for comparison. In the experiments, there are four techniques involving GMM and
our method.

In the first stage, the number of GMM components is examined. During experiments,
the threshold is fixed at the 90th percentile of the anomaly score from the training dataset.
The components are taken from [1, 5, 10, 15, 20]. The Figures 9 and 10 illustrate the
comparisons for both dataset.
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Figure 9. Performance comparisons with different number of GMM components for BoT-IoT dataset.
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Figure 10. Performance comparisons with different number of GMM components for IDS2018 dataset.

The recall of the BoT-IoT dataset becomes steady as components reach 10. The results
of the recall from the IDS2018 dataset show a different pattern. Our method achieves the
highest recall when the number of components is 15. For both datasets, the F1 score begins
to grow with the number of GMM components. When employing original features to train
our method, the performance is lowest in terms of recall and F1. For both datasets, our
technique provides the highest F1 when the components are 20.

In the following, we investigate the influence of threshold selection. During the exper-
iment, we chose 20 GMM components. Then we pick the threshold from the anomaly score
obtained by the training set, with some representative percentile values, [80, 85, 90, 95, 99].
The detail results are displayed in Figures 11 and 12.
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Figure 11. Performance comparisons with different threshold for BoT-IoT dataset.
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Figure 12. Performance comparisons with different threshold for IDS2018 dataset.

The F1 of the BoT-IoT dataset displays increasing tendencies as the threshold increases.
In particular, its recall is steady at the various thresholds. but the precision is rising.
The results of the IDS2018 dataset are different. The precision is growing, but the recall is
decreasing after reaching 90th. For the F1 score, our method delivers the highest results
at 90th.

Since there are no attack samples during training, it is difficult to determine optimal
parameters. We can pick reasonable parameters based on domain experience. From the
comparisons stated above, the parameters selected for GMM are acceptable.

5. Conclusions

With the increased danger of network attacks, it is critical to develop effective IDS.
Machine learning and deep learning have been extensively employed in the field of IDS.
However, the challenge of high-dimensional data and the lack of labeled datasets pose an
obstacle to the development of IDS.

In this paper, we present a semi-supervised anomaly-based IDS that is trained on
the normal dataset only. The model utilizes an AE first to alleviate the influence of high-
dimensional data. After that, GMM and OCSVM are trained on representative features
derived from the AE. Then, they are used to examine the samples collectively. The results
of the experiment indicate the effectiveness of the suggested approach. In one part, the AE
boosts the performance of detectors. In another part, the combination method produces
better results than a single detector.

However, there are some limitations of our method. The hyperparameters used within
the models are set by domain experience. Although it performs well on these two datasets,
it may not generally perform well on other ones. In addition, if the OCSVM performs
badly, it is hard to obtain a high detection performance even with the help of the GMM,
as the trained GMM is only applied to the samples that are predicted to be anomalous by
the OCSVM.

In the future, there are several directions that deserve investigation. Some researchers
have proposed some methods to select ν or γ within the OCSVM model when only normal
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data are available. We can apply these hyperparameter selection methods to obtain higher
performance. Since combining various detectors can produce better detection results, it
is meaningful to try different detector combinations. It is reasonable to check the normal
samples predicted by OCSVM also. However, the strategy should be designed with caution.

Author Contributions: Conceptualization, C.W. (Chao Wang) and Y.S.; Data curation, C.W.
(Chao Wang) and S.L.; Formal analysis, H.L.; Funding acquisition, B.W.; Investigation, C.W.
(Chao Wang), S.L. and C.W. (Chonghua Wang); Methodology, C.W. (Chao Wang); Project adminis-
tration, B.W.; Resources, B.W.; Software, C.W. (Chao Wang) and S.L.; Supervision, H.L. and B.W.;
Validation, C.W. (Chao Wang), Y.S. and S.L.; Visualization, C.W. (Chao Wang); Writing—original
draft, C.W. (Chao Wang); Writing—review & editing, B.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is funded by the National Key Research and Development Program of China
(No.2021YFB2012400).

Data Availability Statement: In this study, we use the intrusion detection datasets introduced in [32].
Readers can refer the corresponding paper for detail information.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, H.; Lang, B. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 2019, 9, 4396.

[CrossRef]
2. Ferrag, M.A.; Maglaras, L.; Ahmim, A.; Derdour, M.; Janicke, H. RDTIDS: Rules and Decision Tree-Based Intrusion Detection

System for Internet-of-Things Networks. Future Internet 2020, 12, 44. [CrossRef]
3. Mohammadi, M.; Rashid, T.A.; Karim, S.H.; Aldalwie, A.H.M.; Tho, Q.T.; Bidaki, M.; Rahmani, A.M.; Hosseinzadeh, M. A

comprehensive survey and taxonomy of the SVM-based intrusion detection systems. J. Netw. Comput. Appl. 2021, 178, 102983.
[CrossRef]

4. Bhavani, T.T.; Rao, M.K.; Reddy, A.M. Network Intrusion Detection System Using Random Forest and Decision Tree Machine
Learning Techniques. In First International Conference on Sustainable Technologies for Computational Intelligence: Proceedings of ICTSCI
2019; Luhach, A.K., Kosa, J.A., Poonia, R.C., Gao, X.Z., Singh, D., Eds.; Springer: Singapore, 2020; pp. 637–643.

5. Cao, V.L.; Nicolau, M.; McDermott, J. Learning Neural Representations for Network Anomaly Detection. IEEE Trans. Cybern.
2019, 49, 3074–3087. [CrossRef]

6. Choi, H.; Kim, M.; Lee, G.; Kim, W. Unsupervised learning approach for network intrusion detection system using autoencoders.
J. Supercomput. 2019, 75, 5597–5621. [CrossRef]

7. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 14, 1–58. [CrossRef]
8. Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution.

Neural Comput. 2001, 13, 1443–1471. [CrossRef]
9. Alazzam, H.; Sharieh, A.; Sabri, K.E. A lightweight intelligent network intrusion detection system using OCSVM and Pigeon

inspired optimizer. Appl. Intell. 2022, 52, 3527–3544. [CrossRef]
10. Al Shorman, A.; Faris, H.; Aljarah, I. Unsupervised intelligent system based on one class support vector machine and Grey Wolf

optimization for IoT botnet detection. J. Ambient Intell. Humaniz. Comput. 2020, 11, 2809–2825. [CrossRef]
11. Cao, V.L.; Nicolau, M.; McDermott, J. A Hybrid Autoencoder and Density Estimation Model for Anomaly Detection. In Parallel

Problem Solving from Nature—PPSN XIV; Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B., Eds.; Springer:
Cham, Switzerland, 2016; pp. 717–726.

12. Vaiyapuri, T.; Binbusayyis, A. Application of deep autoencoder as an one-class classifier for unsupervised network intrusion
detection: A comparative evaluation. PeerJ Comput. Sci. 2020, 6, 1–26. [CrossRef]

13. Blanco, R.; Malagón, P.; Briongos, S.; Moya, J.M. Anomaly Detection Using Gaussian Mixture Probability Model to Implement
Intrusion Detection System. In Hybrid Artificial Intelligent Systems; Pérez García, H., Sánchez González, L., Castejón Limas, M.,
Quintián Pardo, H., Corchado Rodríguez, E., Eds.; Springer: Cham, Switzerland, 2019; pp. 648–659.

14. Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. Network intrusion detection system: A systematic study of
machine learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 2021, 32, 1–29. [CrossRef]

15. Vinayakumar, R.; Alazab, M.; Soman, K.P.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep Learning Approach for
Intelligent Intrusion Detection System. IEEE Access 2019, 7, 41525–41550. [CrossRef]

16. Yang, Y.; Zheng, K.; Wu, C.; Yang, Y. Improving the classification effectiveness of intrusion detection by using improved
conditional variational autoencoder and deep neural network. Sensors 2019, 19, 2528. [CrossRef]

17. Malaiya, R.K.; Kwon, D.; Suh, S.C.; Kim, H.; Kim, I.; Kim, J. An Empirical Evaluation of Deep Learning for Network Anomaly
Detection. IEEE Access 2019, 7, 140806–140817. [CrossRef]

http://doi.org/10.3390/app9204396
http://dx.doi.org/10.3390/fi12030044
http://dx.doi.org/10.1016/j.jnca.2021.102983
http://dx.doi.org/10.1109/TCYB.2018.2838668
http://dx.doi.org/10.1007/s11227-019-02805-w
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1162/089976601750264965
http://dx.doi.org/10.1007/s10489-021-02621-x
http://dx.doi.org/10.1007/s12652-019-01387-y
http://dx.doi.org/10.7717/peerj-cs.327
http://dx.doi.org/10.1002/ett.4150
http://dx.doi.org/10.1109/ACCESS.2019.2895334
http://dx.doi.org/10.3390/s19112528
http://dx.doi.org/10.1109/ACCESS.2019.2943249


Electronics 2023, 12, 930 16 of 16

18. Thapa, N.; Liu, Z.; Kc, D.B.; Gokaraju, B.; Roy, K. Comparison of machine learning and deep learning models for network
intrusion detection systems. Future Internet 2020, 12, 167. [CrossRef]

19. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data
2021, 8, 53. [CrossRef]

20. Abdelmoumin, G.; Whitaker, J.; Rawat, D.B.; Rahman, A. A Survey on Data-Driven Learning for Intelligent Network Intrusion
Detection Systems. Electronics 2022, 11, 213. [CrossRef]

21. Fu, Y.; Du, Y.; Cao, Z.; Li, Q.; Xiang, W. A Deep Learning Model for Network Intrusion Detection with Imbalanced Data.
Electronics 2022, 11, 898. [CrossRef]

22. Abdulhammed, R.; Musafer, H.; Alessa, A.; Faezipour, M.; Abuzneid, A. Features dimensionality reduction approaches for
machine learning based network intrusion detection. Electronics 2019, 8, 322. [CrossRef]

23. Qi, R.; Rasband, C.; Zheng, J.; Longoria, R. Detecting cyber attacks in smart grids using semi-supervised anomaly detection and
deep representation learning. Information 2021, 12, 328. [CrossRef]

24. Sadaf, K.; Sultana, J. Intrusion detection based on autoencoder and isolation forest in fog computing. IEEE Access 2020,
8, 167059–167068. [CrossRef]

25. Yan, W. Detecting Gas Turbine Combustor Anomalies Using Semi-Supervised Anomaly Detection with Deep Representation
Learning. Cogn. Comput. 2020, 12, 398–411. [CrossRef]

26. Liao, J.; Teo, S.G.; Pratim Kundu, P.; Truong-Huu, T. ENAD: An ensemble framework for unsupervised network anomaly
detection. In Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece,
26–28 July 2021; pp. 81–88.

27. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022.
28. Beggel, L.; Pfeiffer, M.; Bischl, B. Robust Anomaly Detection in Images Using Adversarial Autoencoders. In Proceedings of the

Machine Learning and Knowledge Discovery in Databases; Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C.,
Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 206–222.

29. Seliya, N.; Abdollah Zadeh, A.; Khoshgoftaar, T.M. A Literature Review on One-Class Classification and Its Potential Applications
in Big Data. J. Big Data 2021, 8, 122. [CrossRef]

30. Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; Volume 4.
31. Aggarwal, C.C. Outlier Analysis; Springer: New York, NY, USA, 2013; pp. 1–446.
32. Sarhan, M.; Layeghy, S.; Portmann, M. Towards a Standard Feature Set for Network Intrusion Detection System Datasets. Mob.

Netw. Appl. 2021, 27, 357–370.
33. Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Siddiqui, S.A.; Binder, A.; Müller, E.; Kloft, M. Deep One-Class Classification.

In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 4393–4402.
34. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
35. Keras. 2015. Available online: https://keras.io (accessed on 10 February 2023).
36. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.

In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 1026–1034.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/fi12100167
http://dx.doi.org/10.1186/s40537-021-00444-8
http://dx.doi.org/10.3390/electronics11020213
http://dx.doi.org/10.3390/electronics11060898
http://dx.doi.org/10.3390/electronics8030322
http://dx.doi.org/10.3390/info12080328
http://dx.doi.org/10.1109/ACCESS.2020.3022855
http://dx.doi.org/10.1007/s12559-019-09710-7
http://dx.doi.org/10.1186/s40537-021-00514-x
https://keras.io

	Introduction
	Related Work
	Proposed Methods
	AE
	OCSVM
	GMM
	Whole Detection Frame

	Experiment Results
	Dataset
	Evaluation Metric
	Experiment Settings
	Experiment Results
	Detection Performance
	Effect of Feature Extraction by AE
	Parameter Analysis


	Conclusions
	References

